
Research Article

Petr Veigend*, Gabriela Nečasová, and Václav Šátek

Solving linear and nonlinear problems using
Taylor series method

https://doi.org/10.1515/comp-2024-0005
received January 15, 2024; accepted April 2, 2024

Abstract: The article deals with the solution of technical
initial value problems. To solve such problems, an analy-
tical or numerical approach is possible. The analytical
approach can provide an accurate result; however, it is
not available for all problems and it is not entirely suitable
for calculation on a computer, due to the limited numerical
accuracy. For this reason, the numerical approach is pre-
ferred. This approach uses ordinary differential equations
to approximate the continuous behaviour of the real-world
system. There are many known numerical methods for
solving such equations, most of them limited in their accu-
racy, have a limited region of stability and can be quite
slow to achieve the acceptable solution. The numerical
method proposed in this article is based on the Taylor
series and overcomes the biggest challenge, i.e. calculating
higher derivatives. The aim of the article is therefore two-
fold: to introduce the method and show its properties, and
to show its behaviour when solving problems composed
of linear and nonlinear ordinary differential equations.
Linear problems are modelled by partial differential equa-
tions and solved in parallel using the PETSc library. The
parallel solution is demonstrated using the wave equation,
which is transformed into the system of ordinary differen-
tial equations using the method of lines. The solution of
nonlinear problems is introduced together with several
optimisations that significantly increase the calculation
speed. The improvements are demonstrated using several
numerical examples that are solved using MATLAB
software.

Keywords: initial value problems, Taylor series, MTSM,
MATLAB, PETSc

1 Introduction

This article deals with the numerical solution of technical
initial value problems (IVPs) described by the systems of
ordinary differential equations (ODEs). The ODEs are solved
using a variable-step variable-order numerical integration
method, the modern Taylor series method (MTSM), and the
solution is compared with state-of-the-art ODE solvers. The
complicated calculation of higher-order derivatives does not
need to be calculated because MTSM recurrently calculates
the Taylor series terms in each time step [1]. This article
compares the numerical results of MTSM with the results
obtained by the state-of-the-art Runge-Kutta solvers imple-
mented in MATLAB software and PETSc library and shows
the advantages of the MTSM over Runge-Kutta-based solvers.
The aim of the article is to show that theMTSM can solve both
linear and nonlinear problems faster and more accurately
than the state-of-the-art Runge-Kutta-based solvers.

The first implementation of the MTSM was TKSL/386
software (TKSL stands for Taylor-Kunovsky simulation lan-
guage) [2]. Currently, the MTSM has been implemented and
tested in MATLAB [3], in C/C++ languages (FOS [4] and
TKSL/C software [5]). Additionally, the method can be effec-
tively implemented in hardware [6]. Several other imple-
mentations of the Taylor series method in a variable order
and variable step context were presented by different
authors e.g. TIDES software [7] and TAYLOR [8], which
includes a detailed description of a variable-step-size ver-
sion. Other implementations based on Taylor series include
ATOMF [9], COSY INFINITY [10], and DAETS [11]. The vari-
able step-size variable-order scheme is also described in
previous studies [12–14], where simulations on a parallel
computer are shown. An approach based on an approxi-
mate formulation of the Taylor methods can be found in
the study by Baeza et al. [15].

The approach based on an approximate formulation of
the Taylor methods can be found in the study by Baeza
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et al. [15]. For example, further research was performed by
Amodio et al. [16], which describes the generalised imple-
mentation of the Taylor series-based method with its order
limited to three.

The MTSM allows for computation with arbitrary accu-
racy and step size if variable-precision arithmetic and
higher-order of method are used. The article by Dimova
et al. [17] focuses on the open multi-processing (OpenMP)
parallelisation of multiple precision Taylor series method
using one computational node. The model problem is the
chaotic dynamic system – the classical Lorenz system. The
article also briefly mentions the clean numerical simula-
tion (CNS) concept, originally published by Liao [18]. The
CNS provides reliable chaotic trajectories in a long enough
interval of time.

A hybrid message passing interface (MPI) with OpenMP
parallelisation strategy for multiple precision Taylor series
method with fixed step size and fixed order is discussed by
Hristov et al. [19]. The hybrid strategy was used because
OpenMP scalability is slightly better than MPI when using
one computational node. The authors claimed that this
hybrid strategy can be applied to a large class of chaotic
dynamical systems.

The article by Hristov et al. [20] is based on the pre-
vious article by Hristov et al. [19] and introduces a mod-
ification of CNS with variable step size and fixed order. The
order of the Taylor series method is higher than the fixed-
order approach, but it results in a reduced number of inte-
gration steps thanks to the larger integration step size. Also,
the higher-order method increases parallel efficiency.

The article consists of several sections. Section 2 intro-
duces the Taylor-series-based numerical integration method
called themodern Taylor series method. Section 3 focuses on
a parallel approach of solving linear partial differential
equations (PDEs). Section 4 shows the parallel solution of
the wave equation, together with performance metrics and
detailed numerical results. The formulation of the method
for nonlinear problems is introduced in Section 5, including
several optimisations. Numerical results for selected exam-
ples of nonlinear problems are summarised in Section 6.

2 Higher-order Taylor series
method

This section introduces the developed method – MTSM.
More information can be found in previous studies [1,21–23].
An ODE with an initial condition

( ) ( ( )) ( )′ = =y t f t y t y y, , 0 ,
0

(1)

is called an initial value problem. The best-known and the
most accurate method of the numerical solution of (1) is to
construct the Taylor series in the form
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where h is the integration step size, ( )≈y y t
i i is the approx-

imation of the current value, and ( )≈ ++y y t h
i i

1

is the
approximation of the next value of the function ( )y t [24].

MTSM very effectively implements the variable-step-
size, variable-order numerical solution of IVPs using the
Taylor series [1]. It is based on a recurrent calculation of
the Taylor series terms for each integration step. There-
fore, the complicated calculation of higher-order deriva-
tives does not need to be performed, but rather, the value
of each Taylor series term can be numerically calculated.
Equation (2) can then be rewritten in the form

( ) ( ) ( ) ( )= + + + ++y p p p p n0 1 2 … ,
i 1

(3)

where ( )p j , =j n0 … denotes the Taylor series terms. The
MTSM transforms the input problem into a system of
autonomous ODEs, which allows the recurrent calculation
of the Taylor series terms.

The Taylor series terms in each step are truncated
when the stopping rule for the last σ number of Taylor
series terms is met:

∣∣ ( )∣∣∑ ≤
= −

p j ε,

j n σ

n

(4)

where ε is the required accuracy of the calculation, which is
chosen for each example. In this article, we consider =σ 3.

An important part of the method is an automatic inte-
gration order setting, i.e. using as many Taylor series terms
as the defined accuracy requires. Let P denote the function
which changes during the computation and defines the
number of Taylor series terms used in the current integra-
tion step ( =+P ni 1

). More information about the method
and additional comparison with state-of-the-art methods
can be found in the study by Veigend et al. [21].

3 Linear problems and parallel
solution

For linear systems of ODEs ( ( ) ( ) )′ = +y yt tA b , and (2) can
be rewritten in matrix-vector notation as
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where A is the constant Jacobian matrix and b is the con-
stant right-hand side. Moreover, Taylor series terms in (3)
can be computed recurrently using

( ) ( ) ( )
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When solving linear problems in parallel, (5) can be rewritten
as follows:

= ++y yA A b,
i y i b

1
(7)

where the matrices Ay and Ab are defined as follows:
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Let ADl
denote the submatrix of the matrix A decom-

posed by rows, where { }=l n1, 2, …, P and nP is the number
of processes. Let A be a matrix of size ×m m. The number
of rows of matrix A is evenly divided among processes.
Matrices Ay and Ab are constant, and matrices are precal-
culated only once at the beginning of the calculation:
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where { }=l n1, 2, …, P . After the parallel precalculation, the
matrix Aˆ yG is obtained by gathering individual matrices
Aˆ yDl

. Similarly, the matrix Aˆ bG:
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Final matrix Aˆ and vector bˆ are calculated afterwards,
and I is the identity matrix

= + =A A A I b A bˆ ˆ
,

ˆ ˆ
.yG bG (11)

Using (11), we can rewrite (7) and solve it in parallel using
the row-wise decomposition of matrix Aˆ

= ++y yA bˆ ˆ
.

i i1

(12)

4 Linear problem example

The analytic notation of the wave equation is the second-
order hyperbolic PDE [25] follows:
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The homogeneous Dirichlet boundary conditions are set:

( ) ( )= = ≤ ≤u t u L t t T0, , 0, 0 , (14)

where L is the string length and T is the maximum simula-
tion time. The initial values follow:

( ) ( )=u x πx, 0 sin , (15)

( )∂
∂

= < <
u x

t
x L

, 0

0, 0 . (16)

The wave equation describes the oscillations of an ideal
string of a specified length. Both ends of the string are fixed
in time (see the boundary conditions (14)). The initial velo-
city of the string is zero (16). The initial position of the
string is modelled as a sine function (15). The resulting
system of ODEs ( ) ( )′ = +y yt tA b, with initial conditions

( ) =y y0
0

arising from the Method Of Lines (MOL) is in
the form:
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where A
12

is the spatial discretisation matrix, the three-
point central difference formula (coefficients −1, 2, 1) was
used. The A

21
is the identity matrix, and matrices A

11
and

A
22
are zero matrices. The size of the problem is denoted as

S . The sparsity patterns of the matrices A and Aˆ precalcu-
lated using (12) for =S 100 are in Figure 1(a) and (b),
respectively.

The sparsity of the matrices A and Aˆ increases with
the problem size. The sparsity of Aˆ decreases during pre-
calculation as seen in Figure 1. Let us denote the size of the
submatrix as = −m S 1. The following text will elaborate
number of nonzero elements (nnz) of matrices A and Aˆ in
more detail. Total number of nonzero elements in matrix A:

= +nnz nnz m,A A
12

(18)

( )= − +nnz m3 2 4.A
12

(19)

First, let us define the number of nonzero elements for
matrix A

12
. Note that the first and last rows contain two

elements (four overall), all other rows contain three ele-
ments. The last term, m, reflects the number of nonzero
elements of the identity matrix A

21
. The term P

max
denotes

the maximum order of MTSM_PRECALC, that is the number
of Taylor series terms (Table 2). The total number of nonzero
elements in matrix Aˆ for a given maximum order P

max
can

be calculated as follows:

= + +nnz nnz nnz nnz .A A A Aˆ ˆ
1

ˆ
2

(20)

The expression nnzAˆ 1
denotes the number of nonzero

elements for odd orders of the MTSM_PRECALC:
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where ( )−m i2 denotes the number of nonzero elements in
the submatrix A

21
and ( )− −m i2 1 in the submatrix A

12
.

If P
max

is odd, then ( )= − ∕P P 1 2
1 max

, if P
max

is even, then
= ∕ −P P 2 1

1 max
.

The expression nnzAˆ 2
denotes the number of nonzero

elements for even orders of the MTSM_PRECALC:
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where nnz2 A
12

denotes the number of nonzero elements for
=P 2 and ( )− −m i4 1 is number of nonzero elements for

even >P 2. If P
max

is odd, then ( )= − ∕P P 1 2
2 max

, if P
max

is even, then = ∕P P 2
2 max

.
The density (d) of a matrix (percentage of nonzero

elements) can be expressed as follows:

[ ]
( )

=
−

⋅d
nnz

S
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(23)

where nnz is number of nonzero elements in matrix A or Aˆ

and ( )−S2 2

2 is the total number of elements. The density
of the matrix A for a given problem size =S 256,000 is

× −
3.91 10 %

4 . The matrix Aˆ precalculated to the order 25
is approximately 25.5 times less sparse, so the density
is × −

9.96 10 %

3 .
The numerical solution of a given PDE is obtained by

the MOL, which discretises the problem in spatial dimen-
sion and integrates the semi-discrete system of ODEs. The
resulting system of ODEs is solved as IVP in the time
domain using numerical integration methods. Table 1 shows
the PETSc solvers used for the numerical experiments. The
results obtained by Taylor series-based solvers were com-
pared with two selected Runge-Kutta solvers. The TSRK5DP
implements the fifth-order Dormand-Prince 5(4) method
with a fourth-order embedded method (known as ode45 in

MATLAB). The TSRK8VR is the eighth-order robust Verner
scheme with a seventh-order embedded method with thir-
teen stages. All Taylor series-based solvers were imple-
mented using PETSc library routines.

The simulation experiments were performed on the
Barbora supercomputer cluster, IT4Innovations National
Supercomputing Center, Ostrava, Czech Republic [28]. The
32 compute nodes were utilised, each running 36 processes,
resulting in a total count of 1152 MPI processes. The PETSc
library [29–32] leverages the MPI standard for message-pas-
sing communication and offers data structures along with
numerical methods that incorporate automatic step size
control. It is explicitly designed for the parallel solution of
scientific applications modelled by PDEs. All Taylor series-
based solvers were implemented using PETSc library rou-
tines. Walltime was set to 15 min for all experiments. The
parameters for the simulation experiments are shown in
Table 2. Note that the maximum order for MTSM is 64,
and the maximum order for MTSM_PRECALC is 25 (matrix
Aˆ was precalculated to the order of 25). Three-point central
difference formula is used to discretise the spatial domain.
The integration step size was chosen based on the numerical
stability analysis of Taylor-series-based solvers [33,34].
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50
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Figure 1: Sparsity patterns of input matrices, wave equation, three-point central difference formula, =S 100. (a) Matrix A and (b) matrix Aˆ .

Table 1: PETSc numerical integration methods

Solver Method

TSRK5DP Dormand-Prince [26] (equivalent with ode45 in
MATLAB)

TSRK8VR Verner Runge-Kutta [27]
MTSM Linear MTSM (5)
MTSM_PRECALC MTSM with the Aˆ precalculation (11) and (12)
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4.1 Performance metrics

The performance metrics evaluate, characterise, diagnose,
and tune parallel performance [35]. Numerical results are
presented using the following performance metrics: average
time, speedup, speedup against the TSRK5DP solver, parallel
efficiency, and parallel cost metrics.

The average computation time (ta) is defined as
follows:

[ ] =
∑ =

t
t

n
s ,a

i

n

R

1

R

(24)

where nR denotes the total number of runs.
The speedup (s) of the solver is defined as follows:

=s
t

t
,

N

1 (25)

where t
1
denotes the serial computation time of one com-

pute node and tN denotes the parallel computation time of
nN compute nodes. When >s 1, the speedup metric con-
veys performance improvement. On the contrary, when

<s 1, the speedup metric conveys performance degrada-
tion. The ideal speedup (ideal scaling) is defined as =s nN .
The superlinear speedup is achieved when >s nN .

The speedup-against (sa) ratio of the solver is defined
as follows:

=s
t

t
,a

a

a

1

2

(26)

where t a1
denotes the average time of computation of the

reference solver TSRK5DP against t a2
which denotes the

calculation time using one of the solvers in Table 1.
≫s 1a indicates a significantly faster computation time

using the given solver.
The parallel efficiency (eN ) is defined as follows:

[ ] = ⋅ = ⋅e
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t n
% 100 100,N

N N N

1 (27)

The parallel cost (cN ) of an algorithm is defined as
follows:

[ ]- = ⋅c
t

nnode hours

3,600

,N

a

N (28)

where ∕t 3,600a is the average time in hours.
The parallel cost ratio (cR) is defined as follows:

=c
c

c
,R

N

N

1

2

(29)

where c N 1
is the parallel cost for one compute node and

c N 2
is the parallel cost for more than one compute node.

Parallel cost is calculated using (28).
The parallel speedup-cost ratio (sR) is defined as

follows:

=s
s

c
,R

R

(30)

where s is calculated by (25) and cR by (29).

4.2 Numerical results

Selected problem sizes (denoted as S) are 64,000, 128,000,
256,000, 512,000, and 1,024,000 second-order ODEs. In this
section, results for =S 256,000 will be introduced in detail.
Since the wave equation is a second-order PDE, it is neces-
sary to reduce the order of derivatives to obtain the system
of the first-order ODEs. Therefore, the number of first-
order ODEs in (17) is two times bigger, that is, −S2 2

(Table 2). For simplicity, =ne S2 denotes the problem size
including two Dirichlet boundary conditions (14).

In the final part of this section, results for other pro-
blem sizes will be discussed. The average order of MTSM is
19. The density of matrices A and Aˆ (23) is × −

3.91 10 %

4 and
× −

9.96 10 %

3 , respectively.
The number of integration steps and the average step

sizes for each solver are shown in Table 3. The MTSM uses
a step size approximately 7.8 times larger than the TSRK5DP
solver and approximately 3.2 times larger than the TSRK8VR
solver.

Table 2: Parameters for linear simulation experiments

Parameter Value

Problem size =S 256,000

Number of first-order ODEs S2 ‒2

Length of the string ( )=L 25,600 mm

Spatial step size ( )= ∕ =x L SΔ 0.1 mm

Accuracy = = ×rel abs 1 10
TOL TOL

‒10

Integration step size ( )=h 0.4 s

Maximum simulation time ( )= ⋅T h10,000 s

Maximum order of MTSM =P 64
max

Maximum order of MTSM_PRECALC =P 25
max

Table 3: Number of integration steps, average step sizes

Solver # steps Average h

MTSM_PRECALC 10,000 ×4.00 10

1

MTSM 10,000 ×4.00 10

1

TSRK5DP 78,238 ×5.11 10

2

TSRK8VR 32,000 ×1.26 10

1
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Figure 2 visualize the performance metrics introduced
in Section 4.1 for all selected solvers. The results for
MTSM_PRECALC are marked in red, for MTSM in blue, for
TSRK5DP in green, and for TSRK8VR in black. Figure 2(a)
shows the average computation time (24) where the dashed
lines show the ideal average times for the given number of
processes. Figure 2(b) shows the parallel efficiency (27).

Figure 2(c) depicts the speedup for each solver (25), and
the dashed line shows the ideal speedup for the given
number of processes. Figure 2(d) shows the speedup ratio
with respect to the TSRK5DP solver (26), and ≫s 1 indicates
significantly faster computation using the given solver
defined in Table 1. We can clearly see that the MTSM_PRE-
CALC solver overperforms the state-of-the-art solvers. Only
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Figure 2: Performance metrics: average time, parallel efficiency, parallel speedup, and speedup against the TSRK5DP solver, =ne 512,000 .
(a) Average time and (b) parallel efficiency, (c) parallel speedup, and (d) speedup against the TSRK5DP solver.
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the MTSM and MTSM_PRECALC solvers can provide results
for all 1–32 compute nodes.

Figure 3 shows the parallel cost metrics for each
solver. Each subfigure contains three curves. The curve
labelled with the solver’s name shows the parallel speedup
of a given solver (25). The magenta curve represents the

parallel cost ratio (29), and the cyan curve shows the par-
allel speedup-cost tradeoff (30). Figure 3(a) shows that the
ideal number of compute nodes for the MTSM_PRECALC
solver is 32 (1152 MPI processes) because the speedup (red
curve) increases proportionally with the parallel cost ratio
(magenta curve). Therefore, the speedup-cost ratio (cyan
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Figure 3: Parallel cost metrics: speedup, parallel cost and parallel speedup-cost ratio for each solver, =ne 512,000 . (a) Parallel speedup-cost tradeoff,
MTSM_PRECALC, (b) parallel speedup-cost tradeoff, MTSM, (c) parallel speedup-cost tradeoff, TSRK5DP, and (d) parallel speedup-cost tradeoff,
TSRK8VR.
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curve) also increases. MTSM, TSRK5DP, and TSRK8VR sol-
vers are ideal to use 16 nodes (576 MPI processes), see
Figures 3(b), (c), and (d), respectively.

Tables 4–7 summarise results for wave equation dis-
cretised in the spatial domain using the three-point central
difference formula for each problem size ne, namely,

128,000, 256,000, 512,000, 1,024,000, and 2,048,000 ODEs.
These results are averages of values for 1–32 compute nodes.

Table 4 shows the average computation times for a
selected number of processes, that is, for 1, 4, 8, 12, 16, 20,
24, 28, and 32 compute nodes. The MTSM_PRECALC is the
fastest of all solvers.

Table 5 indicates whether a solver calculates (“Yes”) or
does not calculate (“No”) the result for 1–32 nodes for a
given problem size. The notation “No (X )” implies that a
given solver calculated the result for the maximum number
of compute nodes denoted as X .

Notice that for the problem size greater than =ne 256,000 ,
the TSRK5D and TSRK8VR solvers did not calculate the result
for all 1–32 compute nodes because the maximum walltime
(15 min) was exceeded. For example, for =ne 1,024,000 , the
TSRK5DP and TSRK8VR did not compute the results for all 32
compute nodes and were able to use four and two nodes

Table 4: Average time, =ne 512,000

Solver # compute nodes (ta) [s]

1 4 8 12 16 20 24 28 32

MTSM_PRECALC 16.78 3.49 1.67 0.88 0.78 0.77 0.62 0.52 0.53
MTSM 40.96 25.58 16.19 12.82 11.05 10.75 9.83 10.13 9.19
TSRK5DP 141.11 52.95 29.36 21.63 17.36 15.74 13.64 — —

TSRK8VR 189.06 59.53 32.87 23.51 18.81 15.98 — — —

Table 5: Yes/No table

Solver Problem size (ne)

128,000 256,000 512,000 1,024,000 2,048,000

MTSM_PRECALC Yes Yes Yes Yes Yes
MTSM Yes Yes Yes Yes No (6)
TSRK5DP Yes Yes No (27) No (4) —

TSRK8VR Yes Yes No (21) No (2) —

Table 6: Average efficiency (e_N) comparison for 1–32 nodes

Solver Problem size (ne)

128,000 256,000 512,000 1,024,000 2,048,000

MTSM_PRECALC 51.10 77.41 127.64 136.43 119.31

MTSM 15.30 19.77 25.62 33.67 —

TSRK5DP 25.91 29.86 — — —

TSRK8VR 29.76 40.24 — — —

The underlined values indicate much faster calculation than the state-of-the-art numerical solvers.

Table 7: Average speedup against TSRK5DP comparison for 1–32 nodes

Solver Problem size (ne)

128,000 256,000

MTSM_PRECALC 16.04 20.90

MTSM 1.04 1.63

TSRK8VR 0.97 1.23

The underlined values indicate much faster calculation than the state-of-
the-art numerical solvers.
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maximally, respectively. Similarly, the MTSM did not calcu-
late results for problem sizes greater than =ne 1,024,000 .
Only the MTSM_PRECALC solver calculated results for all
problem sizes for all 1–32 nodes.

The cells in Table 6 with average parallel efficiency (27)
greater than or equal to 50% are in bold. The MTSM_PRECALC
solver offers an efficiency greater than 50% for all problem sizes.

The cells in Table 7 showing the speedup ratio (26) with
respect to the TSRK5DP solver where ≫s 1a is also marked
in bold. The MTSM_PRECALC solver is always faster than
the TSRK5DP solver.

Runge-Kutta solvers did not provide results for >ne

256,000 ODEs for all 1–32 compute nodes (Table 5), for
that reason, Table 7 has only two columns.

5 Nonlinear problems and
optimisations

For nonlinear problems, IVP (1) has the following form:

( )′ = + + + + =y y y y y yA B B b… , 0 ,
jk jkl1 2

0
(31)

where �∈ ×A ne ne is the constant matrix for the linear part of
the system (Section 3), matrices �∈ ×B ne nm

1

jk , �∈ ×B ne nm
2

jkl

are the constant matrices for nonlinear part of the system. The
vector �∈b ne is the right-hand side for the forces incoming to
the system, y

0

is a vector of the initial conditions, and symbol
ne stands for the number of equations of the system of ODEs.
Symbols nmjk and nmjkl represent the number of two and
three-functions multiplications, respectively.

The unknown function �∈y
jk

nmjk represents the vector
of two-termsmultiplications ⊙y y

j k
and similarly �∈y

jkl
nmjkl

represents the vector of three-terms multiplications
⊙ ⊙y y y

jj kk ll
, where indices j, ( )∈k jj kk ll ne, , , 1, …, come

frommultiplications terms in (31). The operation⊙ stands for
element-by-element multiplication, i.e. ⊙y y

j k
is a vector

( )y y y y y y, , …,
j k j k j k

T

nmjk
nmjk1

1
2

2

. For simplification, thematrices

A B B, , ,…
1 2

and the vector b are constant. The higher deri-
vatives of the terms y yB B,

jk jkl1 2
in (31) can be included in a

recurrent calculation of the Taylor series terms p
B1

and p
B2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

∑

∑ ∑

⎜ ⎟

⎜ ⎟

= + =

= = −

=
⎛
⎝

− ⊙ −
⎞
⎠

= ⊙
⎛
⎝

− ⊙ − −
⎞
⎠

=

=

−

=

−

p y p y

p y p p

p p p

p p p p

h h

h r
h

r
r

r
h

r
a r a

r
h

r
a b r a b

A b B

B A

B

B

1 , 1 ,

1 , 1 ,

1 ,

1 ,

A i B jk

B jkl A

B

a

r

j k

B

a

r

jj

b

r a

kk ll

1 1

2 2

1 1

1

2 2

0

1

1

(32)

where =r n2,…, . Finally, the Taylor series terms are cal-
culated as a sum of linear and nonlinear terms

( ) ( ) ( ) ( )= + + =p p p ps s s s s n, 1,…, ,A B B1 2
(33)

where r and s are the current indexes of the Taylor series
terms, a and b are the auxiliary indexes for the summation
of two and three-terms multiplications in the nonlinear
part of the Taylor series, and ( )p s A is the linear term com-
puted using the recurrent calculation for linear systems.
The next value of the function can be calculated using

( ) ( ) ( ) ( )= + + + ++y p p p p n0 1 2 … ,
i i i i i

1

(34)

where ( )p 0 i is the value of the function y
i
, ( )p 1 i, …, ( )p n i

are the Taylor series terms calculated using (33). Multipli-
cation terms of the Taylor series for more multiplications
p

B3

, p
B4

, … can be calculated recurrently in a similar way.
More information can be found in the study by Veigend
et al. [21].

The important fact to consider is the number of ele-
ment-by-element multiplications to calculate the solution.
The number of element-by-element multiplications used in
(32) is visualised in Figure 4.

Due to the fact that the number of element-by-element
multiplications increases rapidly when more functions are
multiplied, the calculation of higher derivatives has to be
optimised. Several optimisations are discussed in this article.

5.1 Auxiliary generating equations

This optimisation is used automatically when using the
presented method. However, the equations that contain
terms with many function multiplications (the example
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Figure 4: Number of multiplications.
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behaviour for five multiplication is in Figure 5(b)) can be
simplified by applying the generating process again. The
newly generated equation contains several terms and there-
fore decreases the number of function multiplications in the
original term.

5.2 Partly calculated results of the
previous term

This optimisation is universal and can be used for any
system. Consider Table 8, which contains the Taylor series
terms used when calculating higher derivatives. The coloured

areas when calculating the Taylor series terms can be saved
and used when calculating further terms.

The optimisation becomes more pronounced for more
function multiplications, and it can be performed multiple
times. This is shown in Table 9, which shows partial results
being saved and used. Both partial (darker colours) and full
results (lighter colours) are saved and used.

The number of performed function multiplications
with and without optimisations is shown in Figure 5(a)
and (b).

The figures shows that the number of operations
decreases quite dramatically compared to the case without
any optimisations (Figure 4), and it is almost linear.
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Figure 5: Comparison of a number of element-by-element multiplications (⊙) with and without optimisations. (a) Three function multiplications and
(b) Five function multiplications.

Table 8: Three function multiplications Table 9: Five function multiplications – partial and full results
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5.3 Variable step size

When solving nonlinear problems, the P function can oscil-
late quite rapidly. For some nonlinear problems, however,
it rapidly changes near the beginning of the calculation
and then stabilises. When this happens, the method often
calculates with a relatively small integration step. Due to
the fact that the method can automatically adjust the value
of P in the current step based on the size of the step, the
size can be dynamically increased to decrease the overall
number of operations the method has to perform.

To work with this optimisation, the constant h
scale

is
defined as the scaling factor for the size of integration
step h

= ⋅h h h.
new scale

The new value for the size of the integration step h
new

is
used until the calculation ends. The scaling factor is only
applied when

( )∑ ≤ ⋅ =
= −

P a P i n3, 4 … ,

a i

i

T

3

min

where nT is the number of time steps and P
min

is the value
of the P function that has to be kept for three integration
steps. This approach is useful for problems where the pre-
vious approach cannot be used (i.e. for systems that only
contain two function multiplications). These optimisations
and their advantages and disadvantages are discussed on a
set of benchmarks in Section 6.

5.4 Further optimisations

Additional optimisations are possible and are being actively
studied. One of the approaches that is currently being tested
limits the number of multiplications to two by expressing
the Taylor series terms using systems of differential-alge-
braic equations (DAEs). The results are promising and are
going to be published at a later date.

6 Nonlinear problem examples

The previously mentioned optimisations are tested using
the selected set of nonlinear nonstiff problems presented
in [36]. The selected benchmark problems are a subset of a
full benchmark collection, which is intended to show the
potential strengths and weaknesses of newly developed
numerical methods.

The selected problems are going to be analysed and
then solved using the nonlinear MTSM solver with or
without the optimisations.

Note that the systems of ODEs have to be always trans-
formed into the autonomous system of homogeneous ODEs
without division and with just basic arithmetic opera-
tions [21].

Experiments were repeated 100 times. The median
computation time (tm) was calculated from the computa-
tion times during the individual runs of the solvers. The
speedup-against (sa) ratio of the solver is defined as
follows:

=s
t

t
,a

m

m

1

2

(35)

where t m1
denotes the median calculation time using one

of the MATLAB ode solvers from Table 10 against t m2
which

denotes the median calculation time using of the MTSM
solvers listed in the same table.

The ≫s 1a indicates a significantly faster computation
time using the MTSM solvers.

The error (err) is calculated as norm of the difference
between numerical solution MTSM solvers and MATLAB
ode solvers at the time T

‖ ‖( ) ( )= −y yerr ,
M T O T

where ( )y
M T

is the value calculated by the MTSM solver at
the time T and ( )y

O T
is the value calculated by the ode

solver at the time T . Table 10 lists the state-of-the-art sol-
vers that are part of MATLAB and implemented MTSM
solvers for MATLAB used in this section.

The parameters for all used solvers are summarised in
Table 11.

Table 10: MATLAB numerical methods

Solver Method

ode23 Bogacki-Shampine [37]
ode45 Dormand-Prince [26]
ode113 Adams-Bashfort method with predictor-corrector PECE

scheme
MTSM orig Nonlinear MTSM solver without optimisations
MTSM opt Nonlinear MTSM solver with optimisations from

Section 5

Table 11: Parameters for nonlinear simulation experiments

Parameter Value

MTSM accuracy = ×ε 1 10

‒9

Relative, absolute tolerances = = ×rel abs 1 10
TOL TOL

‒9

Maximum simulation time =T 20 (s)
Maximum order for MTSM solvers =P 64

max
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6.1 Problem A2

Problem A2 is defined as follows:

( )′ =
−

= − =y
y

y y
2

0.5 0 1.

3

3

To solve this nonlinear system using MTSM, the term y3

has to be replaced by a set of auxiliary ODEs

( )

( ) ( ) ( )

( ) ( ) ( )

′ = − =

=

′ = ′ = − = − =

=

′ = ′ = − = − =

y y y

y y

y y y y y y y y y

y y

y y y y y y y y y

0.5 0 1

3 3 0.5 1.5 0 0

2 2 0.5 0 0 ,

1 1

3

1

2 1

3

2 1

2

1 1

2

1

3

1

2

2 2 1

3

3 1

2

3 1 1 1 1

3

1 2 3 1

2

so the final system becomes

( )

( ) ( )

( ) ( )

′ = − =
′ = − =
′ = − =

y y y

y y y y y

y y y y y

0.5 0 1

1.5 0 0

0 0 ,

1 2 1

2 2 3 2 1

3

3 1 2 3 1

2

which can be transformed into a matrix-vector representa-
tion (31)

=
⎛

⎝
⎜

− ⎞

⎠
⎟ =

⎛

⎝
⎜−

−

⎞

⎠
⎟ = ⎛

⎝
⎞
⎠y

y y

y y
A B

0 0.5 0

0 0 0

0 0 0

0 0

1.5 0

0 1

.
jk1

2 3

1 2

The numerical results are presented in Table 12. MTSM
solvers outperform the state-of-the-art solvers.

Optimisations in Sections 5.1 and 5.3 are used. The auto-
matic change in step size at t = 5 s is shown in Figure 6.

6.2 Problem B4

This problem is interesting because it contains nontrivial
mathematical operations that have to be replaced using
auxiliary equations. The problem is defined as follows:

( )

( )

( )

′ = − −
+

=

′ = −
+

=

′ =
+

=

y y
y y

y y

y

y y
y y

y y

y

y
y

y y

y

0 3

0 0

0 0.

1 2

1 3

1

2

2

2

1

2 1

2 3

1

2

2

2

2

3

1

1

2

2

2

3

After generating auxiliary equations and decreasing the
number of function multiplications (optimisation from
Section 5.1), the system of ODEs can be written as follows:

′ = − −
′ = −
′ =
′ = − −
′ = +
′ = +
′ = +
′ = +
′ = − −
′ = −
′ = − − + + +
′ =

y y y

y y y y y

y y y

y y y y y y y

y y y y y y y

y y y y y y y y y

y y y y y y y y y

y y y y y y y y y

y y y y

y y y y y y

y y y y y y y y y y y y y y y y y

y y

2 2

2 2

8 8

6 6

4 4

2 2

2 2

2 2

2

1 2 11

2 1 2 3 5

3 1 5

4 3 8 9 3 8 10

5 3 6 9 3 6 10

6 3 6 7 9 3 6 7 10

7 3 6 8 9 3 6 8 10

8 3 5 6 9 3 5 6 10

9 9 9 11

10 1 2 3 5 10

11 2 3 5 3 5 11 8 9 1 6 9 12 1 6 10 12

12 11

(36)

Table 12: Results for problem A2, =h 0.5 a, =h 5
scale

, =P 9
min

MTSM orig MTSM opt

Solver # of steps Time of calculation [s] err Ratio (sa) err Ratio (sa)

MTSM orig 40 0.00152015 — — — —

MTSM opt 16 0.0007533 — — — —

ode23 28,550 0.168798 ×1.67406 10

‒7 114.25 ×2.19986 10

‒7 230.1
ode45 2,177 0.0040288 ×1.67407 10

‒7 2.73 ×2.19987 10

‒7 5.49
ode113 232 0.0031412 ×1.67406 10

‒7 2.13 ×2.19986 10

‒7 4.28
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Figure 6: Order function P for problem A2, =h 0.5 s, =h 5
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with initial conditions ( ) ( ( ) ( )= +y y y0 3, 0, 0, 0 0
1

2

2

2,
( )y

1

0
4

,

( ) ( ) ( )y y y0 , 0 , 0
5

4

5

3

5

2, ( ) ( ) ( ) ( ) ( )y y y y y0 , 0 , 0 0 0
1

2

2

2

1 3 5

, ( ) )y 0

T
3

2

The matrix-vector representation of system of ODEs (36)
using the notation from (32) follows:
• the ×12 12 matrix A has five nonzero elements ( ) = −A 1, 2 1,

( ) = −A 1, 11 1, ( ) =A 2, 1 1, ( ) = −A 9, 9 2 and ( ) =A 12, 11 2,
• the ×12 4 matrix B

1
has four nonzero elements

B
1
( ) =3, 1 1, ( ) = −B 9, 2 2

1
, ( ) =B 10, 3 2

1
, ( ) =B 11, 4 1

1
,

• the ×12 8 matrix B
2

has eight nonzero elements
B

2
( ) = −2, 1 1, ( ) = −B 4, 2 2

2
, ( ) = −B 4, 3 2

2
, ( ) =B 5, 4 2

2
,

( ) =B 6, 5 2
2

, ( ) = −B 10, 6 2
2

, ( ) = −B 11, 7 1
2

and
( ) = −B 11, 8 1

2
,

• the ×12 8 matrix B
3

has eight nonzero elements
B

3
( ) =6, 1 8, ( ) =B 6, 2 8

3
, ( ) =B 7, 3 6

3
, ( ) =B 7, 4 6

3
,

( ) =B 8, 5 4
3

, ( ) =B 8, 6 4
3

, ( ) =B 11, 7 2
3

and ( ) =B 11, 8 2
3

,
• two-term multiplications ( )=y y y y y y y y y, , ,

jk
T

1 5 9 11 1 2 8 9

,
• three-term multiplications (=y y y y y y y,

jkl 2 3 5 3 8 9

, y y y ,
3 8 10

y y y
3 6 9

, y y y
3 6 10

, y y y
3 5 10

, )y y y y y y,

T
2 3 5 3 5 11

,

• four-termmultiplications (=y y y y y y y y y,
jklm 3 6 7 9 3 6 7 10

, y y y
3 6 8

y y y y y y y y y, ,
9 3 6 8 10 3 5 6 9

, y y y y
3 5 6 10

, y y y y
1 6 9 12

, )y y y y T
1 6 10 12

,
• vector representing the right-hand side of the system

=b 0.

The numerical results are in Table 13. Note that opti-
misations 5.2 and 5.3 are also used.

The plot of the order function P with step size scaling
factor set to =h 2.5

scale
and =P 12

min
is in Figure 7. The

automatic change in step size is visible at =t 2 s.
The results show that the optimisations have a pro-

found impact on the performance of the method and are
beneficial. Presented optimisations can be freely combined
to improve performance without any loss in accuracy.

7 Conclusion

The article dealt with the numerical solution of both linear
and nonlinear IVPs represented by a system of ODEs. The
MTSM outperforms the state-of-the-art MATLAB and PETSc
ODE solvers in all cases. For linear problems, the wave
equation, represented by large systems of ODEs, was solved
in parallel using the method of lines. For nonlinear pro-
blems, optimisations were presented and demonstrated on
the set of benchmark problems.

Our research is going to focus on effective solution of
nonlinear systems of DAEs using the presented method.
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Table 13: Results for problem B4, =h 0.5 s, =h 2.5
scale

, and =P 12
min

MTSM orig MTSM opt

Solver # of steps Time [s] err Ratio (sa) err Ratio (sa)

MTSM orig 40 ×9.8158 10

‒3 — — — —

MTSM opt 19 ×6.6631 10

‒3 — — — —

ode23 282,708 1.76957 ×7.45931 10

‒7 180.28 ×8.39871 10

‒7 265.58
ode45 11,773 ×2.31782 10

‒2 ×7.45942 10

‒7 2.36 ×8.39869 10

‒7 3.48
ode113 468 ×6.847 10

‒3 ×7.45943 10

‒7 0.7 ×8.39869 10

‒7 1.03
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Figure 7: Order function P for benchmark problem B4, =h 0.5 s,
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