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A B S T R A C T

DNS over HTTPS (DoH) is a protocol that encrypts DNS traffic to improve user privacy and security. However,
its use also poses challenges for network operators and security analysts who need to detect and monitor
network traffic for security purposes. Therefore, there are multiple DoH detection proposals that leverage
machine learning to identify DoH connections; however, these proposals were often tested on different datasets,
and their evaluation methodologies were not consistent enough to allow direct performance comparison. In this
study, seven DoH detection proposals were recreated and evaluated with six different experiments to answer
research questions that targeted specific deployment scenarios concerning ML-model transferability, usability,
and longevity. For thorough testing, a large Collection of DoH datasets along with a novel 5-week dataset
was used, which enabled the evaluation of models’ longevity. This study provides insights into the current
state of DoH detection techniques and evaluates the models in scenarios that have not been previously tested.
Therefore, this paper goes beyond classical replication studies and shows previously unknown properties of
seven published DoH detectors.
1. Introduction

DNS over HTTPS (DoH) is becoming a recognized privacy-preserving
technology that works on a simple concept of encapsulating DNS mes-
sages into an encrypted HTTPS channel [1]. The technology gained fast
adoption among the service providers and also users [2]. It is nowadays
used by default in popular web browsers [3], and it is already supported
by major operating systems such as Windows [4] and MacOS [5].
Nevertheless, the fast DoH deployment still raises concerns mainly
from the security community [6]. Plain-text DNS requests are essential
in maintaining computer security since many intrusion detection and
intrusion prevention systems rely on their payload inspection. More-
over, multiple parental control and policy enforcement in restricted
company networks are based solely on domain name inspection. The
DNS encryption by DoH thus bypasses the effective and timely-proven
detection approach, leaving systems vulnerable to cybersecurity attacks
that use DoH. Multiple examples of malware, exfiltration tools, and red-
team attack vectors already exploit DoH for stealthy communication to
avoid detection [6].

The popularity of DoH among threat actors can be partially at-
tributed to its stealthiness. Compared to other encrypted DNS ap-
proaches, such as DNS over TLS or DNS over QUIC, DoH does not
use dedicated ports; instead, it is designed to blend into other HTTPS
traffic, leaving cybersecurity operators often unaware of its presence.
Just the information about the presence of DoH in the network is
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valuable for network security operators to evaluate the risks. Detecting
DoH is not a straightforward network security task. According to Garcia
et al. [2], DoH detection based on blocklists of IP addresses and domain
names is highly unreliable due to many small and private resolvers.
Therefore, the researchers concentrated more on using encrypted traffic
analysis techniques combined with machine learning (ML) to identify
DoH connections in the traffic.

Over the past years, there have been multiple ML-based proposals of
DoH presence detection, often surpassing the 99% detection accuracy.
These novel ML-based DoH detectors have often been evaluated using
different lab-created datasets (such as [7–9]) from a limited time
period. However, without evaluation using the same data, the proposals
cannot be compared; thus, the basic questions such as ‘‘How effective are
those approaches compared to each other?’’ or ‘‘How do the detectors behave
in long-term?’’ still lack their answers. Compared to other network
security challenges [10–12], DoH detection task in network security is
still missing a comparative study that would answer these questions.
Therefore, this study is built on answering several defined research
questions.

In this study, the previously published methodologies for DoH detec-
tion were followed and the detectors were recreated to evaluate their
properties using the previously published Collection of datasets with
DoH traffic [13]. Additionally, a new capture of real-world DoH traffic
(using the same methodology as in the Collection of datasets) was
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created to study the pace of obsolescence of ML-based DoH detectors
due to either data or concept drifts. These datasets allowed us to
evaluate DoH detectors thoroughly and finally show the advantages and
disadvantages of each DoH detection approach and provide valuable
insights about the state of advancement in that field.

The contributions of this study may be summarized into the follow-
ing points:

• Reimplementation of the existing flow-based DoH detection ap-
proaches and replication of the reported results on a common,
more comprehensive dataset.

• Transferability evaluation of the DoH detectors between different
networks.

• Creation of the Additional 5-week dataset to study the long-term
usability of the DoH detectors.

• Long-term and short-term usability and performance degradation
of DoH detectors.

• Resource consumption evaluation of the DoH detectors.

The rest of the manuscript is organized as follows: Section 2 sum-
arizes related works. Section 3 summarizes the datasets used for the

omparison. Section 4 provides the necessary background about DoH
rotocol and its detection possibilities. Section 5 briefly introduces the
elected DoH detection approaches. Section 6 then defines the method-
logical approach. Section 7 describes the individual experiments and
heir results. Section 8 summarizes the observed properties across all
he methods. Finally, Section 9 concludes this article.

. Related works

Since DoH represents a significant change in domain name reso-
ution, it has been thoroughly studied by multiple researchers from
arious perspectives. A survey performed by Hynek et al. [6] divided
he research into four categories: (1) DoH performance measurements,
2) Research on DoH adoption, (3) Privacy-preserving research, and
4) DoH security research where the DoH detection research is iden-
ified as a subcategory. This comparative analysis thus falls into the
ourth category.

The necessity of DoH recognition was first mentioned in 2020 by
umglang et al. [14] in their survey concerning DoH mass deployment

mpact. The straightforward solution—a list of DoH resolvers’ IP ad-
resses was used by Bushart et al. [15] to recognize DoH connection
n their traffic fingerprinting approach. However, in 2022, the compre-
ensiveness of publicly available lists of DoH resolvers was studied by
arcia et al. [2]. They performed an internet-wide scan to recognize
oH resolution capability. According to their results, IP-based DoH
etection is inefficient due to the large number of private resolvers.
he DoH resolvers operated by individuals are often not listed in
ublic blocklists—the privately owned resolvers represent around 13%
f all DoH resolvers on the Internet [2]. Moreover, they also showed
ignificant changes in DoH resolvers IP addresses over time, leading to
ast blocklist obsolescence.

Two studies published at a similar time by Vekhsin et al. [16]
nd MontazeriShatoori et al. [17] attempted to avoid IP-based DoH
dentification. Instead, they used distinctive DoH traffic shape [18] for
ts identification. Vekhsin et al. [16] used ipfixprobe1 flow exporter,
hat extends flows for the first 30 individual packets—packet lengths,
acket timestamps, TCP flags, and directions. From the first 30 individ-
al packets, they extracted 18 discriminatory features that were used
ogether with the AdaBoosted decision tree machine learning model.
heir approach proved efficient in the DoH recognition task, achieving
ver 99% accuracy or 0.99 of F1 score.

Compared to Vekshin et al. [16], who extracted features from the
first 30 packets, MontazeriShatoori et al. [17] created a novel flow

1 https://github.com/CESNET/ipfixprobe.
2

exporter – DoHLyzer2 – that was capable of extracting 28 traffic features
calculated from the whole connection. They used the selected features
together with multiple machine learning models, and the best one –
Random Forest – achieved an F1 score of 0.993. Moreover, they also
published the CIRA-CIC-DoHBrw-2020 [7] dataset that they used in
their study.

The following studies then continued to use the CIRA-CIC-DoHBrw-
020 dataset in their DoH detection proposals. Banadaki et al. [19]
chieved 100% using the CIRA-CIC-DoHBrw-2020 dataset; however,
is work was later severely criticized by Behnke et al. [20] because
f the IP address presence in the feature vector resulting in reduced
eneralization of the model. By further exploring the feature vector,
ehnke et al. [20] thus improved Banadaki’s proposal. They removed
he IP addresses, ports, and statistically insignificant features and fi-
ally trained and evaluated multiple machine learning models and
chieved a high F1 of 0.998.

Following studies created by Casanova et al. [21], Jha et al. [22],
u et al. [23], Zebin et al. [24] and Mitsuhashi et al. [25] also used

ata from CIRA-CIC-DoHBrw-2020 dataset and achieved over 99% of
ccuracy. Nevertheless, most of these studies used features directly
rovided within the CIRA-CIC-DoHBrw-2020, which were seen as un-
ractical by Jerabek et al. [26]. They argue that some of the used
eatures, such as median packet lengths, cannot be calculated stream-
ise and the whole packet series needs to be stored in the memory of

he network monitoring device. This large memory requirement then
ighly limits the deployment into real-world monitoring infrastruc-
ure [26]. Therefore, Jerabek et al. [26] proposed a novel detector that
ses only four features that can be easily extracted and calculated even
rom basic NetFlowV5. However, their approach should be combined
ith active probing verification mechanisms to ensure reliability. They
valuated their approach using the NetExP flow exportation tool3 and
ustom dataset mixed with the CIRA-CIC-DoHBrw-2020. Their proposal
chieved nearly 100% of accuracy.

Even though there are many DoH detection proposals, and also
oH detection surveys [6,27] none of the previous studies attempted to
ompare the properties of each detector. Since the ML-based detection
roposals used different datasets [7–9] their methodologies using a
ingle common dataset were recreated and their experiments were
eplicated. This is the first DoH detection study that validates state-
f-the-art approaches and assesses the state of the technology, its
eliability (even in the face of drift), and deployment possibilities.

. Used datasets

The comparative analysis uses the comprehensive collection of
atasets with DoH traffic [13], which is provided in the form of
nonymized packet captures (pcaps), thus allowing extraction of all
eatures used by the detector proposals. The collection is divided into
wo dataset types: The Real-World and Generated. The Real-World
raffic was captured on the CESNET2 network—a large Czech ISP. The
eal-world data contains ten days of DoH and HTTPS communication
aptured on backbone lines. The labels of the DoH connections are
rovided in the form of an IP list with the captured DoH resolvers.

The motivation behind the creation of additional generated data –
he Generated datasets – was to enhance the comprehensiveness of the
ollection. The majority of the real-world DoH uses only a handful of
esolvers (Google DNS and Cloudflare DNS [13]), which results in the
nderrepresentation of other resolvers in the dataset. The dataset was
reated in a virtual environment using docker, selenium, and two major
eb browsers (Firefox and Chrome) that were set to use DoH and send

heir requirements to 16 different resolvers. The exact methodology for

2 https://github.com/ahlashkari/DoHLyzer.git.
3 https://github.com/kjerabek/netexp.
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Fig. 1. Timeline of dataset capturing.

Table 1
Statistics about used types of dataset. Please note that the number of connections is not
equal to the number of flows referred elsewhere in the work since each flow exporter
maps connections to flows differently.

Dataset Other connections DoH connections Size

Real-World ∼156 000 ∼5 200 000 179 GB
Generated ∼1 600 000 ∼346 000 250 GB
Add. 5-week ∼17 000 ∼486 000 52 GB

generation and capturing Generated and Real-World data is described
in detail in the data article [13].

Together, the collection of datasets provides a comprehensive set of
DoH and regular HTTPS data. The Real-World part contains real-world
timing and network characteristics, while the Generated part contains a
large set of DoH resolvers, each with slightly different characteristics.
According to the original data article [26], the two datasets are very
different in terms of packet timing and size distribution. This paper
is, however, not aiming to describe and study all the differences be-
tween Generated and Real-World datasets—all detailed differences are
properly described in the original data article [13]. The differences
between both datasets make the collection ideal for assessing the
performance of models trained on lab-created data (Generated dataset)
in the real-world environment.

Nevertheless, the collection of datasets does not allow us to exper-
iment with drift—a phenomenon where the distribution of the input
data changes over time, which causes the obsolescence of trained ML
models. There have been numerous reports about ongoing drifts [28]
and their impact on models’ performance. To allow experiments con-
cerning the longitudinal performance evaluation of the detectors, the
additional dataset with captured data on the CESNET2 network has
been created and published at the Zenodo platform [29]. The capturing
of the novel dataset followed the same methodology as in the Real-
World data part (as described in the data article [13]). The capture was
automatically performed every Monday evening for five weeks between
28th of November till 26th of December 2022.

The information about all used datasets is provided in Table 1,
and the times of dataset capturing are graphically shown in Fig. 1.
Altogether, the used datasets contain more than seven million different
flows making it the largest dataset used for DoH detector evaluation—it
is seven times larger than the most extensive dataset CIRA-CIC-DoHBrw-
2020 used in related works. Moreover, almost half of the used dataset
contains real-user traffic, ensuring a representative sample of real-
world traffic traces. Lastly, the diversity of the traffic is ensured by
the size of the CESNET2 ISP network, which is used by half a million
users every day. Therefore, the dataset contains ∼115 000 unique client
public IP addresses and more than 10 000 unique server addresses.

4. Background on DoH detection

The DoH was standardized by IETF as RFC 8484 [1] in 2018 to
enhance the privacy of domain name resolution and prevent on-path
devices from interfering with DNS resolution process [1]. The RFC-
compliant DoH protocol uses traditional DNS wireformat messages as
defined in RFC 1035 [30] and sends them to the resolver as HTTP
POST or GET requests. To identify DNS data inside HTTP, a client
must provide HTTP Content-Type field with application/dns-
message value. RFC 8484 also recommends using DoH only over
3

HTTP/2 protocol due to its stream multiplexing feature that enables
clients to send concurrent requests, making the resolution process much
more efficient.

Despite the RFC recommendations, there are still resolvers on
the internet that support only DoH over HTTP/1. Nevertheless, most
browsers support DoH over HTTP/1 and overcome its request–response
limitations by opening multiple concurrent TCP connections and mul-
tiplexing between them. Except for the novel headers, HTTP version,
and possible cache-control options, RFC 8484 does not define any
additional requirements and restrictions on top of the HTTP protocol.
Such leeway in the specification allows resolvers and browsers to
include various HTTP headers resulting in different packet sizes and
thus in different traffic shapes, which can be used for client/resolver
identification [16,31].

From the packet-level perspective, each DoH request or response is
mapped into a single network packet [18], which defines the traffic
shape of DoH connections. Apart from initial handshakes, both TLS
and HTTP/2, the DoH connection is usually long-lasting and contains
smaller packets that are sparsely distributed in the connections. Never-
theless, such traffic shape is also common for other HTTP-based APIs,
and those are particularly challenging to distinguish from DoH.

The DoH detection proposals are often leveraging [6] the timing of
packets, which is distinctive in the case of web-based DoH. A single
web page visit often results in a burst of multiple DoH queries to
domain names that host additional assets such as content delivery
networks or javascript library providers [6,18,31]. The burstiness of
the communication is the primary factor distinguishing DoH from other
HTTP API calls [18]. Unfortunately, ML-based detection of short or
single query DoH, which is often generated by malware, is still not
solved [6] and can be recognized only by blocklists.

5. Selected DoH detection approaches

Several machine-learning approaches were published to distinguish
DoH and regular HTTPS (non-DoH). Some of them focus only on the
DoH detection task, while others include the task as the first stage, and
in the second stage, they further focus on malicious DoH detection.
Alternatively, some approaches focus solely on malicious DoH detec-
tion. Not all approaches could be selected in this comparative study,
mainly due to their impossible reproducibility. This section provides
a definition of selection criteria for DoH detection approaches to be
considered in the comparative study and then briefly describes the
selected approaches that are recreated within this study.

5.1. Definition of selection criteria

This study is limited to DoH detection proposals that utilize net-
work flows as broadly accepted data sources in current monitoring
and IDS solutions and further satisfy the following criteria to allow
reproducibility and fair comparison:

PCAP processing: The proposal has to publish a used PCAP processing
code or tool. Each PCAP processing pipeline is different and
needs to be specified exactly to allow recreation of the approach.

eatures: The proposal has to publish an exact definition of used
detection features. Without the exact definition of the feature
vector, the replication of the study is impossible.

o identifiers: The proposal must not use traffic identifiers such as
IP addresses and ports as features. As discussed by Behnke
et al. [20], these features would overfit the lab-created datasets,
and make fair comparability with other approaches impossible.

efined architecture: The proposal must precisely define the used
classification algorithm and its parameters, such as layers in
neural networks. Replication of proposal is impossible without
the knowledge of the exact algorithm,
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Table 2
The summary of criteria fulfillment across published DoH detection methods.

Paper PCAP processing Features No identifiers Defined architecture

MontazeriShatoori et al. [17] ✓ ✓ ✓ ✓

Mitsuhashi et al. [25] ✓ ✓ ✓ ✓

Behnke et al. [20] ✓ ✓ ✓ ✓

Casanova et al. [21] ✓ ✓ ✓ ✓

Zebin et al. [24] ✓ ✓ ✓ ✓

Vekshin et al. [16] ✓ ✓ ✓ ✓

Jerabek et al. [26] ✓ ✓ ✓ ✓

Konopa et al. [32] ✗ ✓ ✓ ✗

Jha et al. [22] ✓ ✗ ✓ ✓

Banadaki [19] ✓ ✓ ✗ ✓

Nguyen et al. [33] ✓ ✓ ✓ ✗
Table 3
Selected DoH detection approach summary. The abbreviations stand for: NF - Number of required statistical features; FE - Flow elimination before passed to ML model.

Paper NF Tool FE Balancing Scaling Best algorithm F1 Accuracy

MontazeriShatoori et al. [17] 28 DoHLyzer NaN – – Random forest 0.993 –
Mitsuhashi et al. [25] 28 DoHLyzer NaN – – XGBoost 0.998 99.8%
Behnke et al. [20] 26 DoHLyzer NaN – – Random forest 0.998 –
Casanova et al. [21] 28 DoHLyzer NaN Resampling Min–max BiLSTM 0.987a 99.0%
Zebin et al. [24] 29 DoHLyzer NaN SMOTE Min–max Balanced Stacked RF 0.999 99.98%
Vekshin et al. [16] 18 ipfixprobe NaN +<5 pay pkts SMOTE – Ada-oosted DT 0.976a 99.6%
Jerabek et al. [26] 4 NetExP NaN +<120 pkts – Standard XGBoost 0.998 99.9%

a Score is computed from the provided confusion matrix.
The list of all analyzed DoH detection approaches with the selected
criteria fulfillment is written in Table 2. Studies of MontazeriSha-
toori et al. [17], Mitsuhashi et al. [25], Behnke et al. [20], Casanova
et al. [21], Zebin et al. [24], Vekshin et al. [16] and Jerabek et al. [26]
satisfied the conditions. Konopa et al. [32] did not include a tool
or description of flow extraction from PCAP files, which makes the
reproduction impossible. Moreover they also did not describe the used
ML model architecture. Jha et al. [22] does not describe the exact set
of features used for detection. Banadaki [19] used IP addresses or ports
for DoH traffic classification. Lastly, the detector proposed by Nguyen
et al. [33] could not be reproduced, due to the missing description of
used classification architecture.

5.2. Brief overview of selected DoH detection approaches

Together, seven detection approaches were selected for recreation
in the comparative study. This section provides a brief introduction to
each one. Moreover, Table 3 summarizes the approaches, their perfor-
mance metrics, and properties that were essential for their replication.

MontazeriShatoori et al. [17] was one of the first studies that pub-
lished the DoH detection approach together with the dataset CIRA-CIC-
DoHBrw-2020 [7] that contained pre-extracted flow statistics by their
DoHLyzer tool. They evaluated multiple ML algorithms but achieved
the best F1 score of 0.993 with Random Forest and 28 features.

Mitsuhashi et al. [25] used the same 28 features extracted with the
DoHLyzer tool as MontazeriShatoori. However, they utilized different
algorithms, out of which the XGBoost with a maximum tree depth of 10
and the maximum number of bins set 1024 performed the best. They
achieved F1 score of 0.998.

Behnke et al. [20] also used a feature vector exported by the
DoHLyzer tool. Compared to Montazerishatoori et al. [17] and Mit-
suhashi et al. [25], they removed two insignificant features and ended
up with 26. Behnke et al. [20] achieved the best results with the Ran-
dom Forest algorithm with a 0.998 F1 score. The only hyperparameter
tuned was the maximum number of features considered in each split
during training—they used 21 features as the optimal number.

Casanova et al. [21] also used the same 28 features as Montazer-
iShatoori. Nevertheless, they tuned Bi-directional LSTM for this task
and achieved an accuracy of 99.0%. In their first study [21] from 2021,
they described their algorithm design pipeline—they used min–max
4

scaling and resampling of unbalanced data. Moreover, they showed
the best hyperparameters for the achieved performance. However, the
architecture of the neural network was missing until they published the
following study [34] in 2023. The described architecture consists of 60
neurons of bi-directional LSTM that also achieved the best performance
on CIRA-CIC-DoHBrw-2020 dataset when compared to other different
neural network architectures.

Zebin et al. [24] worked with 29 features extracted with the
DoHLyzer tool. They used a min–max scaler and Synthetic Minority
Oversampling Technique (SMOTE) to deal with imbalanced datasets.
They proposed a stacking classifier approach with three random forests
as base classifiers—each forest contained 10 trees and 28 features in
each split. The results from the base classifiers are then used as features
for Logistic Regression, which makes the final classification with an F1
score of 0.999.

The approaches mentioned above utilize the same dataset and fea-
tures extracted by the DoHLyzer tool. Their primary focus was tuning
different algorithms, normalization, and data balancing. Further ap-
proaches use different extraction tools, focusing more on data than on
tuning the algorithms.

Vekshin et al. [16] used flows extended for the first 30 individual
packets extracted with the ipfixprobe tool and further computing 18
discriminatory features. Apart from feature selection, their training
pipeline also uses SMOTE, and they skip flows with less than five
payload packets directly marking them as non-DoH. The algorithm
that had the highest performance among the ones evaluated was an
Ada-Boosted Decision Tree classifier with a maximal depth of a single
tree set to 30 and the number of estimators set to 5, reaching 99.6%
accuracy.

Jerabek et al. [26] used information from standard flow data (pro-
vided even by NetFlow V5) extracted by their experimental NetExP tool
to compute four features. They show the results of all flow classifica-
tions, but they point out that the short flows should be omitted from the
classification, and they further skip flows with less than 120 packets.
They proposed a system for dealing with shorter flows that perform
active verification. Out of all tested algorithms, they achieved the best
results with the XGBoost algorithm and a 0.998 F1 score.

6. General methodology

The selected approaches differ in raw data processing, extracted fea-
tures, algorithms used, and accompanied preprocessing. The common
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Fig. 2. Structure of general processing methodology common for all cases.

methodology was established to treat all the proposals the same way
for all prepared cases. General processing methodology is depicted in
Fig. 2. For the implementation, an automated pipeline was created that
ensured no deviance in the methodology for each evaluated detection
proposal to avoid any accidental mistakes and maintain comparable
results.4

6.1. Data preparation

At first, the datasets described in Section 3 are in the form of
raw PCAP files. Since each tool process flows differently with varying
timeouts generating a nonidentical number of flows on the output, the
split of the raw PCAP files into Train and Holdout parts before the flow
exportation was performed. This way, it can be guaranteed that the
original source is the same as the input, and the tool’s processing is
considered part of the study approach.

There are three groups, the Real-World, Generated, and Add. 5-
week, each consisting of several PCAP files. The first two groups of files
are treated differently than the third. Each file in the first two groups
is split in a ratio of 70:30 to create dedicated training and holdout

4 The source codes are available at https://github.com/kjerabek/comparat
ve-analysis-of-doh.
5

d

parts respectively. The train part is dedicated to hyper-parameters
tuning of the algorithms, and then it is used to train the model for
performance evaluation. The holdout part is kept exclusively for final
performance evaluation. The described dataset division follows the
common machine-learning methodologies and can be considered as
best practice [35].

All the PCAP files are processed by each processing tool used in
the selected studies (namely DoHLyzer, NetExP, and ipfixprobe) in the
same way as in the original experiments. The outputs of the processing
tools are then merged into several datasets that later serve in differ-
ent combinations as input into different cases for answering research
questions (see Fig. 3).

6.2. Algorithm selection and tuning

Only the algorithms that achieved the best classification perfor-
mance in the original studies were chosen to represent each approach
(see Table 3). The algorithms are fed with the appropriate features.
Moreover, the recreation of the approaches includes also additional
preprocessing as specified by the authors. If the published work speci-
fies feature scaling, the same feature scaling is used. Additionally, the
original works use imbalanced dataset similar to the one used in this
study. During the recreation the same under-sampling, over-sampling,
algorithm parameters or no action, was used the same way as specified
by the authors. The algorithms were tuned using grid-search and K-Fold
(5-Fold) on the train part before each measurement. The Bi-directional
LSTM architecture was left intact; only hyper-parameters, such as the
learning rate or optimizer algorithm that the authors also tuned, as
they mentioned in their work [21], were tuned to match the used data.
The best hyper-parameters were found for each training dataset (see
training parts of each research question in Fig. 3). Each study model’s
hyper-parameters were tuned for each training dataset separately since
each training dataset has different characteristics and sizes. That way,
fair comparison can be achieved.

6.3. Accuracy measurement

For the final measurement, each model was trained on the whole
train part using the best-found hyper-parameters for each training
dataset, and then the performance was measured on the holdout part of
each belonging training dataset. All the seeds were left intact (not fixed)
and randomized by default at the measurement part, and for each of
the five repeats, the model was retrained before measurement. Average
performance and standard deviation across all five runs is then used for
comparison. This way, it is possible to show more realistic results, the
stability of the algorithm results, and the boundaries between which
the performance can fall in reality.

𝐹1 = 2 ⋅ 𝑇𝑃
2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(1)

Since the datasets are imbalanced, the performance is measured
using an F1 score defined in Eq. (1), which is a recommended mea-
sure when dealing with imbalanced data [35]. However, all methods
have different constraints on the input flows. For example, Vekshin
et al. [16] require flows with at least five packets; shorter flows are
simply removed from the classification task, and the performance met-
rics are reported without them. Similarly, Montazerishatoori et al. [17]
Mitshuhashi et al. [25], Behnke et al. [20], Zebin et al. [24], and
Casanova et al. [21] discards flow with NaN values5 and reports all the
performance metric without considering them. The percentage of fil-
tered DoH flows in each dataset is shown in Table 4. It can be noticed,
that the ipfixprobe tool used by Vekshin et al. [16] discards more than
50% of all DoH flows in the Real-World dataset and directly classifies

5 They occur due to the impossibility of feature computation—usually
ivision by zero or short packet sequence.
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Table 4
The percentage of DoH flows that were filtered by each flow-export tool due to the
impossibility of feature computation. This was usually caused by a low number of
packets and unidirectional communication. Such filtering results in a false-negative
classification of the filtered DoH flows.

Holdout DoHLyzer ipfixprobe NetExP NetExP
dataset all filter

Generated 24.3% 26.4% 32.8% 93.6%
Real-World 28.0% 50.9% 17.4% 97.1%
Add. 5-week 26.6% 26.3% 38.7% 95.8%

them as non-DoH. Moreover, NetExP Filter discards even 97.1% of all
flows due to the strict filtering condition—only flows with more than
120 packets are used in classification. Not considering filtered flows
in the performance metric does not reflect the true performance of
the classifiers since a lot of DoH connections could be missed by such
prefiltration. Therefore, two distinctive F1 metrics are used:

F1-classified is computed just from the flows that satisfied the con-
straints defined in the classification method. This metric was
mainly used in the detection proposal studies that are replicated.

F1-all is computed from all flows in the dataset. The flows in the
dataset that were filtered out since they did not satisfy the
input constraints of the method are assigned with a non-DoH
prediction label. This metric targets to mimic a real-deployment
performance.

6.3.1. Accuracy measurement of the Jerabek et al. proposal
All selected studies in Section 5 presented only a single DoH detec-

tor proposal except the Jerabek et al. [26]. In their study, they present
three main classifiers. The (1) ML-based classification of all flows
(further denoted as All Flow scenario), the (2) ML-based classification of
flows that contain more than 120 packets (further denoted as Filtered
scenario) for improving accuracy. The minimal number of packets was
selected to maintain high accuracy even with a very limited feature
set. However, the filtration for a minimum of 120 packet flows is very
strict; therefore, they also proposed the (3) approach, which utilizes the
ML model from the Filtered scenario to create a DoH resolver blocklist.
This ML-created blocklist is then used for classification, even very short
flows (this approach is further denoted as a Simulation scenario).

Since Jerabek et al. [26] evaluate all his methods separately, all
hree scenarios are included in this comparative analysis. The All-
lows and Filtered scenarios are directly comparable with all other
pproaches since they utilize ML-only. Nevertheless, the simulation
cenario utilizes active probing and blocklist, giving the classifier a
ignificant advantage in some test cases, which should be considered
hen interpreting the results.

.4. Resource consumption measurement

The memory requirements of the proposals are estimated by the
izes of the models. In each performed experiment, the trained models
re stored in the form of a pickle (python object dump format6) without

any compression. The sizes of the pickled files determine the size of
the models. The memory requirement statistics are then reported in the
form of mean and standard deviation computed across all pickled files
associated with specific proposals.

In addition, execution times of training and evaluation of the mod-
els among the inputs are measured. Since the proposed methods use
different algorithms with different parallelization options and limita-
tions, the model’s training and evaluation times are measured without

6 https://docs.python.org/3/library/pickle.html.
6

o

parallelization and use only one CPU to provide a fair comparison.
Even the Bi-directional LSTM training and evaluation are limited to
such constrained resources, although GPU acceleration would be used
in practice.

The number of input samples varies for each model since each
preprocessing tool extracts a different number of flows. Moreover, some
methods are proposed to balance the input data. To combat those
nuances in the number of processed samples, the detector processing
speed was measured in the form of samples per second instead of using
absolute training and estimation times. The metric is computed with
the following formula:

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
‖𝑋‖

𝑡
, (2)

where the ‖𝑋‖ represents number of input samples for training or
evaluation and t is the training or evaluation time. Mean and standard
deviation are calculated for each method’s training and evaluation runs.
The measurement approach is demonstrated in Fig. 3.

The experimental setup employed a dedicated server featuring 2x
AMD EPYC 7282 processors, 256 GB DDR4 RAM clocked at 3200 MHz,
a 1 TB SSD, and 2x A5000 GPUs each with 24 GB RAM. This server
was exclusively designated for the experiments, with no concurrent
execution of other computationally intensive tasks.

7. Comparative analysis

This analysis is organized into six research questions (RQ) designed
to evaluate the detectors’ usability (by assessing the models’ perfor-
mance), transferability across diverse environments, and longevity in
terms of maintaining performance over time. For each experiment, the
methodology described in previous Section 6 was firmly followed. The
created automated pipeline ensured no deviance in the methodology for
each evaluated detection proposal to avoid any accidental mistakes and
maintain comparable results. The results are presented in the following
sections.

7.1. RQ1: What is the most effective DoH detection approach on a lab-
created dataset?

This research question concerns the general reproducibility of the
DoH detection proposals since all of them have been primarily eval-
uated using lab-created data. As demonstrated in Fig. 3, the pre-split
Generated Train part to train the models and then the Generated
Holdout to test their performance was used.

7.1.1. Results
The results of the experiment are shown in Fig. 4. The experiment

confirmed the reported performance of each proposal, and the excellent
accuracy was recreated, often reaching up to a mean F1-classified score
of 0.99, except the Casanova et al. [21]. In this case, the experiments
could not reach the expected accuracy of the classifier since they
reported an F1 score of 0.987. Despite the increased effort spent in
hyperparameter tuning and special care in model recreation, a slightly
lower F1 score of 0.93 with a very low standard deviation of 0.001
across the runs was obtained. To validate the results, Casanova et al.
were contacted; however, after two urgencies (each one month apart),
no response was received.

As expected, the measured F1-all performance significantly de-
creases compared to F1-classified. The highest accuracy drop between
the F1-all and F1-classified experienced by Jerabek et al. [26] (Fil-
tered), who discards flows shorter than 120 packets, and Vekshin
et al. [16] who discard flow with less than five payload packets.

Answer RQ1: Since almost all DoH detection approaches performed
imilarly well, there is no clear winner in the performance on the lab-
reated data. However, Casanova et al. [21], Vekshin et al. [16], and
erabek et al. [26] in the all-flow scenario performed worse than the
thers. When considering F1-all measure, the most accurate are the

https://docs.python.org/3/library/pickle.html
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Fig. 3. Processed datasets that are used as input to answer defined research questions.
Fig. 4. RQ1: The performance of DoH detection proposals trained on the Generated
dataset and tested on the Generated dataset. The exact measured values of both f1
scores are written under each column. The whiskers in the plot represent the standard
deviation observed during different random seeds.

approaches that use DoHLyzer as the data source, namely Montazer-
iShatoori [17], Mitsuhashi et al. [25], Behnke et al. [20] and Zebin
et al. [24] since they perform minimal packet filtration. Additionally,
Jerabek et al. [26] in the Simulation scenario also performs well, taking
advantage of an accurately created blocklist.

7.2. RQ2: What is the most effective DoH detection approach on a real-
world ISP dataset?

This research question aimed to validate that the approaches are
similarly accurate even with real-world data. As shown in Fig. 3, a
Real-World dataset for both training and testing (holdout dataset) was
used.

7.2.1. Results
The results of the experiments depicted in Fig. 5 confirm that the

DoH detection proposals achieve excellent performance even on the
Real-World data. Since the Real-World data contain less variability in
the traffic because most of the DoH is serviced by two major DoH
7

Fig. 5. RQ2: The performance of DoH detection proposals trained and tested on real-
world datasets. The exact measured values of both f1 scores are written under each
column. The whiskers in the plot represent the standard deviation observed during
different random seeds.

resolvers [13], an increase in mean F1-classified scores across most
of the proposals can be observed. Compared to results obtained with
Generated data, Casanova et al. [21] achieved similar accuracy as
reported in their study on Real-World data. Only Jerabek et al. [26]
in the simulation scenario performed worse than on Generated data.

Such performance drop is caused by the lack of long connections
to some DoH resolvers. Due to the condition of minimal packets in
the flow (at least 120 packets), some flows are directly discarded and
classified as non-DoH. Naturally, when there is no flow with at least
120 packets for some resolvers, these resolvers will always be falsely
classified as non-DoH.

When looking at the performance measured with F1-all, it can be
seen that by far the largest performance drop experienced by Jerabek
et al. [26] in the Filtered scenario. This is caused by the shape of
real-world traffic, where the majority of DoH connections are short.
Similarly, Vekshin et al. [16] miss a lot of DoH connections due to
deployed prefiltration to flow with at least five payload packets.

Answer RQ2: This experiment revealed that the DoH detection ap-
proaches are again very accurate in Real-World datasets. Most ap-
proaches performed better on Real-World data than on Generated data
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Fig. 6. RQ3: The performance of DoH detection proposals trained using Generated
dataset tested on the real-world dataset. The exact measured values of both f1 scores are
written under each column. The whiskers in the plot represent the standard deviation
observed during different random seeds.

(in RQ1), except the Casanova et al. [21], and Jerabek et al. [26] (in
both Simulated and all-flows scenario), where they achieved slightly
lower mean F1-classified and F1-all score than the others. Similarly,
as in the previous RQ1, when concerning F1-all, the most accurate
approach uses the DoHLyzer as the data source.

7.3. RQ3: How effective are the lab-created DoH detectors in the real-world
ISP environment?

This research question aims to evaluate the usability of the de-
tectors trained on the laboratory-generated dataset in a production
environment. This experiment supports cases where it is not always
possible to collect the data from the final deployment environment due
to various restrictions, e.g., to preserve privacy. Additionally, it may
be hardly achievable to label all the captured encrypted connections
correctly—for example, due to incomplete IP or domain labeling lists.
Finally, this experiment also assesses the robustness of the models and
their dependability on the network environment used during training.
Ideally, the models should not be dependable on training network
environments and should be applicable in diverse deployment settings.
To simulate this deployment setup, the trained part of the Generated
dataset for training was used, and all detectors used the holdout part
from the Real-World dataset.

7.3.1. Results
The results are shown in Fig. 6. As can be seen, the models trained

using the Generated dataset are mostly struggling to classify DoH
accurately, and most of them are unusable. The only approach that
remains usable is the Jerabek et al. [26] in filtering and simulation
scenarios as it achieves almost unchanged F1-classified performance
as in the previous case. The reason behind such a difference can be
attributed to the strict filtering condition of at least 120 packets, where
the DoH traffic shape became very distinctive. The traffic shape of
shorter DoH flows is highly influenced by the TCP/TLS handshakes
or HTTP/2 preface, and it is difficult to recognize DoH from other
short HTTPs communication [26,31]; since the datasets come from a
different environment, the classifiers fail to generalize on short flows
8

and misclassify them. t
The approach that also achieved far better performance than the
others is the Casanova et al. [21] despite its lowered performance on
Generated holdout. The reasons behind the increased performance are
unknown due to the low explainability of the used neural networks.

Answer RQ3: As shown in the results, most of the plain ML-based
methods are ineffective when trained in one environment and deployed
in another. According to the original data article [13] the Gener-
ated dataset contains traffic from more resolvers than the Real-World
dataset—the Generated dataset contains a wider variety of different
DoH implementations, yet the detectors in the real world did not
perform well. Therefore, it can be assumed, that the inapplicability of
the Generated dataset is caused by an entirely different environment
between the lab and real networks.

The used Generated dataset is the most comprehensive lab-created
dataset available since it contains traffic from 16 different resolvers.
The other known publicly available datasets contain far fewer traffic
traces to a smaller number of resolvers (only 4 in case of CIRA-CIC-
DoHBrw-2020 [7], only 2 in case of dataset [9] used by Vekshin
et al. [16]). Therefore, the observation can be considered as gener-
ally applicable, and the lab-created dataset must be used only as a
benchmark and not in production. The deployment into the real-world
environment is not concerned by the DoH detector proposals, except
the Jerabek et al. [26], who also performed the best in this experiment
with their Simulation scenario. In conclusion, most of the DoH detector
proposals are not robust, and their high accuracy depends on the
similarities between the training and deployment networks.

7.4. RQ4: How effective are DoH detectors trained on both types of datasets
(lab-created and real-world mixed together) in detecting DoH traffic in
real-world ISP deployment?

The research question #4 aims to find out the influence of the Gen-
erated dataset on real-world performance. The Real-World dataset con-
tains mainly two DoH resolvers [13]. The data are similar to the real-
world environment but lack the variability of the generated dataset.
Therefore, the rare DoH resolvers might get misclassified as non-DoH.

In this experiment, the training parts from the Real World and
Generated dataset were mixed. The whole Generated training dataset
and 1/2 of the Real-World training dataset were used as graphically
demonstrated in Fig. 3.

From the deployment perspective, this scenario can be seen from
two angles. The first covers the case where only a laboratory-created
dataset is available, and it is planned to deploy the detector in the real
network. Hence it is beneficial to add some traffic from the real network
to the training set. On the other side, it could also represent a case
where only a limited amount of data from a real network is available;
hence laboratory data (data from another environment) are added to
provide more rich behavior and make the model more robust.

7.4.1. Results
The results of the performed experiments are shown in the in Fig. 7.

As can be seen, the performance of the approaches experienced a small
decrease in performance compared to the training on the Real-World
data only shown in Fig. 5. The biggest decrease was experienced by
Jerabek et al. [26] in the all-flow scenario. The drop can be attributed
to the use of only four features, which limits the capability of covering
the nuances of the more complex dataset. However, the simulation
scenario is stable compared to training on only Real-World data and
performs similarly. Moreover, Casanova et al. [21] Bi-directional LSTM
approach showed increased and more stable performance, which is now
comparable to the other methods with the DoHLyzer data source.

Answer RQ4: Experiments showed that the DoH approaches are
till very effective. However, the mixture of the Real-World with the
enerated dataset does not bring many benefits but rather slightly
ecreases the performance of most detectors compared to the case when

rained on the Real-World dataset only.
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Fig. 7. RQ4: The performance of DoH detection proposals trained using Generated
dataset and 1/2 of real-world train dataset. Proposals were tested on the real-world
holdout dataset. The exact measured values of both f1 scores are written under each
column. The whiskers in the plot represent the standard deviation observed during
different random seeds.

7.5. RQ5: Are concept or data drifts a significant phenomenon in the DoH
detection task?

Drifts (either data or concept) are an important phenomenon that
needs to be considered when designing the network detector. The
longevity of detectors is an important parameter that depends on
various factors, such as the detector design, underlying network infras-
tructure, or specific time in a year that causes different network traffic
shapes or simply changes in the classified service itself.

In this research question #5, the susceptibility of DoH detectors
to drifts on the CESNET2 network backbone environment was tested.
It can be confirmed, that during the time, there was no change in
the CESNET2 network or monitoring infrastructure; thus, the drift
originates from the traffic itself. The extreme case was evaluated, where
the training dataset was captured at least one year before the evaluation
data to test the longevity of the detectors. Therefore, the train part
of the Real-World dataset was used for training, and the Additional
5-week dataset was used for evaluation.

7.5.1. Results
The results depicted in Fig. 8 show an expected significant perfor-

mance drop across all the approaches except the Jerabek et al. [26] and
Vekshin et al. [16] that proved to be more resistant to the longitudinal
drift and suffered only small or no performance degradation. Moreover,
Jerabek et al. [26] in the simulation case very effectively mitigated the
drift with his adaptive blocklist approach.

Compared to Jerabek et al. [26] and Vekshin et al. [16], the
approaches using DoHLyzer as data source proved to be more affected
by the longitudinal drifts in both F1-classified and F1-all measures.

Answer RQ5: Despite the extreme case of training and evalua-
ion data captured more than a year apart, some of the approaches
till maintain their high accuracy—Vekshin et al. [16] and Jerabek
t al. [26] achieved F1-classified score over 0.95, which is similar to the
core reported in their proposing studies. Both approaches proposed the
mitting of the first connection packets from the feature vectors. These
ackets carry mainly TLS and HTTP-dependent information and are
9

nrelated to the actual DoH data. Removing these packets significantly
Fig. 8. RQ5: The performance of proposed detectors trained on the real-world dataset
and evaluated on the whole additional 5-week dataset. The time difference between
the training and testing dataset is at least one year.

improved longevity since other approaches that include all packets in
the feature vector did not (by far) perform significantly worse in the
experiment.

7.6. RQ6: How DoH detection performance degrade over a month in real-
world ISP networks?

The previous research question showed the extreme case of long
drift. The research question RQ6 aim to examine the drift over a single
month. For this experiment, only the Additional 5-week dataset was
used. As shown in Fig. 3, the training and hyperparameter tuning was
performed on the first week, the same way as described in Section 6,
while the detectors were evaluated on the remaining weeks separately
to observe the potential degradation in the classification performance.
In the case of the simulation scenario of Jerabek et al. [26], the blocklist
was reset so that the evaluation for each weak starts with the empty
blocklist.

7.6.1. Results
The per-week accuracy of each approach is shown in Fig. 9. A

common trend in performance changes can be noticed. The high per-
formance in Week 2, which then decreases in Week 3. In Week 4, there
is a small increase, followed by a more noticeable decrease in Week 5.
The last large decrease is common to all measured approaches and can
be attributed to Christmas. Since the CESNET2 network is mainly used
by universities and research institutions in the Czech Republic, a public
holiday such as Christmas often results in significant traffic shape and
distribution changes due to a lower amount of transferred data.

Most of the approaches performed with similar accuracy as reported
in the original studies and achieved F1-classified scores over 0.99, with
the exception of Vekshin et al. [16] and Casanova et al. [21].

The performance of Vekshin et al. [16] significantly drops in Week
3 and Week 5. This performance instability can be attributed to the
smaller training set compared to previous experiments. The smaller set
was probably overfitted, and the model then struggled to deal with the
network changes.

Casanova et al. [21], as in previous cases, poses a large variance in
the performance depending on the run. The F1-classified score is similar
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Fig. 9. RQ6: Per-week F1-classified performance of the DoH detectors trained on week 1 of the additional 5-week dataset. The whiskers in the plot represent the standard deviation
observed during different random seeds.
to the one achieved on the Generated dataset, which is ∼0.05 lower
than reported in the original study.

Answer RQ6: The experiments show that drift in the short term does
not significantly affect the performance of the classifiers, except for
Vekshin et al. [16] and Casanova et al. [21].

7.7. RQ7: What are the resource requirements of the proposed detectors?

Another critical aspect besides the achieved accuracy of the pro-
posed methods to be considered for practical usage is the resource
consumption of the ML-based detectors. High throughput and low
complexity determine the applicability of models in real networks.
Hence, estimating the size and complexity of the trained models is
essential.

In addition to the model size, model throughput shows the amount
of flows processed by the model, determining their computational
effectiveness. Moreover, models would be periodically retrained as the
underlying data changes over time. The speed of training is another
parameter that needs to be considered.

7.7.1. Results
The training performance of the models is depicted in Fig. 10. It can

be seen that there is a high disparity between the training throughput of
the models, which can be caused by the use of different ML algorithms
and their particular settings. The highest throughput of samples during
the training is achieved in the case of Mitsuhashi et al. [25] and Jerabek
et al. [26] in both All Flows and Filtered (Simulation is not included
as it uses the same model as in the Filtered scenario). Both Jerabek
et al. [26] and Mitsuhashi et al. [25] use XGBoost classifier7 and
their speed difference compared to others is significant. Nevertheless,
Jerabek et al. [26] achieved the fasted training speeds in both scenarios
since their classifier is trained on only four features.

The other approaches are much slower. MontazeriShatoori et al.
[17] and Behnke et al. [20] achieved similar training speeds, since
both are using Random Forest Classifier. Vekshin et al. [16] utilizes
Ada-Boost which performs close to the previous two. Nevertheless,
the Ada-Boost cannot be efficiently parallelized; thus the gap between
Random Forests would be much higher in parallelized environments.
Casanova et al. [21] is next in the row. It is the only approach utilizing
neural networks. The slowest is the Zebin et al. [24] approach that uses
a stacking classifier.

7 Python XGBoost library https://xgboost.readthedocs.io/.
10
Fig. 10. Training throughput samples per second of the models during the training in
log scale.

The prediction throughput of all the trained models was measured,
and the results can be seen in Fig. 11. The throughput of most models
reaches more than 400K samples per second except for Zebin et al. [24]
stacking classifier approach and Casanova et al. [21] Bi-directional
LSTM approach. The two mentioned may suffer from the increased
complexity of the used models. Higher throughput is achieved by Vek-
shin et al. [16] with Ada-Boost classifier. Their classifier may benefit
from being built with an ensemble of only 50 estimators, while other
ensemble models were built with a number of estimators equal to
100. The highest detection throughput is achieved by the ML model
of Jerabek et al. [26] in a filtered scenario since it is lightweight and
simple. However, this advantage comes at the cost of a reduced F1-all
accuracy.

Finally, the memory consumption of models is measured among all
trained models in previous RQs, and the mean and standard deviation
are provided in Table 5. It can be seen that some models are reaching
up to tens or even hundreds of MBs. The stacking classifier proposed
by Zebin et al. [24] is the most complex and reaches the largest sizes.
Vekshin et al. [16] Ada-Boost occupies lower sizes. The most efficient

https://xgboost.readthedocs.io/
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Fig. 11. Evaluation throughput samples per second of the models during prediction in
log scale.

Table 5
Model sizes mean among all measurement cases.

Method Mean [MB] STD

MontazeriShatoori et al. [17] 170.54 108.16
Mitsuhashi et al. [25] 5.17 3.54
Behnke et al. [20] 165.47 105.64
Zebin et al. [24] 1001.83 677.23
Casanova et al. [21] 0.19 0.00
Vekshin et al. [16] 31.76 19.63
Jerabek et al. [26] (All Flow) 9.13 6.28
Jerabek et al. [26] (Filtered) 0.54 0.30

memory consumption are the XGBoost models proposed by Jerabek
et al. [26], Mitsuhashi et al. [25] and Casanova et al. [21]. The neural
network of Casanova et al. [21] required constant size as it stores
mainly weights and it remained unchanged during the experiments.

Answer RQ7: Experiments have shown that resource consumption
and effectiveness vary highly amongst the approaches. The most ef-
fective in training, evaluation, and memory consumption were the
approaches utilized XGBoost Classifier. While more complex models
such as Zebin et al. [24] show increased resource requirements without
an actual increase in accuracy.

In this RQ, the models were measured using only one CPU. In
reality, parallelization should be possible. Not all algorithms can be
parallelized equally well or at all during the model training. Hence, this
study limits the measurement to equal conditions to make the results
comparable. However, the models’ evaluation throughput would scale
linearly when run in parallel.

Last but not least, the measured metrics of the models are strongly
dependent on the used machine learning library. Proposals based on
scikit-learn library usually showed worse metrics compared to the
xgboost-based detectors. Nevertheless, since the studies were recreated
with the same Python libraries as in the original works; thus, the
performance results are consistent with the proposals.

8. Discussion

In this study the best-performing ML-based detectors were evaluated
in different scenarios. It can be noticed that the best performing across
the DoH detection proposals are usually a tree-based algorithms, with
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Fig. 12. Boxplot of the measured mean F1-classified performances for each DoH
detection proposal across experiments performed in RQ1–RQ5. The whiskers represent
the minimum or maximum observed value.

the exception of Casanova et al. [21], who evaluated only neural
networks. However, the neural network showed a large variability
in performance. Fig. 12 depicts the overall F1-classified performance
across all the evaluated cases. Jerabek et al. [26] and Vekshin et al. [16]
benefited from the additional filtration, and their performance showed
a lower variance across the experiments. The other approaches based
on the feature provided by DoHLyzer show similar performance and
variance. Nevertheless, the detector proposed by Mitsuhashi et al. [25]
achieved a slightly better performance than other DoHLyzer-based
classifiers.

The results showed that the lab-created datasets can be far more
challenging than the real-world ones. The DoH detectors achieved
better performance when trained and tested on the Real-World dataset
compared to the Generated one. Nevertheless, most of the ML models
proved to be unusable in real-world deployment when trained on the
lab-created dataset or generally when trained on the data from one
particular computer network and deployed in a different one.

Performance of the models in the RQ3 experiment (trained on
the Generated and evaluated on Real-World datasets) differed vastly.
Detectors that performed better in RQ1 and RQ2 (trained and evaluated
on similar network data) failed when used with data from different
network environments. More simple but generally less accurate models
(in order of 0.01 of F1 score) showed higher transferability, and they
can handle really long time between training and deployment due to
higher generalization.

The drift (caused by the old training set) can be considered a
relatively small problem in the case of DoH detection. Even one year
after training, detectors showed relatively good performance (RQ5 ex-
periment). Nevertheless, regular model retraining on at least a monthly
basis is still recommended to maintain stable and consistent accu-
racy results over time. Besides, the models should be trained on a
sufficient amount of data, to mitigate the effect observed with Vek-
shin et al. [16], which failed to generalize and showed a significant
performance variability when trained on a single week data.

Overall, the DoH detection problem can be considered as almost
solved when the ML-based detector is deployed together with the
blocklist—as proposed by Jerabek et al. [26]. The block-list-based
solution showed superior performance over ML-only proposals and can
detect even single-query flows, which are considered a major challenge
by the Hynek et al. [6] survey. However, small and private DoH

resolvers used stealthily (with very short DoH connections, e.g., for
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Command & Control server access) would still be missed even with
current solutions.

The blocklist-based solution can be combined with any of the eval-
uated ML models since all of them showed high performance. The se-
lection depends on the deployment factors—available flow data source,
network infrastructure, and the possibility of retraining. When frequent
retraining is not possible (e.g., due to privacy policies preventing
frequent and automatic traffic captures), Jerabek et al. [26] or Vekshin
et al. [16] could be considered reasonable candidates due to their lon-
gitudinal stability. From these two approaches, the Jerabek et al. [26]
has a minimal feature vector that is lightweight to compute and can
be obtained from any flow monitoring device (including switches and
firewalls), which makes their approach far more deployable compared
to Vekshin et al. [16].

On the other hand, when retraining is possible, Mitshuhashi et al.
[25] achieved slightly better performance compared to other detectors
that tend to overfit. Nevertheless, according to Jerabek et al. [26],
their features cannot be extracted efficiently in high-speed networks.
Therefore, the deployment of the detector proposed by Mitshuhashi
et al. [25] is also limited to slower networks only. In addition, the three
mentioned approaches also outperforms the other approaches in the
effectiveness of speed and resource consumption.

9. Conclusion

DoH is a privacy technology that has already gained adoption
among users and also service providers. One of the privacy-preserving
features is its stealthiness since DoH blends into other HTTPS traffic,
leaving the administrators unaware of its presence. Therefore, multiple
DoH detection approaches have been proposed in recent years to
notify security personnel about ongoing DoH communication. In this
study, a comparative analysis of the most influential flow-based DoH
proposals was performed to evaluate their performance independently
and summarize the state and deployability of current solutions.

This study covers seven previously published recreated detectors
and evaluated them in six different experiments to answer defined
research questions. Each research question targeted specific deploy-
ment scenarios and concerned ML-model transferability, usability, and
longevity. The experimental methodology has been settled in advance
and automated to avoid any accidental mistakes and maintain the
trustworthiness of the results. Moreover, the largest collection of DoH
datasets was used, which enabled testing the classifiers in real-world
and laboratory environments. A novel Additional 5-week dataset [29]
was also created, which enabled experiments concerning the longevity
of the detectors.

Presented results confirmed the reported high accuracy of DoH
detection proposals, achieving an F1 score of 0.99. However, the ex-
periments also showed that the transferability of detectors to different
network environments and their differences in the rate of obsolescence
pose a challenge that the research community should focus on in the
future.

Overall, this study showed that traditional detection of benign DoH
can be considered a practically deployable solution when used in the
simulated scenario presented by Jerabek et al. [26]. The approach of
detection blocklists created by machine learning showed superior per-
formance and was even transferable between network environments.
Moreover, it can be combined with any other ML-based detector,
depending on the deployment constraints. On the other hand, malicious
users that use DoH stealthily (e.g., by using only short connections) can
still bypass the current DoH detection proposals, and researchers should
focus more on early DoH detection from the first few packets sent at
the beginning of the connections.

The study validated several scenarios including deployment of mod-
els trained in one network to another. However, the presented case
covers only two networks with certain conditions. In future work, the
authors would like to explore the models transferability to networks
in different geographical locations with varying conditions such as
12

different bandwidth, delay, jitter or packet loss.
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