
Security Implications of Deepfakes in Face Authentication
Milan Šalko

Brno University of Technology
Brno, Czech Republic
isalko@fit.vut.cz

Anton Firc
Brno University of Technology

Brno, Czech Republic
ifirc@fit.vut.cz

Kamil Malinka
Brno University of Technology

Brno, Czech Republic
malinka@fit.vut.cz

ABSTRACT
Deepfakes are media generated by deep learning and are nearly
indistinguishable from real content to humans. Deepfakes have
seen a significant surge in popularity in recent years. There have
been numerous papers discussing their effectiveness in deceiving
people. What’s equally, if not more concerning, is the potential
vulnerability of facial and voice recognition systems to deepfakes.
The misuse of deepfakes to spoof automated facial recognition
systems can threaten various aspects of our lives, including financial
security and access to secure locations. This issue remains largely
unexplored. Thus, this paper investigates the technical feasibility of
a spoofing attack on facial recognition. Firstly, we perform a threat
analysis to understand what facial recognition use cases allow the
execution of deepfake spoofing attacks. Based on this analysis, we
define the attacker model for these attacks on facial recognition
systems. Then, we demonstrate the ability of deepfakes to spoof two
commercial facial recognition systems. Finally, we discuss possible
means to prevent such spoofing attacks.

CCS CONCEPTS
• Security and privacy → Access control; Spoofing attacks; •
Social and professional topics → Spoofing attacks.
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1 INTRODUCTION
Deepfake is content created by artificial intelligence that is authen-
tic in the eyes of humans but, in reality, depicts non-existing events
or people. The term deepfake combines the words "deep learning"
and "fake" and primarily refers to content created by deep neural
networks, a branch of machine learning. The most common form
of deepfakes involves creating and manipulating media associated
with humans, such as face synthesis or face swapping. Their quality
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has advanced in recent years, making it often impossible for humans
to distinguish deepfakes videos and photos from real ones [20, 23].

The increasing quality of fake copies is compounded by their
increasing availability, which makes them accessible to a broader
range of potential attackers. This confluence of factors reduces
the technical expertise required, lowering the barriers to creating
convincing deepfakes. As a result, even individuals with limited
knowledge can create a relatively high-quality deepfake. The prolif-
eration of user-friendly, open-source deepfake tools and pre-trained
models supports this accessibility [10].

Nowadays, many articles [3, 12, 31] are explaining at length
the dangerous consequences of misusing deepfake technology. In
particular, significant attention has been paid to the malicious use
of deepfakes to spread disinformation, political propaganda and
other malicious purposes. In addition, the worrying potential of
deepfakes as a means of damaging the reputation and credibility
of individuals was highlighted with cases such as the creation of
deepfake pornography [22]. Equally significant are the increasing
fraudulent activities in which individuals pose as authority figures,
such as corporate executives or family members, to gain illicit
profits [7].

Within these critical discussions about the manifold implications
of deepfakes misuse, one aspect that has received relatively limited
attention so far is particularly important: the resilience of facial
recognition systems to deepfake spoofing attacks. Recent studies [9,
27] have already confirmed that speaker recognition systems are
vulnerable to deepfake spoofing attacks, but no special attention
has been given to commercially deployed facial recognition systems
to date. Facial recognition systems protect many areas where their
exploitation could result in significant financial losses, such as an
attack on smart banking solutions and personal or even national
security through access to restricted or classified systems.

An incident involving a successful deepfake spoofing attack on
facial recognition has already been reported in China in early 2021.
Tax fraudsters used stolen facial images to create deepfake videos
and a special phone with a hijacked camera to trick the tax invoicing
system into accepting these pre-made deepfake identities to defraud
$76.2 million [2].

The threat analysis of using deepfakes to spoof facial recognition
is paramount. While it is known in the community that deepfakes
can potentially deceive these systems, comprehending the specific
scenarios and methods for implementing deepfake spoofing attacks
is crucial. Not all use cases provide opportunities for deepfake spoof-
ing attacks. For instance, scenarios involving supervision by a third
party, like automatic border crossing with a border crossing officer,
make it impractical to substitute a person’s face with a deepfake at
the gate and require a different approach, such as disrupting the
passport creation process by providing a manipulated (morphed)
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facial image. Similarly, systems that rely on a single image for veri-
fication can be tricked with a genuine photo of the same person,
rendering deepfake usage unnecessarily complex.

Once we understand the nuances of these potential attacks, we
can define the attacker model for deepfake spoofing. Ultimately, we
aim to demonstrate the feasibility of these proposed attacks. While
it is widely acknowledged that deepfakes can deceive facial recog-
nition, providing proof within our established threat and attacker
models adds a valuable layer of assurance.

In this work, we first perform a threat analysis to explore all facial
recognition use cases that allow for a meaningful implementation
of spoofing attacks. Secondly, based on the threat analysis results,
we assess the ability of deepfakes to spoof two commercial facial
recognition systems to validate if deepfake spoofing attacks present
any threat. We examine the presentation of a single deepfake photo
and a consecutive set of deepfake images extracted from a video.
Finally, we propose a method to mitigate the threats posed by
deepfakes to facial recognition systems. The main contributions of
this paper might be summarized as follows:

• We conduct a threat analysis to identify scenarios in which
deepfake spoofing attacks can be carried out within facial
recognition applications and establish the attacker model.

• We assess the feasibility of deepfake spoofing attacks on two
commercially deployed facial recognition systems and show
they are vulnerable to such attacks.

• We demonstrate that even data of inferior quality is able to
fool facial recognition systems to a certain extent.

Section 2 provides an overview of related work. Section 3 dis-
cusses facial recognition use cases and identifies use cases vulnera-
ble to deepfake spoofing attacks. Experiment design is proposed in
Section 4, and the results are provided in Section 5. Finally, Section 6
discusses the most interesting findings of this paper and proposes
countermeasures, and Section 7 concludes the paper.

The work described in this document results from a previously
completed master’s thesis [33].

2 RELATEDWORK
The topic of deepfakes is quite widespread in the field of research.
This section describes several areas relevant to assessing the usabil-
ity of deepfakes to spoof facial recognition systems and puts this
work into the context of other relevant research.

Detection of facial deepfakes. As Mirsky et al. [20] state, much
research deals with detecting facial deepfakes. Proposed methods
often use different types of artefacts in the image, such as different
flickers of illumination that do not fit the rest of the face that
the creators are trying to detect [6, 11, 14]. The second common
approach is to use deep learning to classify whether an image or
video is a deepfake by learning its discriminative features [25, 26].
The last approach is tracking various physiological cues, such as
blinking or a subtle change in skin colour due to a heartbeat [4, 5].

Deepfake datasets. Celeb-DF dataset [18] provides 639 high-quality
videos of DeepFake celebrities. The advantage of this dataset is that
it contains deepfake videos along with multiple real videos for each
person, which, compared to other datasets. Another suitable dataset
is KoDF [17]. It includes 62.8 days of records, which makes it the

largest deepfake dataset, generated with the most widely known
tools such as DeepFaceLab [19] or First Order Motion Model [28].
There are a large number of other datasets that are also known, for
example, Face Forensic++ [24], DFDC (Deepfake Detection Chal-
lenge) [8] and FakeAVCeleb [15].

Feasibility of deepfake spoofing attacks. Previous works examined
the usability of deepfakes to spoof facial recognition systems. How-
ever, to the best of our knowledge, none of these works examined
deployed commercial systems. In addition, we define the use cases
of such systems allowing meaningful implementation of deepfake
spoofing attacks and evaluate whether using multiple consecutive
video frames improves the resilience of facial recognition systems.

Tariq et al. [30] have attacked celebrity identification APIs from
Microsoft, Amazon and Naver. These APIs have been shown to
be deceived by deepfakes in up to 78% of cases. The experiments
showed that some deepfake generation methods pose a more signifi-
cant threat to recognition systems than others and that each system
responds differently to attacks. The examined state-of-the-art mod-
els for celebrity identification cannot identify people who are not
celebrities. It’s important to note that the systems included in our
testing are designed primarily for facial biometrics and personal
identification of any individuals, not just celebrities.

Further work by Korshunov et al. [16] described that state-of-
the-art facial recognition algorithms based on VGG and Facenet are
vulnerable to Deepfake videos and cannot distinguish such videos
from the original ones with up to 95.00% equal error rate. While
these results are relevant, the work examines the resilience of the
backbone networks instead of the whole systems.

3 USECASES OF FACIAL RECOGNITION
As mentioned earlier, to determine how well deepfakes can trick
facial recognition systems, the initial step is to identify the particular
scenarios where facial recognition technology is used and then
identify potential situations where an attacker could execute a
spoofing attack. This process sets the foundation for our threat
modelling. Therefore, it is crucial to comprehend the various use
cases of facial recognition and the likelihood of vulnerability to
deepfake spoofing before commencing the test phase.

Facial recognition systems are an integral tool for identity verifi-
cation in various areas, including airport security protocols and au-
thentication processes for online services such as Internet banking.
However, it is essential to note that not all use cases are vulnerable
to being attacked using deepfake spoofing attacks. To provide a
structured framework for understanding potential threats, we di-
vide attacks on individual systems into three categories based on
their vulnerability to deepfake spoofing attacks, as visually depicted
in Figure 1.

Attacker model. An attacker is an individual with the capability to
generate facial deepfakes with the intention of bypassing a system
protected by facial recognition. This attacker possesses all neces-
sary personal information (login data, birth number, or other type
of identifier) about his target and details about the typical facial
recognition process. Additionally, he has access to publicly avail-
able images and videos of the victim’s face. Using this information,
the attacker creates facial deepfakes of the victim and then attempts
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Figure 1: Examples of the use of facial recognition fall into three categories: 1. It is difficult to attack them with deepfakes.
2. It is not worth using deepfakes to attack. This category includes "Older facial recognition systems", which refers to all use
cases of outdated and poorly designed systems for which more conventional attack methods are sufficient. 3. (green solid line)
Appropriate use of deepfakes in an attack.

to gain access to the system secured by facial recognition in the
most convincing manner possible. When he gets in, he will use the
access granted to his advantage.

The attacker’s objective is to carry out a deepfake spoofing attack.
This attack involves impersonating a chosen victim and presenting
this falsified identity to a facial recognition system. The ultimate
goal is to authenticate the spoofed identity as the victim, thus obtain-
ing unauthorized access to a system protected by facial recognition.
The attacker has several methods to carry out such an attack. The
most straightforward approach is to replay the deepfake from a
device screen to the facial recognition capture device, as depicted
in Figure 2. More sophisticated options include intercepting the
data received from the capture device or gaining direct access to
the API of the facial recognition system. It is important to note
that these attacks differ from presentation attacks, as the attacker
doesn’t use actual samples from the victim; instead, they synthesize
them. Additionally, there are distinctions from morphing attacks,
where a deepfake is presented as the reference sample on an ID
document. In a spoofing attack, the ID would contain an unaltered
image, and the attacker would present the deepfake to the capture
device at the border gate.

Use case categorization. The first category encompasses systems
where deepfake spoofing is extremely difficult or unfeasible. This
includes use cases within security forces or services, such as border
crossings, representing a specialised access control form. These
entities are equipped to promptly detect and respond to suspi-
cious attempts to spoof the deployed facial recognition technology.
For instance, in the context of automated border crossing gates
at airports, where facial recognition is commonly used to verify
travellers’ identities, deepfakes pose a significant challenge and
are highly unlikely to succeed. This same difficulty level applies
to other scenarios with monitoring and control mechanisms to
identify abnormal or deceptive behaviour during facial recognition.

It’s worth noting that deepfakes do not threaten safety and
surveillance systems as well. This is because deepfake attacks re-
quire the attacker to employ an electronic device that conceals their

Figure 2: Example of replaying deepfake from a device screen
to the facial recognition capture device to execute a deepfake
spoofing attack.

face while projecting the deepfake identity in the monitored area.
This approach is both impractical and overly complex; as such, a
disguise would be promptly detected. Attendance systems at work-
places also fall into this category for similar reasons. In most cases,
security personnel oversee all employees entering the building,
making it nearly impossible to present deepfakes to the attendance
system without being detected. Additionally, 3D facial recognition
systems are part of this category. They are designed to inherently
resist 2D spoofing attacks, including deepfakes, making them less
susceptible to manipulation by standard 2D deepfake techniques.
Moreover, we are not aware of any 3D deepfake creation techniques.

The second category includes use cases where deepfake spoofing
attacks are pointless. Such use cases include outdated facial recogni-
tion systems vulnerable to basic presentation attacks, where a static
photo of the victim is sufficient for authentication. Similarly, poorly
designed systems that require only a single photo or document for
authentication might be spoofed using more straightforward and
more conventional attack vectors, such as presenting an image of
the victim without any modification, making deepfakes unneces-
sary and redundant. These use cases also include online casinos
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that only require the user to upload a photo ID and one face photo
from a mobile phone.

The third category includes use cases well suited for deepfake
spoofing attacks. Deepfakes are better suited to exploit systems re-
quiring a more robust video-based authentication process, making
them a targeted choice for a subset of biometric security scenarios.
Ideal use cases for deepfake attacks are those where real-time hu-
man oversight is lacking and input data for verification requires a
more complex format based on multiple images or videos. Notable
examples that meet these criteria include Know Your Customer
(KYC) systems, particularly in online banking. In such scenarios,
a successful deepfake attack could give the attacker unauthorised
access to the victim’s bank account.

The absence of immediate human intervention in these online
authentication processes creates a favourable environment for an
attacker to carefully prepare and execute an attack without arousing
suspicion.

A good example of such an environment is age verification. An
attacker can use freely available tools to age the face in a photo.
He then creates a video from this photo using one of the few-shot
deepfake techniques. Using this video, he then verifies his age,
allowing him to access a social network or purchase age-restricted
goods.

Another relevant example is in court evidence, where facial
recognition is used to match suspects’ identities with evidence ma-
terial. Deepfakes, thus, might be used to fabricate false accusations.
Submitting a deepfake video would incriminate innocent victims
in order to cause harm or evade justice. In such cases, the attacker
benefits from the ability to create deepfake content carefully in
advance and then submit it for analysis.

In summary, using deepfake technology to spoof facial recog-
nition systems becomes a strategic choice for attackers if certain
conditions are met. In particular, deepfake attacks are most relevant
when the target system requires a higher level of authentication
that requires the submission of video-based authentication instead
of accepting a simple photo. It is also ideal if no other authority
supervises the authentication process and the attacker has enough
time to prepare for such an attack or repeat it several times.

4 EXPERIMENTAL DESIGN
In the previous sections, we briefly outlined the essence of testing
the resilience of facial recognition to deepfake spoofing attacks
and defined vulnerable use cases and the attacker model. Based
on this knowledge, this section describes in detail the experiment
design for assessing the resilience of facial recognition to deepfake
spoofing attacks. As mentioned in Section 3, we focus on use cases
that require a video clip to be submitted and then extract one
or more frames from this video for verification. The experiments
are divided into two parts: the first examines a scenario where
just a single frame is extracted and used for verification, and the
second examines a scenario where multiple consecutive frames are
extracted and used for verification.

For both phases of the experiment, individual images and image
sequences will be selected from the Celeb-DF dataset. Only suitable
images that meet the quality requirements are selected. These re-
quirements are described later in the experiment design. These data

are fed into the selected Megamatcher and IFace biometrics, which
represent state-of-the-art commercial facial recognition systems.
For both experiment phases, three types of scores are collected:
impostor, genuine, and deepfake.

From these scores, distribution graphs and individual metrics
such as false non-match rate (FNMR) and false match rate (FMR)
are calculated. The statistical similarity is computed between the
different types of scores to determine whether they depend on each
other.

There seems to be an apparent mismatch between the previously
defined use cases and how the selected facial recognition systems
work. However, we can simplify all the described use cases to
a simple vector comparison problem due to the essence of how
facial recognition applications work. The biometric system (facial
recognition) performs a basic operation in which it extracts a vector
containing the key points of the face from the input face image.
This vector is then compared with the pattern vector (user profile)
stored in a database or provided as a reference identity. The result
of this vector comparison is a similarity score, telling us if tested
persons are of the same identity. All of the defined use cases are only
built on these foundations. Thus, if we omit the use case-specific
information unrelated to the facial recognition technology, all of the
identified use cases can be simplified into this vector comparison
problem.

The first part thus operates with the simplest option: image-to-
profile comparison. Only a single facial image (frame) is extracted
from the input video in this setting. This image is then compared to
the user profile stored in the database or reference image containing
the user identity. We execute multiple attempts to record:

• Genuine score - comparison scores will be collected for
each identity by comparing mated samples (images of the
same person – identity).

• Impostor score - comparison scores will be collected for
each identity by comparing non-mated samples (images of
different persons – identities).

• Deepfake score - comparison scores will be collected for
each identity by comparing deepfake samples with genuine
samples of the same identity (deepfake of identity X with
deepfake impersonating identity X).

We utilize this score to generate distribution plots and compute
error rates. Specifically, we focus on the FNMR and FMR in this
testing scenario. These rates are determined by applying various
matching score thresholds to the data. The point at which the FMR
and FNMR curves intersect is the equal error rate (EER). The EER
value informs us that if we set the acceptance threshold 𝑡 , the False
Accept and False Reject rates will be equal, resulting in an error
rate of 𝑥 . A lower EER indicates better system performance.

Given our consideration of deepfakes as impostors, meaning
we aim to prevent their access to the system, we may use them to
generate EER plots instead of impostor scores. These new plots are
instrumental in gauging the impact of presenting deepfakes on the
system’s performance. Finally, we use statistical tests to examine if
the differences between the genuine, impostor and deepfake scores
are statistically significant.

The second phase of our approach operates in a more advanced
setting. It involves comparing multiple frames extracted from the
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video with the user profile stored in the database or the reference
image containing the user’s identity. The scores for each frame
are then averaged to yield the final score. This approach might
offer greater resilience against deepfake spoofing attacks, as it can
identify inconsistencies across multiple frames. The recorded scores
will be assessed in the same manner as in the first part.

4.1 Selected biometric systems
For the experiments, two commercial facial recognition systems
are used. The first is the IFace SDK 3.0 [29]. Its features include real-
time identification and authentication (1:1 matching), multi-face
tracking, and person analysis, including age and gender profiling.
The technology is based on deep neural networks and provides
verification capabilities from still images and video footage in all
standard formats. Two facial images are fed into the system, be-
tween which the similarity is calculated. The application can work
in two modes:

• Fast mode - some partially obscured faces or faces with sun-
glasses may be overlooked. Also, faces printed on ID cards
may not be recognized. However, the speed performance of
face recognition is much better than that of other modes.

• Accurate mode - Partially obscured faces with blurred pro-
files or faces with sunglasses are recognized. The processing
speed of this face detection is lower than that of the other
modes.

The second system is Megamatcher [21]. It is designed for de-
velopers of large-scale AFIS (Automatic Fingerprint Identification
System) and multi-biometric systems, available as a software devel-
opment kit that enables the development of large-scale products
for the identification of one or more biometric features such as
fingerprint, iris, face, voice or palm print. The SDK is available for
Microsoft Windows, Linux, macOS, iOS and Android platforms.
This technology ensures high reliability and speed of biometric
identification even when using large databases. The creators of
Megamatcher provide a web interface as a demo application and
a trial version of the SDK that can be run in a terminal. For our
experiments, we used the terminal version. In contrast to IFace,
Memagamtcher allows for the creation of user profiles and verifi-
cation against these profiles instead of comparison between two
facial images.

4.2 Dataset Preparation
As previously mentioned, our experiments use the Celeb-DF [18]
dataset. The dataset contains 58 identities. Its main advantage is
that it always provides ten videos of a real person and 30 videos
of deepfakes. For this reason, it is the most suitable data source.
However, none of the tested systems supports video embedding but
image embedding; we had to extract single frames from each video
and verify their suitability for further testing. One of the identified
disadvantages is that the videos in the dataset are collected from
various talk shows, so often, the person is not looking directly into
the camera. To overcome this problem, we tried to make the ex-
tracted frames in the dataset correspond as much as possible to the
ICAO standard [1]. To achieve this, we check multiple parameters
of each frame and discard the unsuitable ones.

First, we detect the face itself in the image. For this, we use
MTCNN implementation [32], which can compute the key points
of the face in addition to the region itself. We use these extracted
points to determine whether the person is looking directly into
the camera. Once we obtain the face region, we only select images
where the person has a neutral facial expression. For this, we use
the pre-trained model 1 which determines the facial expression
of a person. Only images where the person has a neutral facial
expression are used.

For the first part of the experiments, we selected the best sin-
gle frame regarding compliance with the ICAO standards. For the
second part, a sequence of frames is required. We thus select ICAO-
compliant frames that are at least one second apart. This condition
helps to eliminate selecting identical frames next to each other.

5 EXPERIMENT RESULTS
As mentioned, the experiments are divided into two parts. The
first part examines image-to-profile comparison; the second exam-
ines image sequence-to-profile comparison. The results show how
resilient tested facial recognition systems are to deepfake spoof-
ing attacks and whether image sequence-to-profile provides more
resilience.

5.1 First part: image-to-profile comparison
After performing all the comparisons for both face recognition sys-
tems, we could compute all three required scores: genuine, deepfake
and impostor score. From these scores, distribution function plots
were then created. The distribution plots and EER graphs for each
tested system are shown in Figure 3 (IFace accurate mode), Figure 4
(IFace fast mode), and Figure 5 (Megamatcher).

The plots clearly illustrate a disturbing phenomenon - the overlap
between deepfake and genuine scores. This overlap essentially
confirms that some deepfake attempts have the potential to score
high enough to fool systems into accepting them as genuine. This
has significant implications for the security and authenticity of
digital media.

In addition, it is also worth noting that only a minority of deep-
fake attempts have been categorised as imposters. Deepfake scores
reside in between impostors and genuine ones. This may be espe-
cially problematic if we determine the system threshold only using
the EER values obtained from impostors and genuine attempts. In
such cases, the threshold for the IFace system in both settings would
be slightly below 20% similarity. Such a threshold setting would
allow most genuine attempts to succeed, and impostor attempts
to be rejected, as documented by the EER value very close to zero.
However, if deepfakes are presented to the system with such a
setting, the majority of deepfakes would be accepted, as evidenced
by the distribution plots, which creates a big security issue.

Finally, we perform the statistical analysis using an independent
Student’s t-test. Using a significance level 𝛼 = 0.05, the test proves
no significant similarity between all score types. While this means
that deepfake scores are significantly different from the genuine
ones, they are also significantly different from impostor ones. This

1https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-
use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-
deploy.ipynb
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Figure 3: Matching scores distribution graph on the left and right FMR / FNMR graphs for the IFace accurate mode for image-
to-profile comparisons.

supports our claim that deepfake scores reside between genuine
and impostor ones, which may cause significant security issues.

In summary, this experiment revealed that some comparisons
achieved results that reached a sufficient threshold to accept deep-
fakes as valid input. Thus, if we required that the system’s security
be kept at a level that would prevent an attacker from getting in
using a deepfake, we would have to raise the threshold to a level
at which even a fraction of genuine inputs would be rejected. This
shows the potential vulnerability of these systems to deepfakes
attacks.

5.2 Second part: image sequence-to-profile
comparison

In the second part of the experiment, we selected sequences of five
images from the suitable images selected during dataset preparation.
These were spaced one second apart. The final score is an average
of the five obtained scores.

Similar to the preceding section, Figure 6 illustrates that the EER
between the impostor and genuine scores is nearly zero. Surpris-
ingly, there’s no notable change in the EER between deepfake and
genuine scores. This suggests that the system struggled to iden-
tify deepfakes even with multiple snapshots. Consequently, the
facial recognition system did not exhibit the expected increase in
resilience to deepfakes.

To highlight this behaviour, we compared the EER plots for
image-to-profilewith those for image sequence-to-profile and found
no discernible difference in the EER values. This further supports
our theory that the chosen facial recognition systems struggle to
detect deepfakes as invalid inputs on their own effectively.

The statistical analysis, conducted using an independent Stu-
dent’s t-test with a significance level of 𝛼 = 0.05, yielded the same
results as in the first part. There is no statistically significant simi-
larity between the score types. Thus, while the systemmay perform
well with a low threshold setting on real data, it remains highly
vulnerable to deepfake threats.

In summary, this experiment demonstrates that utilizing im-
age sequences for facial recognition does not enhance resilience
against deepfakes. The observed increases in EER between genuine-
impostor and genuine-deepfake scores mirrored those observed in
the first part.

6 DISCUSSION
Our research results suggest potential vulnerabilities of facial recog-
nition systems to deepfake technologies. This section discusses
various aspects of these results and suggests countermeasures to
mitigate the identified threats.

6.1 Quality of deepfakes in dataset
The experiments used the older Celeb-DF dataset, which no longer
reflects the current capabilities of deepfakes. This difference can
be seen in Figure 7, which compares the deepfake from Celeb-DF
and the current GHOST [13] model. To address this challenge, we
could have used the KoDF dataset, which contains superior-quality
deepfakes. However, this dataset was collected in a controlled en-
vironment where all subjects spoke into a camera. Conversely,
Celeb-DF introduces much more variability into the data, better
reflecting real-world conditions. Breaching the systems using older
methods for creating deepfakes indicates the low requirements for
implementing this type of attack.

It is also important to note that this dataset was not created as a
dataset to test the robustness of biometric facial recognition systems
to deepfake materials. This fact is particularly evident in the quality
of the videos, which were obtained from freely available sources
on the Internet. These videos do not fully meet the requirements
for identity verification based on ICAO standards [1].

Regarding the dataset’s quality, it is essential to consider cap-
turing the similarity between the victim and the face actor in the
context of face swapping. This is particularly important because it
is very likely that an attacker seeking to gain unauthorized access
to the system will try to ensure that the deepfake material is of the
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Figure 4: Matching scores distribution graph on the left and right FMR / FNMR graphs for the IFace fast mode for image-to-
profile comparisons.

Figure 5: Matching scores distribution graph on the left and right FMR / FNMR graphs for the Megamatcher for image-to-profile
comparisons. Megamatcher automatically assigns a zero score to all impostor attempts.

highest quality he or she is able to achieve. However, the lower
quality of the deepfakes used does not limit the impact of this work.
We demonstrate that even data of inferior quality is enough to spoof
state-of-the-art commercial facial recognition systems. Addition-
ally, the success rate of deepfake spoofing attacks only increases
with better-quality deepfakes.

Therefore, a dataset that reflects current deepfake creation tech-
niques and also satisfies the requirements on the quality of the
resulting image for biometric systems should be developed in the
future. This dataset should focus on generating deepfakes that
closely mimic the victim’s appearance, including parameters like
skin tone, hair colour, and facial features.

6.2 Countermeasures
As we show, deepfakes present a significant threat to facial recogni-
tion systems. It is thus essential to implement countermeasures that
mitigate the posed threats. During our experiments, we observed
an essential shortcoming of state-of-the-art deepfake creation tools
that might be exploited as a liveness detection method to diminish
the usage of deepfake to spoof facial recognition reliably. As shown
in Figure 8, current deepfake creation tools struggle when an object
passes in front of the face of the deepfake actor. In the worst cases,
the whole deepfake mask disappears for a portion of time, revealing
the original actors’ identity.

This imperfection might be currently used as a very effective
means to spot deepfake videos. The liveness test would ensure that
the verified subject would, for example, wave his hand in front of
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Figure 6: FMR / FNMR charts from top iFace (fast mode), iFace (accurate mode) and Megamatcher for image sequence-to-profile
comparisons.

Figure 7: Comparison of the quality of deepfakes in theCeleb-
DF dataset with the quality of current tools (GHOST [13]).

the face and simultaneously look for any artefacts or inconsistencies
caused by this movement.

We understand that it is only a matter of time before this prob-
lem is resolved, but this approach should provide rapid and reliable
mitigation for the next few years to alleviate the bulk of the threats

Figure 8: Example of distortion when an object passes in
front of the face of a deepfake actor.

posed. In the meantime, there is enough space to develop more gen-
eralizable mitigation solutions and deploy them before the proposed
solution becomes ineffective.

7 CONCLUSION
The targeted use of deepfake techniques to spoof facial recognition
is most relevant in contexts that require video-based authentication,
where a single photographic image of the person under examination
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can no longer be relied upon. And those where the attacker has
ample time and preparation to carry out such an attack.

Our findings show that the tested systems failed to identify a cer-
tain fraction of deepfake inputs as impostor inputs. This highlights
the problem that deepfakes can pose for these systems. Consider-
ing the scope of use of these systems, this is a significant problem.
Moreover, in our work, we worked with a relatively old Celeb-DF
dataset, but we could still spoof the tested facial recognition sys-
tems. This also means the problem is likely even more pronounced
when modern techniques are used. These results highlight the need
to update and improve deepfake detection systems.

Future work should, therefore, focus on testing other facial bio-
metric systems using modern tools for creating deepfakes.

This potential vulnerability may be even more pronounced when
biometric facial recognition systems are used. Only in the cases we
have mentioned could there be significant financial losses or the
wrong person could be apprehended.We believe this paper succeeds
in drawing attention to the growing problem of using deepfake
technologies to spoof automatic facial recognition systems.
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