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Abstract. The article deals with methodology framework for creating risk analysis 
models of diverse heterogeneous systems. Risk analysis, which refers to the study of 
threats and their potential impacts, is modelled with the use of knowledge-based 
models. From a broad range of different knowledge-based approaches we have 
chosen the fuzzy description for expressing the knowledge base. The fuzzy 
description suits best the nature of knowledge that we use. 

 
 

1 Introduction 

During design, implementation, and operation of different heterogeneous systems it also 
might become necessary to choose from different alternatives or options, which can bring 
some risks. All these risks have to be identified, analysed, and reduced to the minimum by 
implementation of suitable measures or controls. The process of identification, analysis, 
and reduction of risks is called risk analysis. For risk analysis process automation we 
proposed the approach of risk analysis modelling. 

We are searching an optimal internal structure of the risk analysis model that is capable 
of expressing a variety of different assets with various values that bring a broad range of 
vulnerabilities into the system. The vulnerability is a weak point in a system that can be 
exploited and can consequently lead to a malfunction of the system or to a security incident. 
The intention or potential of the outside world (called environment) to exploit the present 
vulnerabilities is called a threat. 

A clear understanding of the concept "risk" is necessary to establish a common frame of 
reference for further discussions in this paper. For the purpose of this paper, a risk is 
viewed as: 

• the adverse effect if a threat is realised 

• the adverse effect if vulnerability is exploited 
Viewing a risk with the use of these dual, but parallel, concepts enhances the 

comprehension of the concept, which is essential for the effective modelling of the risks 
within a computing facility. 

By using the above concept of a risk, risk analysis can be viewed as a systematic 
examination of: 

• all the possible vulnerabilities and the probability that  these vulnerabilities will be 
exploited 



• all the possible threats and the likelihood that these  threats will be realised 
This view of the risk analysis process will now be used to describe a framework for a 
systematic analysis of computer related risks. 

The risk analysis process has three main input values - assets, threats, and 
vulnerabilities. 

Assets 

Assets include hardware (computers, memory devices, peripheral equipment), software 
(operating systems, application programs), data, networks (transmitting equipment and 
media), and personnel (operators, users, managers). From a risk viewpoint, the assets 
within a computing environment are interrelated. A vulnerability can affect more than one 
asset or cause more than one type of loss. 

Threats 

Threats to all types of assets include people (who may intentionally damage assets), natural 
events (such as earthquakes, floods, and tornadoes), and accidents (such as fire, burst water 
pipes, and human mistakes). 

Vulnerabilities 

Vulnerabilities are physical (unprotected entrances, unreliable environmental control, 
unreliable power, and weak fire protection). Personnel vulnerabilities are those that can be 
caused by personnel (mistakes, fraud, theft, blackmail, bribery), and those that can happen 
to the personnel (injury, death). Hardware vulnerabilities include environmental effects on 
hardware, failures, and design mistakes. Software has also some vulnerabilities because of 
the storage media used, and because of unreliability or poor design. Network vulnerabilities 
include physical and hardware vulnerabilities, as well as insufficient protection against 
tapping, eavesdropping, and other forms of interception. 

The output of the risk analysis process is a set of recommended countermeasures. These 
countermeasures should be as specific as possible. 

As the risk analysis procedure is a creative, intuitive and systematic process, the tools 
that are used to model this process must likewise be flexible, to be able to reflect the 
real-world scenario as truly and effectively as possible. Risk analysis often relies heavily on 
producing numbers, and does not rely sufficiently on human analysis and a common sense 
to interpret the results. The model must place a minimal hindrance on the intuitive, 
common sense and creative spirit necessary for the risk analysis process. 

As it is not possible to establish the correctness of a risk analysis procedure, it is 
necessary to ensure that the model is as understandable and comprehensible as possible. 
Risk analysis should not be a black box system which "magically" provides answers that 
are to be trusted. It is necessary for the user to be able to intuitively follow the modelling 
and reasoning the process of the risk analysis, and in this way to verify the correct 
functioning of the model. 

The proposed risk analysis methodology internally contains two models (see Fig. 1).  
The first one is a knowledge based behaviour model. This model is fixed (it does not 
change in the risk analysis process) and it is based on a reality knowledge base. This model 
describes relations among assets, threats, vulnerabilities, and countermeasures. The second 
model is a system model. This model is system-dependent and it is based on a system 



knowledge base. It is created in the first phase of the risk analysis process. This model 
describes the structure of the analysed system and the interdependencies among the assets 
in the system. 
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Fig. 1 The structure of the risk analysis system 

Most of the above factors are difficult to be quantified and they are usually expressed 
using vague estimates. The probability of occurrence of threat is not a single value that 
could be determined with an absolute certainty, but it can be expressed in terms as “low”, 
“middle”, “high”, or “unknown”. This uncertainty can be modelled in fuzzy logic with the 
use of fuzzy sets.  

2. Design of risk analysis model 

Because of the complexity of the problem being solved and due to the incompleteness of 
the input information, we have decided to build a methodology of risk analysis as an 
integration of a number of different methods and tools. The basic part of the system is an 
object-oriented environment of the programming language C++. In this environment, the 
simulation library SIMLIB/C++ is implemented. The SIMLIB library contains tools for 
different kinds of system description, including fuzzy logic description. 

In a heterogeneous simulation system, we need a fuzzy description each time we do not 
know an exact description of the model, or we need a simple (fast, but less accurate) 
solution of the problem. 

In SIMLIB/C++, the fuzzy part of the model needs suitable interfaces. The developed 
fuzzy block has continuous/fuzzy input and output, it can be used as any other continuous 
block. 

The fuzzy representation of a model encapsulated in a fuzzy block should implement 
the following operations: optional fuzzification of inputs, application of fuzzy operators and 
implication methods for all the fuzzy rules given, aggregation of outputs from all the rules, 
and optional defuzzification of outputs. This process is shown in Figure 2 together with the 
types of the processed data. 

 
• Fuzzification is the conversion from a continuous input value (real number) to a fuzzy 

set value. We use membership functions to determine the degree of membership for a 
given numerical value.  

• If-then rules are defined by the user in the general form  



  if ( antecedent ) consequent 
These rules allow computing outputs as the consequence of a user-defined 

antecedent. The problem here is the partial degree of membership of the antecedent, 
which should be applied to the consequent with the given weight of the rule. This 
process is called an implication. 

 Both the antecedent and consequent can have multiple parts. In the antecedent, we 
can use fuzzy && (AND), || (OR), and ! (NOT) operators. The method of computing the 
result of an AND operator is usually the minimum of both operands (which are 
numbers), the OR operator uses a maximum of the operand values, and NOT operator 
computes 1-x. There are other algorithms to be used for the fuzzy operator evaluation, 
too. 

• Aggregation is the method used for evaluating a single output value (for each output 
variable) from partial outputs of many if-then rules in the description of a fuzzy block. 
The output value is computed using one of the suitable algorithms (maximum, sum). 

• Defuzzification is used for conversion from a fuzzy set to a single numerical value. 
There are many applicable methods, where most often the method of centroid is used. 
Other possible methods are for example: bisector, middle of max, largest max, smallest 
max. 
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Fig. 2 Fuzzy inference diagram 

3. Implementation 

We use the C++ language for the fuzzy inference system implementation. This language 
allows the use of encapsulation, polymorphism, and operator overloading. 

Fuzzy set 

The class FuzzySet implements the description of a fuzzy set value.  It contains a reference 
to a set of membership functions and the associated values in the range <0,1>. Each fuzzy 
set contains a range of possible numerical values, which can be fuzzified to this fuzzy set. 



Fuzzy set membership functions are defined as subclasses of the abstract base class 
FuzzyMembershipFunction. The user can add any kind of membership functions by 
inheriting this class and defining a suitable methods. 

The correct value of a fuzzy set can be created by the fuzzification method or by an 
assignment. Each membership value can be obtained using operator []. 

The class FuzzyOutput is defined for a fuzzy output specification. This class has a 
method for defuzzification and some special behaviour used by the aggregation phase of 
the fuzzy inference, but other characteristics are inherited from FuzzySet.  

Fuzzification and Defuzzification 

Fuzzification is a method of a fuzzy set. It assigns a new value to a fuzzy set object. If 
the input value does not fall into the range of possible values, an error is reported.  

Defuzzification is implemented as a method of class FuzzyOutput. It computes the 
numerical value of the output. Various defuzzification methods can be used.  

Inference rules 

The inference rules implementation uses operator overloading.  The operator == computes 
the degree of membership and the operators && (AND), || (OR),! (NOT) allow for rule 
combinations.  All those operators return the object of the class FuzzyValue, which 
represents real number.   

We use FuzzyValue::operator bool for some actions at the end of the if-condition 
evaluation.  Those actions include storing of the condition result in a special variable used 
later by the operator = and setting the rule weight to 1.0. In the statement after if(condition), 
we can use the function weight to change the weight of the rule.  The operator = should be 
used for an output value specification. 

The next examples show the use of overloaded operators: 
 
if(in=="small") weight(0.9), out="big"; 
if(in=="big" || in == "medium") out="small", o2="ze ro"; 
if(in=="big" || in == "medium") { out="small"; o2=" zero"; } 

 
where in is a fuzzy input variable, out and o2 are fuzzy output variables, "small", "big" , 
"medium" are fuzzy values, which can be members of fuzzy set in. 

The rules are evaluated in the given order, results are stored to the output variables out, 
o2 and can be aggregated later.  We can use any number of rules. As the output variables 
should be initialised before the execution of fuzzy rules, we defined the abstract class 
FuzzyBlock with the method Evaluate, which is suitable for a fuzzy rules definition. The 
evaluation of the block (performed automatically) ensures the initialisation, evaluation of 
inputs, fuzzification, inference of rules, aggregation, and defuzzification. 

4. The structure of the knowledge base rules 

The expert system used will allow easy orientation in the large amount of information and 
will compare the results of simulation experiments with similar cases and their 
consequences that are stored in the knowledge base. The expert system creates new 
questionnaires with questions for gathering input data for new simulation runs. 

The behaviour model knowledge base contains the following types of knowledge: 



1. Relevancy of an impact/threat, vulnerability and countermeasure to the asset type, 
e.g.: 

”An impact I  applies to the asset type A .”  
2. A  relation between an impact/threat and the vulnerability, e.g.: 
”A threat T  exploits the vulnerability V  with factor x.”  
3. A relation between a countermeasure and vulnerability, e.g.: 
”A countermeasure C  minimises the vulnerability V  by factor x.”  
4. A relation between a countermeasure and impact/threat, e.g.: 
”A countermeasure C  minimises the probability of threat T  by factor x.”   

These rules have to be expressed in the fuzzy logic notation. The rules of type 1 are exact 
logic rules that can be expressed in the conventional logic and they do not need the use of 
fuzzy logic. The rules of type 2, 3, and 4 need the fuzzy logic to be used. Now we will 
show some examples of fuzzy logic rules: 

”If Quality_of_password_management is low then  

Probability_of_user_masquerade is high.”  (type 2 rule) 
”If Authentication_calculators_are_used then  

Probability_of_user_masquerade is low.”  (type 3 rule) 

4. Conclusion 

The design of the described system for the risk analysis of information systems is based on 
extensive experience of the authors in this area. The experience includes classical 
modelling, building knowledge based models, and information system security.  

Although the areas of  simulation of systems and knowledge-based methods were 
developed separately, we can find a lot of similarities and common principles in both of 
these scientific areas. These similarities show close methodological relations between these 
areas and the techniques and tools used. 

The SIMLIB library used for an implementation of a fuzzy logic inference engine was 
previously tested with other applications. This simulation library is not only limited to the 
fuzzy logic operations, but supports a wide variety of other simulation primitives that can 
be used for modelling other aspects of target system as well. 
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