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Abstract
This paper proposes a method for an automatic detection of 3D-display-friendly scenes from
video sequences. Manual selection of such scenes by a human user would be extremely time
consuming and would require additional evaluation of the result on 3D display. The input
videos can be intentionally captured or taken from other sources, such as films. First, the input
video is analyzed and the camera trajectory is estimated. The optimal frame sequence that
follows defined rules, based on optical attributes of the display, is then extracted. This ensures
the best visual quality and viewing comfort. The following identification of a correct focusing
distance is an important step to produce a sharp and artifact-free result on a 3D display.
Two novel and equally efficient focus metrics for 3D displays are proposed and evaluated.
Further scene enhancements are proposed to correct the unsuitably captured video. Multiple
image analysis approaches used in the proposal are compared in terms of both quality and
time performance. The proposal is experimentally evaluated on a state-of-the-art 3D display
by Looking Glass Factory and is suitable even for other multi-view devices. The problem
of optimal scene detection, which includes the input frames extraction, resampling, and
focusing, was not addressed in any previous research. Separate stages of the proposal were
compared with existing methods, but the results show that the proposed scheme is optimal
and cannot be replaced by other state-of-the-art approaches.
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1 Introduction

3D scenes can be projected onto the flat screen of the 2Dmonitor, but it is difficult to simulate
the 3D perception due to themissing depth dimension. The LookingGlass Factory 3D display
(LKG) and similar devices can simulate the 3D perception by displaying view-dependent
content; see Fig. 1. LKG simulates two main depth cues [1] that lead to an immersive 3D
experience. The first is binocular parallax caused by the distance between human eyes. The
second is monocular motion parallax, where the occlusions and seeming motions of the
objects depend on their distance from the observer. Since LKG does not require additional
equipment apart from the screen, such as virtual reality headsets, it is used for the presentation
of 3D scenes and data in educational institutions, museums, galleries, and also as a personal
3D digital picture frame. LKG was used during the evaluation of the proposed method, but
the method can also be used with other 3D displays.

This paper solves a problem of optimal scene extraction from videos, ensuring the best
possible viewing quality on a 3D display. This problem was not previously addressed thor-
oughly in research papers and no full solution exists. 3D display, such as LKG, requires
an array of input images that follow defined rules. The images need to capture the same
scene from positions following a horizontal trajectory. The spaces between the images need
to be constant and large enough to make the 3D perception visible. The images also need
to be shifted to make sure that the scene is sharp and not out of focus. Manual extraction
and adjustment of the scenes from, for example, family video albums, movies, or gameplay
videos, would be extremely time consuming. Figure 2 shows the common types of artifacts
that appear in the result displayed on LKG if the scene is not correctly extracted and how the
proposal ensures their mitigation.

The proposed method can produce a suitable scene from an arbitrary video if such scene
is present there. The processing speed can reach almost 40 fps when detecting the scene in a
FullHD video and about 20 fps when performing the additional resampling and focusing for
the extracted scene. Manual extraction and processing takes about 17× longer even for an
experienced user according to the conducted tests. The proposed method can be additionally
used as an capturing assistant when the user records the scene intentionally for the 3D display.
The method would be used in such case to notify the user if the recorded sequence is optimal
and would be able to produce a preview of the result. Based on an input video content, the

Fig. 1 The proposal where a) video frames with camera positions on a horizontal line are identified, b) desired
images are selected, c) frames are converted into the proper format which can be displayed on the LKG.
Different views are visible from different real-life viewing angles
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Fig. 2 The top row represents scenes processed by the proposedmethod. The bottom row shows scenes selected
without the proposal by the user just by a quick visual evaluation. The left Teddy scene shows focusing artifacts
and the right Class scene shows ghosting caused by a wrong trajectory of the input frames

proposed method can detect all suitable scenes, process them, and produce so-called quilt,
which can be directly rendered on the 3D display.

The main scientific hypothesis of this paper is that existing computer vision methods
can be adjusted and used to automatically produce an optimal input data for a state-of-the-
art 3D display based on input video sequence. The proof of the hypothesis is experimental
and presented in this paper. The method is evaluated using an annotated dataset. The main
scientific contributions of this paper are as follows:

• Evaluation of existing computer vision methods, identification of the optimal one, and
extension of the algorithm for automatic extraction of suitable frames for 3D displays.

• Novel method of resampling and stabilization of the extracted frames to reduce disparity
artifacts in the result when viewed on a 3D display.

• Two novel and equally efficient focus metrics tailored for the evaluation of image sharp-
ness on 3D displays.

• First complete novel proposal of automatic production of optimal content for 3D displays
based on arbitrary sequence of input images.

• Custom annotated dataset of 7 camera motion categories containing 182 synthetic and
real FullHD scenes. This dataset is annotated and designed as a benchmark for the 3D
display scene detection task.

Existing state-of-the-artmethods cannot be directly used for the production of suitable 3D-
display-friendly scenes. Most of the similar methods focus on object tracking or extraction.
Experimental evaluation and investigation of the state of the art showed that existing camera
motion extraction methods are unable to detect the desired camera motion optimally for the
3D display. Existing image focus detection methods are also not suitable as a replacement of
the proposed focusing methods. The input images need to be mixed together and the out-of-
focus areas are different than out-of-focus blur in standard photography. 3D reconstruction
methods can produce the necessary views for 3D displays by reconstructing the scene based
on an input set of views. Experiments showed that such approaches produce a lot of unwanted
artifacts due to the reconstruction and additional rendering of the scene. The reconstructions
might also fail due to the lack of free 3D motion around the scene in input views. Such
3D motion is, however, not always necessary for 3D displays which require only specific
trajectory of the input views. 3D reconstruction algorithms would, therefore, fail on many
potentially suitable scenes.
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2 Related work

LKG displays, as well as other similar 3D display devices, are described in this section.
Related research on camera motion classification in video sequences is also summarized
here.

2.1 3D display devices

Many stereoscopic devices require an equipment on the user’s head. Virtual reality headsets
use two small screens that display a different image of the scene per eye. The disparity of
the images helps the brain perceive the depth [2]. Motion of the headset is tracked, so the
virtual cameras in the scenemove according to the user’s head. Oculus Rift and HTCVive are
examples of the most popular devices. SamsungGear VR is an example of a hybrid approach,
where a smartphone is used with the headset as the display device. A more lightweight
approach is to use polarization glasses. Each eye obtains a different picture from the screen
where the image is projected in two differently polarized light streams [3].

Another approach is a volumetric projection using a rotating mirror and a projector with
a high frame rate. 3D scenes can be rendered from multiple angles, and the mirror reflects
each of the views in the right direction [4]. A more robust solutions are Voxon Photonics
products [5]. They use a rapidly moving flat screen on which a different part of the 3D image
is projected. Unlike stereoscopic devices, this approach allows the user to walk around the
displayed model, not being restricted to a flat screen and specific viewing angles.

Multiview displays use the principle of viewing-angle-based ray distribution, wheremulti-
ple views of the scene are displayed at the same time. The tensor display [6] uses a cascade of
light-attenuation layers that modify the light coming from the source screen. Rapid temporal
modulation showing different frames in a short period of time helps to widen the viewing
angle, showing different parts of the scene through the synchronized layers. A so-called
holographic screen where each point modifies the light rays emitted from the optical module
layer in various directions is used in the HoloVizio display by Holografika [7].

2.2 Looking glass display

The 3D display by Looking Glass Factory [8, 9] belongs to the multiview display category. It
is capable of simultaneously displaying 45-100 images of the scene so that the user can see a
different part of the scene from a different viewing angle; see Fig. 3. No additional headsets
or glasses are necessary. Three main limitations of current display models exist: the 50◦-60◦
viewing cone, out-of-focus artifacts, and only horizontal change in views.

Fig. 3 The classroom scene from the testing dataset was displayed on the LKG. Three photos were taken from
different angles around the display showing the 3D parallax
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Fig. 4 The figure shows the optimal orientation of the capturing cameras which are placed in the scene accord-
ing to the horizontal 3D display orientation. Users then see a combination of the captured views according to
their viewing position

The input to the LKG display software is a set of images (at least 45 for their seamless
transitions) capturing the scene. They represent a discrete light field approximation [10]. The
images have to be placed along a horizontal straight line that is perpendicular to the optical
axes of the capturing cameras and parallel to the horizontal edges of the LKG screen. The
capturing cameras have the same orientation and are evenly distributed along the line; see
Fig. 4. The images are then converted to an internal LKG format that is displayed directly.
The process is described in Fig. 5. The optical layer, composed of lenticular lenses, distributes
the rays coming from the pixels of the source display in the correct direction to simulate the
3D effect.

2.3 Cameramotion evaluation

Camera motion following a horizontal straight line trajectory is called truck in cinematogra-
phy. It is visually similar to pan which consists only of rotation. Dense [11] or sparse [12]
optical flowcan be used to detect cameramotion for consecutive video frames.Another option
is to use feature matching algorithms with descriptors such as SIFT [13], SURF [14], KAZE
[15] or ORB [16] and find the displacement of the found features. In this paper, selected
approaches are compared. The features detection is often used in tracking algorithms [17].
The method proposed in this paper uses the tracking in a reverse way to track the camera.

Fig. 5 Evenly distributed cameras on a horizontal line capture the scene as a set of images that are merged into
one matrix (quilt). The quilt is then transformed into the internal LKG format which can be directly displayed
on LKG
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For a sparse optical flow, the tracking features are selected using the Shi-Tomasi corner
detector [18]. The dominant camera motion in a video sequence is usually estimated by
averaging optical flow vectors in predefined regions of the image/flow [19]. A set of rules
is then used to estimate camera motion based on the dominant direction in each region [20,
21]. A similar optimized principle is used in the proposed method.

Knowing the intrinsics of the camera, a combination of multiple optical flow models
can provide more accurate results [22]. A spatio-temporal derivative of the intensity in two
successive frames can be used [23].Motion vectors can be computed using temporal gradient-
based block matching. The resulting motion is estimated using the motion vectors of interest,
which are chosen from the field according to their significance and consistency [24]. If
encoded video files are used as input data, the necessarymotion vectors can be extracted from
the compressed stream [25–27]. Hidden Markov Models [28] or Transferable Belief Model
[29] might be more robust alternatives to solid thresholds in the camera motion estimation
rules. Multiresolution least-squares methods might be used to fit the motion model even
with noisy data [30]. Model-based estimations might not cover the whole range of possible
videos and camera motions. Machine learning approaches to overcome this problem were
also proposed [31–35] but their quality depends on the training process. The proposed direct
algorithm might be more robust and lightweight.

Structure-from-motion and visual simultaneous localization and mapping techniques are
frequent approaches that are used to reconstruct a point cloud of a 3D scene or to retrieve
the camera trajectory from a sequence of images. ORB_SLAM3 [36] is one of the methods
compared in this paper. It is based on a previous SLAM research [37, 38]. ORB_SLAM3
approach consists of tracking, mapping, relocalization, and loop closing based on ORB
features extracted from the image frames. Camera pose information can be retrieved in real
time for each frame after the initialization phase when the scene map is created. The quality
of the result, aside from the quality of the input sequence, depends on the camera intrinsics,
especially the focal length value. Similar approaches can be used to detect optical flow in
deformable scenes [39].

The detection process of this paper could be improved in the future by semantic analysis
of the scene, such as in preview frame detection methods [40–42]. However, the main goal
of the proposed method is to select all candidate scenes from the input video so that the user
can get a set of possible quilts from the input video.

2.4 Novel view synthesis

Novel views can be interpolated from different images of the same scene [43–45]. Such
approaches can be used to generate the quilt for LKG. The occlusion-based parallax and
reflections are the most important elements that create realistic feel of the scenes displayed
on LKG. However, the results of the interpolation methods often contain visual artifacts,
as information about occluded objects and reflections is missing. The artifacts might not be
noticeable in computer games or dynamic scenes, but one of the main use cases for LKG is
realistic simulation of objects in a real setting. For example, Looking Glass Portrait contains
Raspberry Pi4 and can act as a standalone 3D photo frame. Any unrealistic artifacts can be
disturbing during exploration of the scene. The frames extracted by the proposed method
are guaranteed to be correct or can be even used for inter-frame interpolation between close
views where artifacts are less visible. The proposed method is, therefore, an important tool
for any quilt extraction task, even involving interpolations.
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Fig. 6 Zephyr produced the best result when reconstructing the scene but is still full of artifacts. The deep
FILM interpolation produced distorted results for both full and halved distance between the views from Barber
scene in the used dataset

The 3D reconstruction fails due to the lack of camera orientation change in the input
views. The suitable sequences for LKG do not contain views positioned freely in the space.
For example, the expected LKG-friendly Barber scene from the dataset was used in INGP
[43], FILM [46], Meshroom1 and 3DF Zephyr.2 The scene was reconstructed in the two
programs, but the result is not optimal, as shown in Fig. 6. INGP pre-processing of the data
by Colmap3 failed. The FILM deep learning frame interpolation produced a frame between
the boundary frames from the video. Two issues appeared: the frames had to be downscaled
from FullHD to HD due to insufficient resources on a high-end NVIDIA RTX 2070. The
interpolated frame contained visible artifacts even when the distance between views was
halved. RGBD photos can also be processed by LKG software and displayed, but the lack of
parallax andmissing reflections create the unwanted cardboard effect [47]. Also, rendering of

1 alicevision.org
2 3dflow.net
3 colmap.github.io
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the large number of views in a high quality is problematic and requires a lot of computational
resources [48].

The only reliable way to produce a good-quality quilt from videos is the proposed method
with possible interpolation in a small scale. The proposed focusing metrics are still necessary
for the extracted or interpolated views. The user can capture the scene in a similar way as
when taking a panorama photo with a mobile phone. The only difference is that, instead
of rotating the phone, the user would move to the side. Such captured footage would be
automatically prepared by the proposed method for direct rendering on the 3D display.

3 Proposedmethods

The proposed method consists of the following steps:

1. Quilt extraction: The input video stream is analyzed, and suitable frames are chosen for
further processing. The frames have to capture the scene having their camera positions
lying on a horizontal trajectory.

2. Frame resampling: The camera motion in the selected sequence can be non-linear or
with unsuitable spacing between frames. Equally distanced frames are selected from the
sequence to ensure the best visual quality of the rendered result.

3. Automatic focusing: 3D displays support only one distance where the scene is visually
sharp and focused. The focusing distance is estimated to ensure that most of the scene is
in focus.

Sparse optical flow, dense optical flow, feature matching, and SLAM approaches were
compared in the reference implementation to estimate the camera trajectory. In the first phase,
a rough camera motion estimation is performed, detecting truck and pan motion sequences.
Pure truck sequences are ideal for LKG. The camera can also do a combination of truck and
pan which might still be acceptable. The panning motion reduces the parallax effect. The
second phase determines the amount of pan motion in the sequence. Additional checks are
performed, such as motion blur and shakiness detection. A score that evaluates the suitability
of the sequence is the result of the second phase. An approach using ORB_SLAM3 does
both tasks in one phase.

3.1 Horizontal sequence detection

Pairs of pixels blocks are identified as belonging to the same spot in the scene in two consec-
utive video frames. The field of motion vectors (optical flow) is then known for each frame
pair. The mean of these vectors is a good guide to determine the overall motion of the camera.
Monocular visual SLAM methods also exploit a similar concept of feature matching in two
frames, and based on them, the camera pose or scene map is estimated. Figure 7 shows a
simple scenario in which the ideal horizontal quilt sequence is mapped to a subset of suitable
video frames.

Possible scene change can be detected by a simple histogram comparison or by setting
a threshold for the estimated camera pose change. The result of the analysis is an array of
estimated camera pose differences between frames. The analysis phase is the most compu-
tationally expensive part of the processing.

In many cases, the mean value of these vectors can be used directly to decide whether the
truck or pan motion is dominant in the shot. When the truck motion is combined with pan,
the parallax can be inverted, depending on the distance of the objects in the scene from the
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Fig. 7 The camera positions on the trajectory belong to frames in the input video. The required ideal horizontal
sequence capturing the scene from a desired spot and with a given spacing is then mapped on the closest input
frames

camera. To solve this issue, the direction of the sequence can be ignored, working only with
the magnitude of horizontal motion. The method accepts i th frame fi in the sequence seqi
until the vertical velocity velvert is above a defined threshold tvert or the horizontal velocity
velhor is close to zero; see Algorithm 1 and (1).

seqi =

⎧
⎪⎨

⎪⎩

accept if velhor ( fi , fi−1) > 0 ∧
velvert ( fi , fi−1) ≤ tvert

reject otherwise

(1)

In the reference implementation, 30% of the extreme vectors are dropped, 15% from each
side of the sorted array to eliminate outliers. The distortions caused by, e.g., very close objects

Algorithm 1 The algorithm iterates over all consecutive frame pairs and adds frames
into the horizontal sequence.
Data: Video frames sequence f r
Result: Clips suitable for LKG quilt clips
motions = [];
foreach two consecutive frames ∈ f r do

insert(motions,motion(prev, next));

clips = [];
insert(clips, emptyClip);
foreach (id, motion) ∈ motions do

x, y = |motionxy |;
if x > xmin and y < ymax then

insert(last(clips), id);
else

if sufficientLength(last(clips)) then
insert(clips, emptyClip);

else
clear(last(clips));
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Fig. 8 The apparent motion of the pixels is demonstrated in the images for truck, pan and combined camera
motion. Frames from the testing sequences were blended together and image gradient of the result was
highlighted

that have high apparent velocity or poorly matched features, are then reduced. The vertical
motion threshold was set in the implementation to 1.5px in both directions. The value was
determined according to the acceptable limits discovered in a previous study [49].

3.2 Pan elimination

Figure 8 shows images composed of multiple video frames. The pan shots are very similar
to the truck ones, except for the distortion in the corners of the field. The angles between the
motion vectors and the horizontal axis are higher than zero; see Fig. 9. Dense optical flow
can be computed for each corner of the image pair. The mean vector should point down on
one side and up on the other side of the image or vice versa, according to the camera motion
direction. Each fifth pair is tested in the reference implementation for performance reasons
and shows no quality degradation compared to testing every pair.

A score is calculated at the end of the second phase for each processed sequence; see (2).
The score s takes into account the overall amount of motion blur in the sequence, shake
(amount of vertical motion), the average presence of the pan pattern, and the difference dist
between the average amount of vertical motion at the center of the image ycent and at the
corners ycor normalized by themaximal allowed limitmaxDi f f ; see (3). The amount of blur
is measured using the variance of Laplacian method [50, 51]. Lower-scored sequences are
assumed to be more suitable for LKG. The weightswi can be adjusted depending on specific
quilt requirements. In the measurements, the weights were set to 0.2, 0.5, 0.1, 0.2 in this

Fig. 9 Motion field model, used to identify pan in the second phase of the extraction, is depicted in the figure
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order. The values were determined according to a previous study on user experience related
to camera trajectory distortions on LKG [49]. It shows that the pan pattern can negatively
affect the result quickly, while shaking can be tolerated to a certain extent.

s = w1 · dist + w2 · pan + w3 · shake + w4 · blur (2)

dist = min

(

1,
ycor − ycent
maxDi f f

)

(3)

In the case of ORB_SLAM3 analysis, the camera pose matrix is decomposed into trans-
lation and rotation. The translation difference can be simply obtained by subtracting the
translation vectors. The rotation difference di f frot is estimated by comparing the rotational
quaternions q1 and q2 according to (4). Pure pan motion is not suitable for SLAM recon-
struction and is rejected automatically.

di f frot = 1 −
∣
∣
∣
∣
acos(q1 · q2)

π/2
− 1

∣
∣
∣
∣ (4)

3.3 Non-linear camera velocity and noise

The motion vectors are available from the analysis phase and can be used to improve the
quality of the accepted sequence. The vertical component of the average motion vector
can be used to reduce the shaking of the camera on the vertical axis. The camera motion
perpendicular to the viewing plane (dolly) can be used to change the scale of the images to
reduce the noise on the depth axis.

For the best viewing experience on LKG, equally distanced views of the scene are optimal
[49]. This requires a constant camera velocity and frame rate, which is not guaranteed. If the
frames are not equally spatially distanced, the sequence has to be sampled non-uniformly. The
frame distance can be represented by a horizontal component of the average motion vector
between frames. Horizontal position changes are accumulated in acc frame-by-frame, with
increasing index i . The nearest neighbor can be accepted as the nth frame in the resampled
sequence resn when the accumulatedmotion exceeds themaximal allowed valuemmax which
is computed by their difference d in (5). Algorithm 2 and (6) describe the conditions which
decide the index of the accepted frame which is closer to the desired position.

d = acc − mmax (5)

resn =
{
i if d < |d − |mi−1||
i − 1 otherwise

(6)

The distances between frames have to be large enough to create sufficient 3D perception.
If the frames are too close, the LKG result looks flat without significant parallax. On the other
hand, too large distance reduces the amount of focused area in the scene. The sequence can
be resampled according to the optimal frame distance; see Fig. 10. Equation (7) describes
the computation of the best alignment offset obest from the range (os, oe) of the detected
sequence. The sopt imal is a vector that contains the positions of the views in the optimal
sequence with constant spacing. The sdetected is a vector that contains the positions of the
views in the sequence that was detected in the previous phase. The optimal sequence is shifted
by the offset o and the error between the sequences is computed, looking for its minimum.
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Algorithm 2 The sequence is resampled in the algorithm to ensure a constant camera
position difference between the frames.
Data: X axis motion values for a sequence of selected frames clipx
Result: Sequence of frame indices with linearized motion cliplin
motionmax = max(clipx );
acc = |first(clipx )|;
cliplin = [];
foreach two consecutive (id, motion) ∈ clipx do

acc += |motionnext |;
if acc >= motionmax then

delta = acc − motionmax ;
if delta < |delta − |motion prev || then

insert(cliplin , idnext );
else

insert(cliplin , idprev);

acc -= motionmax ;

The vector and scalar addition is defined as the addition of the scalar value to all values in
the vector.

obest = argmin
o∈[os ,oe]

{∣
∣(sopt imal + o) − sdetected

∣
∣
}

(7)

Equation (7) is implemented in practice by Algorithm 3 that describes a quilt window
with the desired distance. This window is sliding over the extracted frames, and the error
is computed from the distance between the actual frames and the positions in the window.
The window position with the lowest error marks the best sequence according to the given
requirement. The optimal distance depends on the scene content and the users’ preferences.

The resampling algorithm can be used to also export a quilt with different number of views
for other multiview devices such as 3D tablet Lume Pad.

3.4 Focusing

The display blends multiple frames to avoid discrete frame changes when users change view-
ing position. The blending can be simulated by (8) which is implemented by the microlens
array on the display. A pixel at the coordinates x, y of the resulting view v, focused at a
focusing distance f is calculated as the sum of pixels of the total N images of the quilt where

Fig. 10 The middle row depicts the input frames. A quilt window with fixed spacing is placed at the beginning
in the bottom row and at a better position in the top row. The distances between the positions in the sampling
windows and the positions of the nearest input frames are defining the overall error
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Algorithm 3 A quilt window is sliding along the sequence, computing the distance
between the closest samples and optimal positions. The window position with the
lowest error is then selected.
Data: Sequence of frame positions pos; desired spacing between the views space; location of

interest in the input sequence loc; searching distance around the defined position dist
Result: An offset of the window with desired parameters with the lowest error clipbest
cli ps = [];
step = (2 · dist)/RESOLUT I ON ;
range = vec2(loc − dist, loc + dist);
for of f set in range with step do

error = 0;
window = [];
for i from 0 to QU I LT_SI Z E do

sample = of f set + i · space;
nearest = findNearest(pos, sample);
di f f = |nearestpos − sample|;
error += di f f 2;
insert(window, nearestid );

// if duplicates are not allowed
if hasNoDuplicates(window) then

clip = newClip(error , of f set);
insert(clips, clip);

clipbest = lowestErrorClip(clips);

the i th image is sampled by function I (i, x, y) at the desired position. The sum is weighted
and the weight wi for the t th image is calculated according to the position p that defines
where the resulting view is in the quilt as a rational number in the range (1, N ).

v(x, y, p, f ) =
∑N

i=1 I (i, x + (1 − 2(i/N )) f , y) · wi (p))
∑N

i=1 wi (p))
(8)

Scene content positioned at zero-parallax plane is always sharp and maintains its screen
space coordinates; see Fig. 11. The further the content is from the plane, the more parallax
is present along with the out-of-focus artifacts. The zero-parallax plane position can be
changed by shifting the views so that the same area of the scene lies on the same screen-
space coordinates. The position of the zero-parallax plane is defined as the focusing parameter
f in (8).
The positions of the start and end points of the acceptable focusing range, where at least

parts of the scene are focused, depend on the depth range of the captured scene; see Fig. 12.

Fig. 11 The first picture shows the 3D scene with two zero parallax plane positions. The second and third
pictures are the actual results displayed on the LKG showing how the plane position affects the focusing in
the rendered image
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Fig. 12 Scene is focused at the borders of the focusing range and in the optimal distance where most of the
scene appears to be in focus

The proposed method finds the optimal zero-parallax plane position that makes most of the
scene in focus.

The unique internal image format, displayed directly on the LKG screen, where all quilt
views are combined into one image, is analyzed. The combination of the images from the
quilt into the internal format is performed according to (9), where h is the index of the
RGB channel (R = 0,G = 1, B = 2) and internal format access function I is extended
by this parameter to index the specific channel. The calibration parameters defined by the
LKF manufacturer are defined as follows: s is subpixel shift, t is tilt, p is pitch, v is view
portion, and c is center shift. The total number of views is defined as N and �� means floor
operation and {} is the extraction of fractional part. Each physical LKG device comes with
a different set of these parameters. The equation allows to directly render the quilt on the
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Fig. 13 Focused and out-of-focus images are shown.Left ones are in theLKG internal formatwith twodifferent
display calibration settings. The right images show the energy of the images processed by the proposedmethods

display without any proprietary software as it distributes the pixels according to the structure
of the microlens array on LKG. The focusing can be achieved by the transformation of x, y
coordinates similarly to (8).

Ilkg(x, y, h) = I (�{(x + sh + yt)p − c}N�, vx, vy) (9)

The areas of the image outside the zero-parallax plane are distorted by a diagonal blur-like
pattern. The more the pattern is visible, the less focused the given part of the image is on
LKG. Two focus estimation metrics are proposed.

The first is a difference of Gaussians (DoG) edge detection on the internal LKG format
image. The second performs a subtraction of two internal LKG images with different display
calibration settings. The diagonal blur pattern is different for each calibration. In both cases,
the out-of-focus pixels in the result contain high values. A similar principle was used in
all-focused light field research [52]. Figure 13 shows both metrics and their results. The
algorithm then iterates over a wide focus range and searches for the minimum of the given
metric, as shown in Fig. 14. The principle is the opposite of the standard blur measurement
methods [53]. The Gaussian metric is described by (10) and subtraction by (11). The optimal
focusing value f DoG

o and f subo searched as f in interval ( fs, fe) is computed, for the first
metric, as a difference of internal LKG format images Ilkg with calibration parameter c1,

Fig. 14 Two focusing metrics are plotted with manually marked optimum distance where most of the image
is focused in Teddy scene. The location of the global minimum of the energy marks the best focus
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processed by Gaussian filter G with filter parameters p1 and p2. The second metric subtracts
two different internal images with calibration parameters c1 and c2. The DoG parameters
used in the measurement were radius = 10, σ1 = 0, σ2 = 10 but different reasonable
parameters showed the same results. The calibration parameters, used in (9), c1 were set to
t = −0.1153, p = 354.42108, c = 0.04239, v = 0.99976 according to a physical device
used in the tests and the parameters c2 were changed as t = 0.05, p = 150 which showed
the most visible changes after subtraction.

f DoG
o = argmin

f ∈[ fs , fe]
{G(p1, Ilkg(c1, f )) − G(p2, Ilkg(c1, f ))} (10)

f subo = argmin
f ∈[ fs , fe]

{Ilkg(c1, f ) − Ilkg(c2, f )} (11)

4 Experimental evaluation

The overall quality of the detector was evaluated in terms of efficiency and performance (see
Table 1) in the following experiments:

1. Quilt extraction. The aim of the experiment was to measure the accuracy of automatic
quilt extraction from a video. The classification is evaluated using a custom annotated
dataset.

2. Frame resampling experiment which proves that frames can be sampled in an optimal
way, resulting in a lower error compared to a simple first frame alignment.

Table 1 The table contains
important overall results of the
three main experiments

Horizontal sequence extraction

Analysis method True [%] False [%]

ORB_SLAM3 79.7 20.3

ORB 75.6 24.4

Optimal window positioning

Scene Squared error

First frame aligned Optimized

Teddy 382.988 251.594

Hut 502.925 300.505

Class 115.437 82.4649

Pavilion 88.3094 72.9947

Focusing distance detection

Method Absolute error

DoG Subtraction

Average 0.0475 0.0441

Min 0 0

Max 0.549 0.549

True values are considered T N + T P and false FN + FP according to
the custom annotated dataset
The bold entries mark the best results
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Fig. 15 The figure contains three previews of synthetic and three of real scenes from the original dataset

3. Automatic focusing of the resulting quilt. The experiment proves that the optimal focus-
ing distance where most of the scene lies on the zero-parallax plane can be found
automatically, which makes the resulting quilt ready to display.

Although LKG is used as the main experimental device in this paper, the resulting quilts were
also tested on a N080 UHD Glasses-free 3D Network Multimedia Advertising Machine by
Smarter Instruments and a Lume Pad 3D tablet by Leia Inc. The proposed method is suitable
for other 3D display devices that use the same principle of horizontal multiview imaging.

OpenCV implementations of the Lucas-Kanade, Farneback, and ORBmethods were used
along with the original ORB_SLAM3 implementation for the quilt extraction. All exper-
iments were executed on a machine equipped with Nvidia GeForce RTX 2070 GPU and
Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz CPU, running Arch Linux.

4.1 Dataset

An original dataset is used in this paper and also published for other researches. The dataset
consists of 182 FullHD, 25 fps, synthetic and handheld camera scenes encoded in H.265
format with standard YUV420 colorspace. The scenes are divided into 7 categories according
to the dominant camera motion: chaotic, dolly, pan, pan and truck combined, pedestal, tilt,
and truck. The scenes were manually annotated and sorted. The two categories which are
considered to be suitable for 3D display are truck and truck with pan. The scenes from these
categories were tested on LKG to make sure that they contain enough 3D information and are
aligned enough with the optimal horizontal trajectory. The dataset is specifically designed to
contain the ideal scenes for 3D displays along with other combinations of unwanted camera
motions, which serves as the best benchmark for the given task. The duration of the videos
is from 2 to 13 seconds. The videos were captured to cover all types of scenes with various
depths, close and far objects of interest, etc. The synthetic shots were rendered in Blender
with premade scenes from Blender Demo Files.4 The synthetic videos are in two versions,
with ideal smooth camera motion and with additional shaking and motion blur. The real-life
videos were captured by Panasonic HC-VX980 Camcorder without any special equipment
in both indoors and outdoors settings. Figure 15 shows examples of the scenes in the dataset.

4.2 Quilt extraction

The desired point in Fig. 16 marks the maximal vertical motion between two frames that
is accepted as valid. The position was experimentally identified by tracking the amount of
artifacts on LKG. An experiment was conducted in which identical frames with a simple
pattern were vertically shifted with increasing offset. The first kind of artifact is caused
by the mixing of the frames, which occurs throughout the displaying range to simulate the
binocular parallax.

4 blender.org/download/demo-files/
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Fig. 16 The threshold parameter is the limit of vertical motion. The desired point marks 1px vertical motion
tolerance which makes the artifacts visible. The best ratio of 0.9px tolerance was marked according to the
used metrics

Figure 17 shows the difference between the vertically displaced quilt and the aligned one.
These artifacts start to occur with displacement around 1.5px. The second type is visible in
between two frame positions in the monocular motion parallax when watching the display
from a close distance. This kind of artifact is more sensitive to displacement and was detected
starting at 0.5px displacement. A value between these two, 1px, was selected as desired; see
Fig. 18.

Three metrics (Youden index, closest to [0, 1] and maximum area) were used to identify
the best ratio threshold in the Receiver Operating Characteristic (ROC) curves [54], which
corresponds to a vertical motion tolerance of 0.9px. Figure 19 shows the distribution of
negative and positive results among the categories in the dataset. Figure 20 shows the accuracy
and precision results.

ORB-based feature detectionmethod outperforms the optical flow approach. ORB_SLAM3
shows better results than all other approaches, but is limited by its inability to analyze all
possible sequences. Most of the problematic sequences are true negatives, but some positive
sequences were also refused. That is the reason why its ROC curve does not reach the right
top corner as the rest.

An unknown focal length is assumed in the measurements, according to the use case,
where the user can provide a random video without further information. The focal length
was byMeshroomphotogrammetry software, as it is a necessary parameter forORB_SLAM3
method.

Fig. 17 The first picture shows a checkerboard quilt with views that are aligned in one horizontal line. The
second picture shows the same quilt with vertical displacement between views where artifacts are visible
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Fig. 18 A simple pattern was chosen to measure how vertical motion limit affects the quality of the result.
The border of the pattern is getting distorted with the increasing vertical displacement (values on the left)

Fig. 19 The amount of positive ORB and ORB_SLAM3 results in each category of the dataset is depicted.
Only pure truck or truck-and-pan combined camera motions are true positives

123

74553Multimedia Tools and Applications (2024) 83:74535–74562



Fig. 20 The figure shows precision and accuracy values for all methods. The vertical motion limit is set to
1px. ORB_SLAM3 does both phases merged together

The results of the computational time measurements are presented in Fig. 21. ORB might
bemore versatile and robust,whileORB_SLAM3 ismore accurate in classification.However,
the efficiency of ORB_SLAM3, depends on the focal length estimation, which might be
problematic in scenes shot by multiple different cameras or shots containing zooming.

4.3 Frame resampling

An experiment was performed to evaluate the Algorithm 3. Teddy sequence from the Truck
category in the dataset was chosen because it is recorded with a handheld camera and thus
is bound to have different spaces between the frames. Figure 22 shows how the algorithm
selects the optimal offset within the defined range to minimize error.

4.4 Automatic focusing

The focusingmetricswere evaluated on the quilts created from the truck sequences. The range
and optimal value were manually annotated, evaluating the result on LKG. The absolute error
of the estimated optimal value and the annotated one was calculated and normalized by the
whole scanning range. SMAPE was used as a second evaluation metric. The results of the
two proposed focusing metrics do not differ significantly, as shown in Fig. 23. The optimal
focusing value is in all quilts very close to the metric minimum.

Fig. 21 The chart compares the computation times of both CPU and GPU implementations of the analysis
methods. Timesweremeasured and averaged over thewhole dataset. The resolution of the processed sequences
is 1920 × 1080
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Fig. 22 The chart shows the results if the adjustment of the quilt window in truck scenes. The distance between
the frames was twice the average distance in the sequence to avoid duplicates. The search range was set to one
quarter of the distance

4.5 Comparison to existingmethods

To prove the novelty of the proposal, the method was compared experimentally with similar
methods. There are no existing alternative full quilt detection methods for 3D displays, so
only the subtasks of the proposal were compared in standalone tests. The results show that
the proposal cannot be replaced by existing standard approaches. Table 2 shows the explored
works with description regarding their suitability for the 3D display scene detection.

4.5.1 Quilt extraction

3D reconstruction software such as Meshroom can be used to estimate the camera poses but
it takes minutes to process one frame compared to near real-time processing proposed in this
paper. It would also be problematic to process a video file not knowing how many frames are
necessary to include in the computation. The proposal is focused on processing of the two
subsequent frames, holding the context of the previous results. Two frames are in most cases
not enough for a successful 3D reconstruction.

Panorama stitching software is another option as it detects the pan motion with possible
shakingwhen the capturing device is handheld. Experimentswith programAutostitch showed
that pure truck motion shots can be properly detected as a suitable sequence and processed
by the software. However, the combination of pan and truck does not yield acceptable results
and this category of potentially suitable quilts would be rejected. Simple averaging of motion
vectors from optical flow would also make the distinction between small amount of camera
vertical shake, pan, and truck impossible.

Recent research in video analysis [55] usually focuses only on the general classification
of the shot type such as moving or static and these approaches cannot be used for the quilt
detection. CAMHID [24] method can be used to classify camera motion but the results
presented by the authors mention only static, pan, tilt, and zoom categories without the
necessary distinction between pan and truck which is necessary for the proposed method.
Similar categories translation(pan and/or tilt), zoom, and static are defined in other works [29,
56–58] which is not sufficient for the scene detection. Other existing methods often focus on
extraction or tracking of objects [60] and would be problematic to adjust for the given task.

Truck motion is distinguished from pan in a novel deep learning approach of camera
motion detection for story and multimedia information convergence [59] where 8 frame
intervals are processed. An advanced motion vector extractor preprocesses the shots, and
ResNet is used to classify the resulting sequences.
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Fig. 23 Bars are showing the errors of both focus estimation metrics. The differences are not significant

The available implementation of the network was trained with the same data that the
authors provided. The network was then used to measure its accuracy on the data tested in
this paper to determine if the network can be used instead of the proposal. The network
can classify a shot into pan, pedestal, tilt, truck, zoom in, and zoom out categories. This
classification is not detailed enough for the quilt detection as truck with a small amount
of pan is also acceptable and is not distinguishable in the network. The measurement was
slightly adjusted in favor of the network approach, and any shot from the combined truck
and pan category classified by the network as either standalone pan or truck is considered to
be successful true positive, and false classification between other categories is not penalized.
Table 3 shows that the proposal in this paper is more suitable for the task than the alternative
deep learning network.

Table 2 The table sums up possible alternatives for the subtasks in the proposal and the reasons why they are
not suitable

Method Type Usability

Meshroom Scene detection Camera estimation can fail due to lackofmotionor frames
that cannot be processed by pairs

Autostitch Scene detection Unable to detect pan and truck motion combination

avg optical flow Scene detection Unable to detect pan and truck motion combination

[55] Scene detection Cannot detect truck motion

[24] Scene detection Cannot detect truck motion

[29] Scene detection Cannot detect truck motion

[56] Scene detection Cannot detect truck motion

[57] Scene detection Cannot detect truck motion

[58] Scene detection Cannot detect truck motion

[59] Scene detection Can be used but is not as accurate as proposal

[60] scene detection Cannot directly extract the desired motion

[61] Focusing Can be used but is not as accurate as proposal

[62] Focusing Results are noisy and not accurate

PSNR Focusing Results are not accurate

SfM Novel views Contains artifacts and might fail without large number of
frames

Novel views category means that the quilt can be rendered from the reconstructed 3D scene based on the
frames

123

74556 Multimedia Tools and Applications (2024) 83:74535–74562



Table 3 The table compares
alternative existing detection
method with the proposal

Analysis method True [%] False [%]

Proposed 79.7 20.3

Deep [59] 68.1 46.9

True values are considered T N + T P and false FN + FP according to
the custom annotated dataset
The bold entries mark the best results

The frames containing the motion vectors need to be downsampled to resolution of 600×
300 compared to 1920× 1080 in this paper’s proposal. The time of the classification for one
frame in the network is 0.006 s and the time of optical flow preprocessing is 0.1 s compared
to 0.025 s for ORB and 0.14 s for ORB_SLAM3 in the proposal of this paper. The proposal
is not a real-time solution and both compared methods can be labeled as the same speed
category since the difference is not significant. If the same resolution frames were used as
in the proposal, the deep classification time would be at least 0.07 s and the preprocessing
would be 1.15 s due to the processing of 11.52× more data.

4.5.2 Focusing

To prove that a novel focusing metric is necessary for the quilt detection task, an attempt to
identify focusing level with three other methods was conducted. First is a standard contrast-
based method [61] with root mean square (RMS) contrast metric [63]. Second is a no-
reference image quality metric LIQE [62] which should be able to detect various artifacts
and defocused areas. Both metrics were used on the internal LKG format like in the proposal
and on the blended views according to (8) with all weights set to the same constant, resulting
in averaging of the refocused images. Third is a PSNR comparison of the refocused views
according to the central one. Each view is shifted according to the focus value, compared
with the central one with the PSNRmetric, and the average of the PSNR values is taken as the
metric. The results are shown in Fig. 24. The maximal values of both metrics on the internal
LKG format are close to the optimum but not as close as proposed metrics in Fig. 14. The
error of the proposedmetrics on Teddy scene is only 15px in the focusing displacement while

Fig. 24 Alternative existing metrics that can be used to measure focus in image were compared on Teddy
scene. The values were transformed to the range of (0,1). The results show that these metrics are not suitable
for 3D displays. The metrics were tested on internal LKG format and blended views
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the contrast metric error is 36px which is more than 2× higher than in the proposal. The
charts of the proposed metrics (Fig. 14) also show steeper curve towards the minimumwhich
identifies the area of potential other focusing distances that the usermightwant to choose. The
slope of the alternative methods is either noisy or not that steep so such identification would
be more problematic. The idea of evaluation of the internal format is proposed in this paper,
so the internal versions of the metrics are only semi-alternative. The versions with blending,
which is often used in light field rendering [64] to simulate focusing, and can be considered
as an alternative approach, are not suitable at all. The conventional methods cannot be used
in this case.

5 Conclusions

The proposed method can be used to automatically extract and process sequences from arbi-
trary video sources. This is the first study to explore the capture process and the final visual
quality of the result on the state-of-the-art 3D display and fills the niche in this field. The
proposed method can significantly reduce the time necessary for the user to choose suitable
scenes from, e.g., a movie or a set of personal videos where many various scenes might be
present. Manual selection would be time-consuming, and the best resulting viewing comfort
would be hard to achieve by the user’s trial-and-error approach. The measurements showed
that the proposed method can produce artifact-free scenes in a shorter time and more effi-
ciently than a humanuser. The proposal is robust and can produce suitable scenes fromvarious
kinds of real and synthetic videos. The method does not depend on the training process, and
any video can be directly analyzed. The method was able to correctly identify almost 80%
of the sequences in the created dataset. The main stages of camera motion classification and
focus detection in the proposal were compared with state-of-the-art methods. The proposal
proved to be the best choice for the defined problem of 3D display scene detection and cannot
be replaced by conventional methods. Each stage of the proposal is accelerable on GPU.

The current reference implementation can extract the scenes from a FullHD video in
about 7 fps including all subtasks. Note that the focusing and resampling algorithms can be
accelerated on GPU and the whole proposal would most likely be able to process the inputs
in real-time framerates. The optimal GPU acceleration of all tasks is out of scope of this
paper. The computational complexity of the proposal is proportional to the resolution of the
input image and the length of the input video. The optical flow computation matches the
pixel blocks in pairs of subsequent frames, and a straightforward mixing and filtering of the
images is used in the proposed focusing metrics. No preprocessing or training phases are
necessary, and the input videos can be directly used with the proposed method.

Optical flow, feature matching, and SLAM-based methods were used in the video analysis
phase and compared in terms of visual quality and performance. ORB feature detection and
matching and ORB_SLAM3 methods showed the best results and are most suitable for the
quilt extraction task. However, SLAM-based methods depend on focal length estimation and
might not be able to process all possible scenes with the same robustness as the feature-
matching ones. These results may be important for future studies in this field as the analysis
method selection is not straightforward.

The results can be improved by scene depth and content analysis. An extensive study
with a large number of human annotators might discover the relations between the camera
motion properties (velocity, amount of rotation, etc.) and the visual experience of a human
user. Certain camera trajectories might be more visually appealing to human perception than
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others. This would also depend on the content of the scene and the distribution of its objects.
However, such a study is beyond the scope of this paper and will be addressed in future
work. Future work will also cover transformation methods to obtain an ideal quilt even from
distorted data (non-uniform camera orientation and position between frames. The code and
data are publicly available.5
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