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ABSTRACT

Pre-trained self-supervised learning (SSL) models have achieved re-
markable success in various speech tasks. However, their potential
in target speech extraction (TSE) has not been fully exploited. TSE
aims to extract the speech of a target speaker in a mixture guided by
enrollment utterances. We exploit pre-trained SSL models for two
purposes within a TSE framework, i.e., to process the input mixture
and to derive speaker embeddings from the enrollment. In this paper,
we focus on how to effectively use SSL models for TSE. We first in-
troduce a novel TSE downstream task following the SUPERB princi-
ples. This simple experiment shows the potential of SSL models for
TSE, but extraction performance remains far behind the state-of-the-
art. We then extend a powerful TSE architecture by incorporating
two SSL-based modules: an Adaptive Input Enhancer (AIE) and a
speaker encoder. Specifically, the proposed AIE utilizes intermedi-
ate representations from the CNN encoder by adjusting the time res-
olution of CNN encoder and transformer blocks through progressive
upsampling, capturing both fine-grained and hierarchical features.
Our method outperforms current TSE systems achieving a SI-SDR
improvement of 14.0 dB on LibriMix. Moreover, we can further
improve performance by 0.7 dB by fine-tuning the whole model in-
cluding the SSL model parameters.

Index Terms— Target speech extraction, pre-trained models,
self-supervised learning, feature aggregation

1. INTRODUCTION

Over the past several years, transformer models trained with self-
supervised learning (SSL) [1, 2] have shown great success in vari-
ous speech tasks, such as automatic speech recognition (ASR) [3],
speaker verification (SV) [4, 5], and speech enhancement (SE) [6, 7].
This effectiveness is attributed to the models’ ability to learn over-
complete and general-purpose features when pre-trained on large-
scale datasets, thereby ensuring robust performance and generaliza-
tion, even under data-limited conditions [8].

Despite their strong performance in several downstream tasks,
there are only a few studies investigating the use of SSL representa-
tions for target speech extraction (TSE) [9], a task aiming at estimat-
ing the speech of a target speaker from a multi-talker mixture[10].

TSE approaches usually use an extractor module consisting of
a neural network, which inputs a speech mixture and estimates the
target speech by exploiting a speaker embedding derived from an
enrollment of the target speaker to identify him/her in the mixture.

The work was partly supported by Czech National Science Foundation
(GACR) project NEUREM3 No. 19-26934X. Computing on IT4I supercom-
puter was supported by the Czech Ministry of Education, Youth and Sports
through the e-INFRA CZ (ID:90254).

Consequently, the TSE approaches are related to separation and SV,
making it an interesting use case for pre-trained SSL models. In this
paper, we explore using pre-trained SSL models for TSE.

Leveraging the principles of Speech processing Universal PER-
formance Benchmark (SUPERB) [11, 12], we propose an SSL-based
TSE system with a straightforward downstream model, such as a
stack of bidirectional long short-term memory (BLSTM) for the ex-
tractor. The SSL model plays a dual role: first, extracting features
from the input mixture and, second, obtaining speaker embeddings
from the enrollment utterance. We show experimentally that such a
system can be used to design a TSE system. However, as for other
SE tasks, the performance is far behind the state-of-the-art.

One potential reason for this performance gap could be the large
strides used in SSL models, which typically operate with a stride of
about 20ms, yielding only 50 frames per second. This is in stark
contrast to widely-used SE models, such TasNet [13], which utilizes
smaller strides of 1.25ms (i.e. 800 frames per second), thus have
better temporal resolution that might be crucial for optimal perfor-
mance in SE tasks. Moreover, it is worth noting that SSL models like
WavLM [1, 6] typically consist of two main components: a CNN En-
coder and a series of Transformer blocks. Recent studies [7, 14, 15]
have indicated that lower layers of the SSL models, especially the
outputs of the CNN encoder that serve as the input to the Trans-
former blocks, are more relevant for SE tasks. Despite this, most SE
models [16] typically focus on the representations obtained from the
Transformer layers, neglecting the outputs of the intermediate CNN
Encoder layers, thus failing to take advantage of the hierarchical rep-
resentations acquired by models pre-trained on large-scale datasets.

To tackle the aforementioned challenges, this paper presents a
systematic approach that leverages multi-scale representations from
SSL models for TSE tasks. We construct two modules based on
a frozen pre-trained Transformer model named the speaker encoder
(SpkEnc) and the Adaptive Input Enhancer (AIE). The SpkEnc mod-
ule computes target speaker embeddings from the enrollment by fol-
lowing prior works on using SSL models for SV [17]. The AIE mod-
ule is designed to extract features from the mixture. In particular, it
adjusts the time resolutions across intermediate layers of the CNN
Encoders and the transformer of the SSL model, thereby allowing
the exploitation of multi-scale feature representations. Finally, the
entire SSL model is jointly fine-tuned with the TSE system to en-
hance performance further. Overall, our contributions are as follows:

• We propose a new TSE downstream task, developed in
line with SUPERB principles, which goes beyond single-
objective downstream tasks by emphasizing the multi-faceted
capabilities of pre-trained models, such as SE feature extrac-
tion and speaker encoding.

• We introduce two sub-modules, i.e., SpkEnc and AIE, de-
signed to function as plug-in units, enabling flexible integra-
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tion of the pre-trained SSL model into a powerful TSE archi-
tecture.

• We conduct a comprehensive study on the Libri2mix dataset
and demonstrate that exploiting pre-trained SSL representa-
tion can boost the performance of a powerful TSE system,
outperforming prior systems such as SpEx+ [18] and TD-
SpeakerBeam [19].

2. PRIOR WORKS

Pre-trained SSL models have been used for SE tasks such as de-
noising and speech separation. In [14], SSL model representa-
tions are used to estimate the time-frequency mask for the Short-
Time Fourier Transform (STFT) of the input signal, refined by
BLSTM layers. SSL-based approach demonstrated superior perfor-
mance compared to FBANK-based methods on LibriMix [20] and
Voicebank-DEMAND [21]. To further improve SE performance,
various strategies have been explored, such as the fusion of SSL
and STFT features [7], and the introduction of a regression-based
training objective [22]. However, unlike our proposal, they do not
exploit the features from the CNN layers, although they are probably
the most relevant for SE tasks.

The only prior work using SSL for TSE is [9], where a pre-
trained SSL model is only employed to derive the speaker embed-
dings from the enrollment, resulting in a limited improvement (0.3
dB) compared to using FBANK features.

SSL models have also been used for target speaker-ASR, which
focuses on transcribing a specific speaker from a segmented utter-
ance containing multi-talker speech using enrollment speech for that
speaker. In [16], a speaker embedding is prepended to the input fea-
tures of the SSL model’s Transformer blocks. The entire model is
then fine-tuned using a CTC loss. This approach differs from TSE
as it outputs a character sequence instead of the target speech signal.

3. CONVENTIONAL NEURAL TSE

Let us first describe the overall architecture of a typical TSE sys-
tem [10]. A neural TSE system consists of four main blocks: the
encoder, decoder, SpkEnc, and extractor. The encoder transforms
the input speech mixture y into higher-dimensional features Zy as
Zy = Encoder(y), which could be either spectral features obtained
via STFT or learned features derived from 1D convolutional layers
operating on the raw waveform. SpkEnc is responsible for extract-
ing speaker embedding e that captures the voice characteristics of
the target speaker, usually derived from an enrollment speech c, as
e = SpkEnc(c). The extractor estimates the target speech from the
mixture in the feature domain Zy , where Zs = Extractor(Zy, e),
given the target speaker embeddings e. Finally, the decoder trans-
forms the processed feature Zs into the estimated target speech x̂,
where x̂ = Decoder(Zs).

4. EXPLOITING PRE-TRAINED SSL MODELS FOR TSE

Many SSL models including WavLM [15], Hubert [1], and
wav2vec2.0 [2] consist of CNN and Transformer blocks producing
the intermediate outputs denoted Hcnn

j and Htrf
i , with j ∈ {1, . . . , J}

and i ∈ {1, . . . , N} indicating the index of CNN and Transformer
blocks, respectively, where J and N denote the total number of
CNN and Transformer blocks in the models. We can exploit the
feature representation obtained by these models as input features for
the extractor and for the SpkEnc.

Fig. 1. Layer-wise weights of speaker encoder (SpkEnc) and extrac-
tor, using the BLSTM-based TSE downstream model, and WavLM
Base Plus pretrained SSL model. Note that 0-th Transformer layer
denotes the output of the CNN encoder, which is also the input of
the 1st Transformer layer.

First, we propose a simple TSE downstream model following
the style of the SUPERB evaluation to carry out preliminary exper-
iments. We then discuss how to exploit SSL features within a more
powerful TSE architecture.

4.1. SUPERB-style downstream TSE model

In line with SUPERB’s methodology, we construct two lightweight
modules that utilize two different set of weights to perform a
weighted sum of SSL features as

∑
wν

i H
trf
i , where

∑
wν

i = 1,
where wν

i are the weights for the extractor or SpkEnc (i.e., ν =
{SpkEnc, extractor}) for layer i of the Transformer. The SpkEnc
computes the target speaker embedding by averaging these weighted
features over frames followed by a linear layer. The extractor com-
prises a three-layer BLSTM model that predicts a time-frequency
mask. It accepts the SSL features as input. The processing is condi-
tioned on the target speaker by multiplying the speaker embedding
with the output of the first BLSTM [23]. We then multiply the
STFT coefficients of the speech mixture with the estimated mask
and apply inverse STFT to produce the waveform of the extracted
speech. During the training, the SSL model is kept frozen while the
sub-modules, including the weights wν

i are learnable. We provide
experiments with such a model in Section 5.2.

Despite its simplicity, it succeeds in performing TSE, but the
performance remains far behind current TSE systems trained from
scratch (e.g., TD-SpeakerBeam [19]). Figure 1 plots the weights wν

i

obtained with such a system. This reveals that lower layers of the
Transformer blocks, particularly layer 0, corresponding to the output
of the CNN encoder, are more critical for the extractor.

4.2. TD-SpeakerBeam extension with pre-trained SSL models

We then explore effectively exploiting SSL representation within
a powerful TSE system, such as TD-SpeakerBeam [19]. TD-
SpeakerBeam uses 1-D convolutions for the encoder and decoder
and temporal convolutional network (TCN) blocks for the extractor
and SpkEnc. Note that the time resolution of TD-SpeakerBeam is
typically much higher than most layers of an SSL model.

Building upon the insights from the SSL weight visualization of
the SUPERB-style TSE model in Fig. 1, we investigate the use of
the CNN encoder module positioned before the Transformer blocks
of the SSL model. We introduce an AIE module that integrates the
output of the different layers of the SSL model. In particular, AIE
performs progressive upsampling to adjust the time resolutions of the
different layers of the CNN encoder and the Transformer, capturing
multi-scale and fine-grained information from the SSL module. The
output of the AIE module, h, has the same time resolution as the
output features of the encoder, Zy . Consequently, these two streams
can be concatenated along the feature dimension and fed into the
Extractor model as Zs = Extractor(concat(Zy,h)), as shown in
Fig. 2-(a)
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Fig. 2. (a) Overview of the proposed SSL model-based TSE system, and the details of (b) AIE module, (c) upsample blocks, and (d) SSL-
based SpkEnc.

4.2.1. Adaptive input enhancer

The proposed AIE leverages a series of one-dimensional deconvo-
lutional blocks formulated as Tj = Upsample(Tj+1,H

cnn
j ), where

Tj is the output of j-th upsample block and has the same time reso-
lution as Hcnn

j , as shown in Fig. 2-(b). The output of AIE is the hi-
erarchical feature obtained as h = T2, since the second CNN layer
has the same time resolution as Zy for the typical setting of TD-
SpeakerBeam. Note that when considering features from both the
Transformer and the CNN, the topmost layer of the AIE is initial-
ized as Ttop = Linear(

∑N
i=1 w

AIE
i Htrf

i ), where wAIE
i are learnable

scalar weights summing to one.
We experiment with two variants to implement the upsampling

operation as shown in Fig. 2-(c).
Feature Pyramid Module: The upsampling operation is bor-

rowed from the FPN architecture [24]. It is implemented as follows:
Tj = DeConv(Conv(Hcnn

j ) +Tj+1), where DeConv(·) is a decon-
volution operation that perform upsampling and Conv(·) is a convo-
lution operation used to transform the output of the j-th CNN block.

Unet-Style Module: This upsampling alternative follows the U-
Net architecture [25] and is implemented as: Tj = DeConv(Concat(
Hcnn

j ,Tj+1)), where the concatenation is performed along the chan-
nel dimension.

The implementation of the upsampling slightly differs between
these two configurations, but both approaches perform top-down
processing to extract multi-scale representations from the CNN En-
coder layers. We expect that such a hierarchical upsampling pro-
cess can capture rich information from the pre-trained SSL model,
yielding hierarchical features, h, that can complement the features
obtained from the TSE encoder, Zy .

4.2.2. Speaker encoder based on pre-trained model

Compared to SUPERB architecture, which simply adopts the av-
erage operation, we employ an advanced attentive pooling, named
multi-head factorized attentive pooling (MHFA) [17], to enhance
the quality of learned speaker representation, as shown in Fig. 2-(d).
This SSL-MHFA employs two sets of normalized layer-wise weights
to generate attention maps and compressed features, which are ex-
pected to encode speaker-discriminative information and phonetic
information respectively. Then, the speaker embedding is formed
by aggregating over frames and projecting the vector to a lower-
dimensional space using a linear layer. In this way, each attention
head is expected to aggregates information from a specific set of
phonetic units, which leads to a robust speaker embedding.

5. EXPERIMENTS
5.1. Experiment Setup
Data-sets: We conduct experiments using the Libri2Mix dataset,
consisting of simulated mixtures of two speakers[20]. Following the
data preparation in TD-SpeakerBeam1 with 16kHz sampling rate,
dataset is partitioned into three subsets: train-100, dev, and test. We
choose the model with the best SI-SNRi performance on the dev.
Implementation details: For SUPERB-style setup, we use a
BLSTM-based TSE. The window size and the number of FFT
points are set to 1024, the dimension of BLSTM is 512, and so is
the speaker embedding. As a baseline, we use the same architecture
with STFT or FBANK features.

For the TD-SpeakerBeam setup, we use an SSL-based speaker
encoder using MHFA with a total of 8 heads as in [17]. The speaker
embedding is of dimension 256. For TD-SpeakerBeam baseline,
the configuration follows the specifications in [19]. We use Adam
as the optimizer with an initial learning rate set to 10−3. When
the pre-trained model is unfrozen for joint optimization with the
TSE system, the learning rate is set to 2 × 10−5. When using TD-
SpeakerBeam as downstream model, we use the WavLM Base Plus2.
Performance Metrics: We measure performance in terms of
source-to-distortion Ratio (SDR), scale-invariant SDR improve-
ment (SI-SDRi), perceptual evaluation of speech quality (PESQ),
short-time objective intelligibility (STOI), and Failure rate (FR)
[26]. FR measures the proportion of test samples with an SI-SDRi
below 1 dB. Failures typically occur when the TSE system extracts
the incorrect speaker or outputs the mixture.

5.2. Evaluation results following SUPERB’s setup
Table 1 shows the performance of different SSL models using the
SUPERB style downstream model describes in Section 4.1. We
observe that SSL models significantly outperform the acoustic fea-
ture (STFT and FBANK) models across all three metrics: SI-SDRi,
STOI, and PESQ in Table 1. This suggests the potential of utiliz-
ing SSL models for TSE tasks. WavLM models outperform Hubert
and wav2vec versions, probably because the training style, including
noise and interference speakers, provides more robust speech repre-
sentations. Although WavLM Large achieves the best performance,
we chose the more compact WavLM Base Plus in the remaining ex-
periments. Note that the best model achieves an SI-SDRi of 10.3 dB,
which is significantly lower than TSE models trained from scratch,
such as SpecEx+ [18] or TD-SpeakerBeam [19], which attain an SI-
SDRi of more than 13 dB.

1https://github.com/BUTSpeechFIT/speakerbeam
2https://huggingface.co/microsoft/wavlm-base-plus
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Table 1. Performance comparison of various SSL models for target
speech extraction tasks, following the SUPERB Challenge settings.

Upstream Target Speech Extraction
SI-SDRi↑ STOI↑ PESQ↑

STFT 5.96 0.79 1.48
FBANK 5.18 0.78 1.41

HuBERT Base 9.18 0.86 1.77
wav2vec 2.0 Base 9.15 0.86 1.76
WavLM Base 9.69 0.87 1.95
WavLM Base Plus 9.96 0.88 1.97
WavLM Large 10.30 0.88 2.01

Table 2. Performance comparison for different approaches to exploit
SSL models for TD-SpeakerBeam setup.

SpkEnc AIE SDR↑ SI-SDRi↑SSL Feature Fusion Method

TCN - - 13.69 13.03

SSL-MHFA

- - 12.91 12.13
Transformer Weighted Sum 13.84 13.18
Single- CNN - 13.12 12.40

Multi- CNN Unet 14.03 13.67
FPM 14.14 13.49

Multi- CNN Unet 14.38 13.80
+ Transformer FPM 14.65 14.01

5.3. Evaluation Results on TD-SpeakerBeam setup
Table 2 shows the extraction performance of different variants of
TD-SpeakerBeam using or not using SSL features. We compare
different versions of the SpkEnc, SSL features (from Transformer,
CNN layers, or both), and fusion methods of the AIE module. The
first row corresponds to the baseline TD-SpeakerBeam, which uses
a TCN as SpkEnc. The second row replaces the SpkEnc with the
SSL-MHFA introduced in Section 4.2.2. We observe that using SSL
for SpkEnc degrades performance. One possible reason could be the
difference in model architectures. The lightweight attentive pool-
ing might be insufficient to effectively deal with the complex fea-
ture distributions captured by SSL-based models when paired with a
TCN-based extractor that is randomly initialized.

Next, we investigate augmenting the input of the extractor with
different SSL features. Using a weighted sum of the transformer
layers (followed by a deconvolution layer for upsampling) or the
single CNN layer that matches the time resolution of the extractor
fails to improve the results significantly. To address this, we intro-
duce the AIE module. Notably, adopting upsampling modules to
obtain hierarchical features, including U-Net and FPM, outperforms
the baseline. Finally, merging the feature representations from both
the Transformer and CNN Encoder layers offers additional perfor-
mance improvements. These results demonstrate that we can im-
prove extraction performance with a pre-trained SSL model if we
use a strategic integration method like our proposed AIE.

We also investigate the contributions of various components in
our proposed architecture. Employing a UNet as an AIE with a tradi-
tional TCN-based SpkEnc yields an SI-SDRi of 12.63 dB, which is
slightly lower than the baseline. This result demonstrates that while
direct component replacement may not yield immediate benefits,
strategic integration like AIE and SSL-MHFA provides significant
performance gains. We also confirmed that a model with the same
architecture as the AIE but randomly initialized performs worse than
when using the pretrained SSL model (13.26 dB v.s. 13.67 dB). This
highlights the importance of the SSL pre-training in capturing robust

Table 3. SI-SDRi performance under different learning conditions.
FR denotes Failure rate.

Fine-tuning SDR↑ SI-SDRi↑ STOI↑ PESQ↑ FR(%)↓

✗ 14.65 14.01 0.91 2.38 3.9
✓ 15.26 14.65 0.93 2.45 3.0

TD-SpeakerBeam [19] 13.69 13.03 0.90 2.12 4.8
SpEx+ [18] - 13.41 - 2.93 -
sDPCCN [27] - 11.61 - - -

Fig. 3. Comparison of SI-SDRi scores of test set samples using TD-
SpeakerBeam (X-axis) against the best SSL-based model (Y-axis).

features beneficial for TSE tasks.
We further investigate the performance of our proposed model

after fine-tuning all parameters, including the SSL model. The re-
sults are summarized in Table 3. The best performance is achieved
when both AIE and SpkEnc are fine-tuned, reaching an SI-SDRi of
14.65. In side experiments, we confirmed that constraining the same
SSL model for both AIE and SpkEnc results in about 0.1 dB SI-
SDRi degradation but significantly reduces the number of model pa-
rameters. The proposed system significantly outperforms the base-
line methods, including TD-SpeakerBeam, SpEx+, and sDPCCN,
underscoring the advantages of incorporating SSL models into the
TSE framework.

Finally, we analyze the performance improvement achieved by
incorporating SSL into the TSE system. Figure 3 plots the SI-SDRi
of TD-SpeakerBeam versus that of the proposed extension of TD-
SpeakerBeam with a fine-tuned SSL model, where each dot repre-
sents the performance of one test sample. We observe that it not
only improves the quality of the already well-extracted samples but
also improves performance when TD-SpeakerBeam performs rela-
tively poorly (SI-SDRi between -10 and 10dB). This translates into
having a significantly lower FR value (3.0% v.s. 4.8%) as shown in
Table 3, which indicates a more accurate identification of the target
speaker.

6. CONCLUSIONS

In this work, we proposed using pre-trained SSL models for TSE.
We introduced a new downstream task, following SUPERB, as a
benchmark for evaluating the performance of TSE models. Besides,
we explored using SSL models with more powerful TSE systems.
Our extensive experiments on Libri2mix demonstrate the importance
of exploiting both CNN and Transformer layers of the SSL model
and properly upsampling the representation. After fine-tuning SSL-
based components, we improved significantly over existing systems
trained from scratch. Future work will include exploring similar AIE
modules for other SE tasks and reducing the number of parameters
of the models.
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