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Matej Kollár Ondřej Peterka Ondřej Ryšavý Libor Škarvada

December 3, 2009

Abstract

This report deals with a type system that merges subtyping and dependent types.

We define a calculus, denoted as λP↪→, that instead of term overloading employs

coercion mappings. This enables to detach the subtyping from other parts of the

calculus, so that the mutual dependence between subtyping, typing and kinding

can be diminished. We analyze basic properties of the calculus and show several

examples that demonstrate the mechanism of coercive subtyping.

1 Introduction

Subtyping appears to be a convenient tool in programming languages that allows for

implementation of reuse techniques. The idea to include subtyping in frameworks of

type theory emerged when the need for proof development in large was recognized

as an issue, whose overcoming would help to spread tools based on type theory to

practice. Subtyping dependent types was initially studied for the purpose of extending

programming languages [1, 7]. Later the importance of this concept led to an intensive

research on extending various type theoretical systems with subtyping, having form, for

instance, of so-called refinement types [19], dependent record types [5, 6], and coercions

[4, 17]. The extension of various type theory tools with subtyping has been proposed [8,

10]. Several works attempted to clarify the issue of combining subtyping and dependent

types. The system λP, which is the foundation of type theoretical frameworks and a

vertex of Barendregt’s λ-cube, was extended with subtyping in [2], and the examination

of meta-theoretical properties gave a proof of decidability of typechecking. Along this

line, the idea was later extended to the calculi of the whole λ-cube in [20].

The meaning of subtyping, A ≤ B, can be viewed from different aspects. The in-

tuitive one, based on the set theory, says that A is a subset of B, when A and B are
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considered as sets. In programming, the usual interpretation is, that it is legal to use a

value of type A in a context where value of type B is expected. This is formalized by

so-called subsumption rule:

Γ ` M : A Γ ` A ≤ B

Γ ` M : B

In the context of type theory, this can be seen as a generalization of conversion rule, in

which Γ ` A = B is assumed in the premise instead of the given subtype relation.

Traditionally, the subtyping relation over types is defined such that it overloads terms.

Then certain properties like existence of principal or minimal typing are investigated.

The more flexible approach based on coercion was later introduced to explicitly describe

the transformation of terms required to relate types in subtype relation. The coercion

represents a valid term in the environment that gives one a method of providing the

term of a correct type as expected by the given context.

The main issue in systems combining dependent types and subtyping is to show

that they have required meta-theoretical properties, mainly subject reduction and de-

cidability of typechecking. Subtyping is tightly related to typing and introduces extra

dependence among rules of the system. To break this dependence and show support-

ing properties, such as transitivity elimination and subtyping decidability, one needs to

modify the original system to get, for instance, equivalent algorithmical system with re-

quired properties. In the present paper, we deal with typing and subtyping uniformly.

We introduce a coercion also for computationally equal types with the hope of simplifi-

cation of the type system and steps required to prove its fundamental properties.

Our work stems, in particular, from the research done by Aspinall and Compagnoni

[2], and Luo [16]. The calculus defined in this paper is based on λP system and the

shape of many type rules and the idea of splitting reduction on term and type level

corresponds to λP≤ system of Aspinall and Compagnoni. The introduced notion of

coercion functions is motivated by definitions presented in [16]. Therein, a coercion κ

is a definable term in the system, and is inserted if necessary to harmonize the type

of expressions. It is done via introduction of abbreviations, f(x) = f(κ a), for f with

domain of type A ′ and coercion κ : A → A ′ that allows to apply the function to term

a : A. In our work, we take coercion as definitional term that stands for a function usable

for transforming terms between subtypes or computationally equivalent types. In the

case of coercion for computational type equality such mapping is simply the identity

function that may be removed from the term.
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The contribution of the present work is in formalization of an extension of λP calcu-

lus with coercive subtyping, in which the subtyping fragment itself is more independent

compared to related calculi, such as λP≤ or λΠ [9]. In fact, the only dependence comes

with the need to deal with type equality, but this is restricted in subtyping fragment. Be-

cause of this restriction, by allowing to define subtyping only on types in canonical form

it is possible to break the dependence as a whole and show decidability of subtyping

fragment independently. Moreover, it can be recognized that the subtyping fragment

corresponds to simply typed calculus (considering ↪→ as a function type constructor).

Contrary to related work mentioned above, we deal only with the simple form of coer-

cive subtyping, which imposes several limitations. At the end of the paper we suggest

possible extensions of the system that overcome these restrictions and provide more

flexible subtyping comparable to λP≤.

The present paper is organized as follows: In Section 2, we give a formal presentation

of λP↪→ calculus, which is supplied with examples to help grasp the idea of the system.

In Section 3, we state basic properties of the calculus. In particular, we sketch the proof

of decidability of typechecking. In Section 4, we conclude with discussion and remarks

on the presented system and provide comparison with related work. We also indicate

the possible extension of the system and discuss the related issues.

2 The λP↪→ calculus

In this section, the calculus λP↪→ is defined, which is an extension of λP calculus with

coercive subtyping along the line of Luo as introduced in [16] and [18].

The formal presentation begins with a grammar of pre-terms and judgement forms.

Definition 2.1 (Grammar of pre-terms). Let x is from an enumerable set of variables, and α is

from an enumerable set of type constants, then the pre-terms of the calculus may be constructed

according to the following grammar:

M,N ::= x | λx:A.M | MN | ι terms of the calculus

A,B ::= α | πx:A.B | Λx:A.B | AM types of the calculus

K ::= ? | Πx:A.K kinds of the calculus

As can be seen, the grammar can be divided to three syntactic categories:

• M denotes terms and can occur in three well-known forms—term variable, lambda

abstraction or application. Term ι is a distinguished constant standing for identity
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coercion. This distinction (from the obvious term λx:A.x) is useful for deciding

term equality during type derivation.

• A stands for types. In the simplest case a type can be represented by a type con-

stant α.

Next possible form, πx:A.B, denotes a π-type. π-types are known also as dependent

function types. In various calculi without dependent types it is customary to denote

a function type by A → B. In our examples we use this notation, too: type A → B

is an abbreviation for πx:A.B where variable x does not occur in type term B.

The third form, Λx:A.B, is used to represent type families. This pre-term can be

employed for construction of type functions taking a value and returning type

(e.g. list is such type family and list n is the type of all lists of length n). Again,

when variable x does not occur in type B, we abbreviate Λx:A.B by A ⇒ B.

The last form is a type application.

• K denotes a kind. A pre-term of a kind can take either form of constant “?” for the

kind of standard types, or it can represent a more refined kind of value-dependent

types (type families) in the form of Πx:A.K. To understand the difference and

relation of kinds and types one can refer to fine clarification in [14].

2.1 Type System

The type system consists of derivation rules (typing, subtyping, kinding, and forma-

tion rules), composed of judgements. Judgements contain contexts, which is a (possibly

empty) finite sequence of declarations.

Definition 2.2 (Context Declaration). For every α being a type constant, K being a kind, A

being a type, x being a variable and κ being a coercive function, a context declaration has one of

the following forms:

α : K type α is in kind K

κ : α ↪→ A type α is a subtype of A in kind ? with coercive function κ.

x : A variable x is assigned to type A.

Definition 2.3 (Context). Context is a finite sequence of context declarations.

For the sake of clarity, any declaration may appear at most once in a given context.

Thus, we rule out contexts like 〈x:A, x:B〉, or even 〈x:A, x:A〉.
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For the presentation of the inference system we adapted Harper’s equational for-

mulation of LF [13]. Unlike the original system, we use only equational fragment and

define a system of abbreviations that allows us to simulate the rest of the rules. The

transformation to the Harper’s presentation is easy. It can be shown that reflexivity

judgements (e.g. Γ ` K ⇒ Γ ` K = K) are implicitly included in this presentation as e.g.

Γ ` K abbreviates Γ ` K = K.

Definition 2.4 (Judgement Forms). Let Γ be a context, K be a kind, A and B be types, κ be a

coercive function, and M be term, then there are four different judgement forms given as follows:

Γ ` K = K ′ K and K ′ are equal kinds in context Γ

Γ ` A = A ′ : K A and A ′ are equal types in kind K.

Γ ` κ : A ↪→ B A is a subtype of B in context Γ with κ being coercion function from A

to B.

Γ ` M = N : A terms M and N are equal in type A.

In some cases, we may write Γ ` M : A instead of Γ ` M = M : A and similarly Γ ` K instead

of Γ ` K = K. In judgements of form Γ ` κ : A ↪→ B we have designated ι-symbol that specifies

a unique identity coercion.

Rules for kind and context formation allow to create a well–defined context. They

include the only axiom of the system, (F-EMPTY) rule, which simultaneously states that

? is a well–formed kind and the empty context is a well–formed context.

Definition 2.5 (Formation Rules).

F-EMPTY

〈〉 ` ?

F-Π
Γ, x:A ` K = K ′ Γ ` A = A ′ : ?

Γ ` Πx:A.K = Πx:A ′.K ′

F-TERM

Γ ` A : ?

Γ, x:A ` ?

F-TYPE

Γ ` K

Γ, α:K ` ?

F-SUBT

Γ ` A : ?

Γ, κ:α↪→A ` ?

Similarly to [2], there are two possible ways of introducing type constants to the con-

text. The rule (F-TYPE) allows one to insert to the context a new type constant that inhab-

its the given kind, e.g. Γ, seq : Πx:nat.? ` ?. The other way is supposed to be employed if

one needs to declare a subtype of an existing type. The rule (F-SUBT) enables declaring a

new subtype and its accompanying coercion function, e.g. Γ, n : nat, κ : nlist ↪→ seq n ` ?.
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There is, however, the limitation imposed on the kind of types that can be subtype–

related. Only types of ?-kind may be subtyped, which intuitively corresponds to the

idea that coercions are applied to terms, hence only the inhabited types may be sub-

typed. As a side effect, this keeps coercion functions simply typed. This limitation is

withdrawn in [15], where we admit also parameterized (lifted) coercions.

The n ext definition gives a collection of kinding rules. The purpose of these rules is

to state the equality on types.

Definition 2.6 (Kinding Rules).

K-VAR

Γ, α:K, Γ ′ ` ?

Γ, α:K, Γ ′ ` α : K

K-CONV

Γ ` A1 = A2 : K1 Γ ` K1 = K2

Γ ` A1 = A2 : K2

K-SYM

Γ ` A = B : K

Γ ` B = A : K

K-TRANS

Γ ` A = B : K Γ ` B = C : K

Γ ` A = C : K

K-Λ
Γ, x:A1 ` B1 = B2 : K Γ ` A1 = A2 : ?

Γ ` Λx:A1.B1 = Λx:A2.B2 : Πx:A1.K

K-APP

Γ ` A = A ′ : Πx:B ′.K Γ ` M = M ′ : B Γ ` κ : B ↪→ B ′

Γ ` A M = A ′ M ′ : K[x := M]

K-β

Γ, x:A ` B : K Γ ` M : A ′ Γ ` κ : A ′ ↪→ A

Γ ` (Λx:A.B) M = B[x := M] : K[x := M]

The kind conversion rule (K-CONV) is used to close kinding judgements under

a conversion of well-formed kinds. As only possible general form of Π-type is

Πx1:A1. . . . Πxk:Ak[x1, . . . , xk−1]. ?, it is sufficient to check equality of all argument types

to assert that two kinds are equal. This principle is provided in rule (F-Π). The rule (K-

Λ) is utilized for examining equality of arbitraty type families. The rule (K-APP) serves

for the application of a type family to a well-typed term. By requiring a coercion func-

tion κ to exist, we allow here the type of the argument to be a subtype of an anticipated

type in a type-family argument. The same applies also for (K-β). Rule (K-β) captures

the notion of β–equality on the level of types. In this rule it is acceptable to supply a
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term as a function argument, whose type is not equal to the expected argument type.

Instead a subtype is admitted and the coercion function stands for the witness of this

subsumption.

The following example demonstrates the application of (K-APP) rule. The example

however does not consider subtyping of argument types.

Example 2.7 (Equivalence of type families). Let us call “tall matrices” those whose width

is smaller than their height, tm = Λh:natΛw:less h.matrix hw. Let Γ be a context 〈nat : ?, tm :

Πx:nat.less x ⇒ ?, m : nat, n : less m〉. Assume that we derive m ′ : nat, n ′ : less m, and

also m = m ′ and n = n ′ (in the omitted part of the derivation below). Then the rule (K-APP) is

used twice:

Γ ` tm : Πx:nat.less x ⇒ ?

...

Γ ` m = m ′ : nat

Γ ` tm m = tm m ′ : less m ⇒ ?
K-APP

...

Γ ` n = n ′ : less m

Γ ` tm m n = tm m ′ n ′ : ?
K-APP

The subtyping judgements Γ ` κ : A ↪→ B consist of coercion term κ, which annotates

the underlying subtyping relation. Although the coercion term is an ordinary lambda

term, it can have in fact only one of the forms given by conclusions of the subtyping

rules.

We use the following abbreviations:

κ1 ◦ κ2 for λx:A.κ1(κ2 x) where κ1 : A ′ ↪→ A ′′, κ2 : A ↪→ A ′ are coercions

(◦ κ) for λf:(πy:A ′.B)λx:A.f(κ x) where κ : A ↪→ A ′ is a coercion

(κ ◦) for λf:(πy:A.B)λx:A.κ(f x) where κ : B ↪→ B ′ is a coercion

Subtyping rules introduce coercion judgements for types of ?-kind. In these rules,

the symbol ι may appear in the position of a coercion function, and indicates that two

types are equal. The typing rule (T-ι) given later enables simplifying coercion terms

containing identity coercions.
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Definition 2.8 (Subtyping Rules).

S-VAR

Γ, κ:α↪→A, Γ ′ ` ?

Γ, κ:α↪→A, Γ ′ ` κ : α ↪→ A

S-π1

Γ ` κ : A ↪→ A ′ Γ, x:A ` B : ?

Γ ` (◦ κ) : (πx:A ′.B) ↪→ (πx:A.B)

S-π2

Γ, x:A ` κ : B ↪→ B ′

Γ ` (κ ◦) : (πx:A.B) ↪→ (πx:A.B ′)

S-REF

Γ ` A1 = A2 : ?

Γ ` ι : A1 ↪→ A2

S-TRANS

Γ ` κ1 : A ↪→ B Γ ` κ2 : B ↪→ C

Γ ` κ2 ◦ κ1 : A ↪→ C

It is important to realize that coercions are defined only between types of ?-kind.

Rule (S-VAR) allows to use the declaration asserted previously into the context. Such as-

sertion provides the basic coercion between two types, which are subtype-related. Rule

(S-π1) provides us with a way to subtype function types by assuming contravariant

typing of the function argument. Correspondingly, rule (S-π2) expresses that subtyped

function types can be covariant in their result types. Rule (S-REF) is useful for introduc-

ing equality on types in subtyping judgements so that type equality and subtyping can

be treated uniformly in typing judgements.

The next example demonstrates the use of rule (S-π1), which allows to subtype an

argument type between (dependent) function types in a contravariant manner.

Example 2.9 (Contravariant subtyping). Consider a context Γ ≡ 〈nat : ?, list : nat ⇒ ?, κ :

even ↪→ nat〉.

...

Γ ` κ : even ↪→ nat
S-VAR

...

Γ, y:even ` list y : ?
K-APP

Γ ` (◦ κ) : πx:nat.list x ↪→ πy:even.list y
S-π1

Transitivity as subsumed by (S-TRANS) rule is necessary, if considering subtyping in

several arguments of a function type. It immediatelly involves both (S-π1) and (S-π2)

rules as demonstrated in the following example:
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Example 2.10 (Multiple contravariant subtyping). Let us consider context Γ ≡ 〈nat :

?, matrix : Πh:nat.Πw:nat.?, κ : even ↪→ nat〉. For the sake of space the following abbreviations

for type expressions are used:

τnn ≡ πh:nat.πw:nat.matrix h w → nat

τn ≡ πw:nat.matrix h w → nat

τe ≡ πw:even.matrix h w → nat

τen ≡ πh:even.πw:nat.matrix h w → nat

τee ≡ πh:even.πw:even.matrix h w → nat

Γ ` κ : even ↪→ nat

Γ ` (◦ κ) : τnn ↪→ τen

S-π1

Γ, h:even ` κ : even ↪→ nat

Γ, h:even ` (◦ κ) : τn ↪→ τe

S-π1

Γ ` ((◦κ) ◦) : τen ↪→ τee

S-π2

Γ ` ((◦κ) ◦) ◦ (◦κ) : τnn ↪→ τee

S-TRANS

Finally, the last definition of the section introduces typing judgements. These rules

assert equality on terms under the typing assumptions. This fragment depends on sub-

typing fragment as we allow the application of a function to the argument whose type

is a subtype of the type expected by the function.

Definition 2.11 (Typing Rules).

T-VAR

Γ, x:A, Γ ′ ` ?

Γ, x:A, Γ ′ ` x : A

T-CONV

Γ ` M1 = M2 : A1 Γ ` A1 = A2 : ?

Γ ` M1 = M2 : A2

T-SYM

Γ ` M1=M2 : A

Γ ` M2=M1 : A

T-TRANS

Γ ` M1=M2 : A Γ ` M2=M3 : A

Γ ` M1=M3 : A

T-ι
Γ ` N1=N2 : A Γ ` ι : A ↪→ A

Γ ` ι N1=N2 : A

T-β

Γ, x:A ` M : B Γ ` N : A ′ Γ ` κ : A ′ ↪→ A

Γ ` (λx:A.M)N=M[x := κ N] : B[x := N]
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T-λ
Γ, x:A1 ` M1=M2 : B Γ ` A1=A2 : ?

Γ ` λx:A1.M1=λx:A2.M2 : πx:A1.B

T-APP

Γ ` M1=M2 : πx:A.B Γ ` N1=N2 : A ′ Γ ` κ : A ′ ↪→ A

Γ ` M1 N1=M2 N2 : B[x := N1]

Rules (T-VAR), (T-SYM), (T-TRANS), and (T-λ) are standard. Rule (T-ι) defines equality

under ι-contraction. It means that ι can be safely removed from the term as it does

not represent a significant computational meaning. Rule (T-β) introduces β-reduction

into equality judgements. There is, however, a significant difference to the usual β-

reduction. A suitable coercion function is substituted with the argument during redex

elimination by β-reduction. It means that the following two terms are, for instance,

equal: (λx:nat.twice x) e = twice (κ e), if twice : nat → even, e : even, and κ : even ↪→ nat.

Note that coercion is not inserted to types in (T-β) nor (T-APP) rules. The subtyping

introduced via (T-APP) rule is shown in the following example.

Example 2.12 (Coercion in application). Let Γ ≡ 〈nat : ?, κ : even ↪→ nat, list : nat ⇒
?, listMake : πx:nat.list x, e : even〉, then:

Γ ` listMake : πx:nat.list x Γ ` e : even Γ ` κ : even ↪→ nat : ?

Γ ` listMake e : list e
T-APP

One may attempt to define a subtype for an arbitrary π-type. Such directly defined

subtype, however, does not express enough information and its use is very limited. The

present type system even does not offer a way of typing expressions involving such

subtypes in a supertype context. The following example demonstrates an attempt to

type such application.

Example 2.13 (Direct subtypes of π-types). Let Γ ≡ 〈κ : α ↪→ πx:A.B, f : α, a : A〉. If

we added the general subsumption rule, the following would be possible:

Γ ` f : α Γ ` κ : α ↪→ πx:A.B

Γ ` f : πx:A.B
SUBSUM

...

Γ ` a : A

Γ ` f a : B
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We do not have general subsumption rule (SUBSUM) in our system. Having it, we

could deduce that f a : B ′ for some B ≤ B ′. As we cannot bind such type it is not

possible to declare any canonical object of type B ′. From this viewpoint, it seems to be

undesirable to introduce direct subtypes of π-types.

2.2 Reduction

The reduction relation on terms and types can be defined by means of the typing rules

(T-ι) and (T-β) (reduction on terms), and the kinding rule (K-β) (reduction on types).

This means that reduction requires typing to work and the only correct notion of reduc-

tion is typed reduction. We give an operational semantics to the calculus that captures the

notion of typed reduction. The method used here follows the Goguen’s approach [12].

This proceeds by introducing a system, denoted λPR
↪→, for typed operational semantics,

which can be seen as a type theory in which computation is the central notion instead of

logical inference. To distinguish this system from λP↪→ calculus, we will systematically

write `R in judgements.

Definition 2.14 (Judgements Forms of λPR
↪→).

Γ `R M ;nf P : A M has canonical form P which is a canonical element of type A in

context Γ

Γ `R M ;wh N : A M weak head reduces to N of type A in context Γ

Remember that the term is in weak head normal form if its outermost term is not

a redex. Then to obtain a normal form for such term it is sufficient to perform only

internal reductions.

The typed operational semantics is defined by the rules of inference in Fig. 1. The

rules reflect the intended typed reductions of the calculus. They can be also viewed as

equality rules in λP↪→ without symmetry property. The derivations in λPR
↪→ relate normal

forms that can be obtained by applications of weak head reductions.

3 Properties of λP↪→
Our calculus has standard useful properties like strong normalization, or Church-

Rosser property. This is because the only essential difference from λP≤ is in explicit

coercions supplied in judgements, and this additional information does not spoil the

properties of λP≤. We also need to deal with equational judgements which allows us
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R-T-VAR

Γ `R x ;nf x : A

R-λ
Γ, x:A `R M1 ;nf M2 : B

Γ `R λx:A.M1 ;nf λx:A.M2 : πx:A.B

R-K-VAR

Γ `R α ;nf α : A

R-Λ
Γ, x:A `R B1 ;nf B2 : K

Γ `R Λx:A.B1 ;nf Λx:A.B2 : Πx:A.K

R-T-APP

Γ `R M1 ;nf M2 : πx:A.B Γ `R N1 ;nf N2 : A ′ Γ `R κ : A ′ ↪→ A

Γ `R M1 N1 ;nf M2 N2 : B[x := N1]

R-K-APP

Γ `R B1 ;nf B2 : Πx:A.K Γ `R N1 ;nf N2 : A ′ Γ `R κ : A ′ ↪→ A

Γ `R B1 N1 ;nf B2 N2 : K[x := N1]

R-T-WH

Γ `R M1 ;wh M2 : A Γ `R M2 ;nf M3 : A

Γ `R M1 ;nf M3 : A

R-K-WH

Γ `R A1 ;wh A2 : K Γ `R A2 ;nf A3 : K

Γ `R A1 ;nf A3 : K

W-T-β

Γ, x:A `R M : B Γ `R N : A ′ Γ `R κ : A ′ ↪→ A

Γ `R (λx:A.M)N ;wh M[x := κ N] : B[x := N]

W-T-APP

Γ `R M1 ;wh M2 : πx:A.B Γ `R N : A ′ Γ `R κ : A ′ ↪→ A

Γ `R M1 N ;wh M2 N : B[x := N]

W-T-ι
Γ `R N1 ;wh N2 : A ′ Γ `R ι : A ′ ↪→ A

Γ `R ι N1 ;wh N2 : A

W-K-β

Γ, x:A `R B : K Γ `R N : A ′ Γ `R κ : A ′ ↪→ A

Γ `R (Λx:A.B)N ;wh B[x := N] : K[x := N]

W-K-APP

Γ `R B1 ;wh B2 : Πx:A.K Γ `R N : A ′ Γ `R κ : A ′ ↪→ A

Γ `R B1 N ;wh B2 N : K[x := N]

Figure 1: Inference Rules of Typed Operational Semantics
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to consider typed reductions on terms and types. Typing information in reductions is

necessary to supply right coercions in expressions during the evaluation.

First, we show the correspondence of defined typed operational semantics with re-

spect to the equational judgements of the calculus.

Proposition 3.1 (Soundness of Typed Operational Semantics). Let M, N, and P be well-

formed terms and A, B, and C be well-formed types, then:

• Γ ` M = N : A then Γ ` M ;nf P : A and Γ ` N ;nf P : A.

• Γ ` A = B : K then Γ ` A ;nf C : K and Γ ` B ;nf C : K.

PROOF. The proof is done by simultaneous induction on derivations in λP≤. Similarly

to presentation in [12], it is required to deal with normalization through introducing

semantics objects and term interpretation accompanied with stating several supporting

lemmas.

Because of the previous result, it is possible to show strong normalization, subject

reduction and confluence in system of typed operational semantics, with the conclusion

that λP↪→ shares these properties, too.

Proposition 3.2 (Strong Normalization). If Γ ` M : A then M is strongly normalizing.

The important property is the decidability of the calculus. The idea of the proof is

based on the observation that subtyping fragment has only little dependency on other

rules if it works only with canonical representation of terms and types. This allows

us to remove rule (S-REF) as it only introduces ι coercion, which has no computational

meaning. Thus we can consider only coercions that do not contain ι in canonical repre-

sentation.

Proposition 3.3 (Decidability). The derivability of a given well-formed judgement Γ ` J is

decidable.

PROOF. Let us split the calculus λP↪→ in two parts (partial calculi).

First we leave out all rules involving subtyping (“S-rules”) and replace rules (K-

β), (K-APP), (T-β), (T-APP), by standard rules of λP calculus—i.e. disregarding coercion

judgements and treating coercion as identity. What we get is dependently-typed lambda

calculus with equality relation. The standard de-pendently-typed lambda calculus λP

(without equality relation) is decidable (see [3]).
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Equality of terms, and hence also equality of types and kinds, is decidable due to

strong normalization and Church-Rosser property of reduction. Thus judgements of

forms Γ ` M = N : A, Γ ` A = B : K, are decidable. The typing and kinding judgements

of forms Γ ` M : A, Γ ` A : K respectively, are derived by the rules that do not have

equality judgements in premises. (Strictly speaking, they do have, but a judgement

Γ ` M : A, being an abbreviation of Γ ` M = M : A, is derived only from judgements of

the form Γ ` N = N : B, where the equivalence N = N is syntactic identity.)

Second, take a fragment involving only formation rules and subtyping rules without

rule (S-REF). We get an instance of simply typed lambda calculus—there is no depen-

dence in the types of the coercions. Thus this fragment of λP↪→ is decidable.

Third, we have to show that combining these two fragments in λP↪→ does not harm

the decidability. The only problem, that could potentially endanger decidability, is a

circular dependence of derivation rules in both fragment calculi. Notice that there are

several typing rules that have subtyping judgements among their premises, and there is

one subtyping rule (see (S-REF)), which has typing judgement in its conclusion. How-

ever, the latter can be eliminated. The rule (S-REF) produces only subtyping judgements

with identity coercions ι, that play rather redundant role in coercion terms—ι coercions

can be safely erased from the coercion terms.

4 Conclusions

We formalize a calculus of coercive subtyping, which allows integration of dependent

types and a restricted form of subtyping in a uniform type theoretic system. The coer-

cion functions are necessary for transformation of terms that inhabit types in subtyping

relation. The theory makes possible to define basic coercions that come with new sub-

type definitions and to build compositions of coercions upon this system. The subtyp-

ing fragment of a system is mostly independent from the original system. Therefore it

is easier to analyze the properties of the calculus. Moreover, the fragment itself can be

seen as a simply typed calculus defined on coercion functions.

There are several related works to ours. We were initially motivated by calculus λP≤

by Aspinall and Compagnoni [2]. In their calculus, the subtyping is added to λP by

defining subtyping relation that includes term overloading. It is not always possible to

allow term overloading in type theory as it was shown in case of inductive types [11].

Instead, we attempted to base the system on coercive subtyping, which was shown to

14



be a more powerful tool in systems of type theories and can be extended easier with

constructs such as inductive types.

Considering coercion κ : A ↪→ B to be a unique mapping from terms of type A to

terms of type B, we feel that coercions should be bound to ?-types as only these types

are inhabited in λP. In this paper, we therefore restrict the coercion only to these types,

which significantly reduces the set of typeable expressions compared to λP≤. Although

for some fixed n and nlist : ? we may derive Γ ` κ : nlist ↪→ seq n, it turns out that it is

not possible to have a generalized version:

πx:nat.list x ↪→ πx:nat.seq x

It is because the way the subtypes are introduced in the context under the restriction

that they may be only ?-types. This prevents us from using (F-SUBT) rule for introducing

κ : list ↪→ seq as these are types of kind nat ⇒ ?. Allowing this we would arrive to a

system of parameterized coercions (coercion schemata):

seq : nat ⇒ ?, κ[x:nat] : list ↪→ seq

Requiring that coercions are definitional terms of the calculus, we should write

κ[x:nat] ≡ Λx:nat.κx. This approach lifts the coercions from ?-kind to Π-kinds and we

need to deal with dependent coercions. The study of such extension of the system is

considered as the future work.
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A Syntax

Definition A.1 (Grammar of pre-terms). Let x is from an enumerable set of variables, and α

is from an enumerable set of type constants, then the pre-terms of the calculus may be constructed

according to the following grammar:

M,N ::= x | λx:A.M | MN | ι terms of the calculus

A,B ::= α | πx:A.B | Λx:A.B | AM types of the calculus

K ::= ? | Πx:A.K kinds of the calculus

B Formation and Equality Rules

Definition B.1 (Formation Judgements). The formation judgements are as follows:

Γ ` K K is a valid kind

Γ ` A : K A is a family of kind K

Γ ` M : A M is an object of type A.

Definition B.2 (Equality Judgements). The equality judgements are as follows:

Γ ` K1 = K2 K1 and K2 are equal kinds

Γ ` A1 = A2 : K A1 and A2 are equal families of kind K

Γ ` M1 = M2 : A M1 and M2 are equal objects of type A.
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