
Knowledge-Based Approach to
Risk Analysis Modelling

Petr HANÁČEK, Petr PERINGER , Zdena RÁBOVÁ

Department of Computer Science and Engineering,
Faculty of Electrical Engineering and Computer Science

Božetěchova 2, 612 66 Brno
e-mail: { hanacek, peringer, rabova }@dcse.fee.vutbr.cz

Abstract. The article deals with methodology framework for creating risk analysis
models of diverse heterogeneous systems. Risk analysis, which refers to the study of
threats and their potential impacts, is modelled with the use of knowledge-based
models. From a broad range of different knowledge-based approaches we have
chosen the fuzzy description for expressing the knowledge base. The fuzzy
description suits best the nature of knowledge that we use.

1 Introduction

During design, implementation, and operation of different heterogeneous systems it also
might become necessary to choose from different alternatives or options, which can bring
some risks. All these risks have to be identified, analysed, and reduced to the minimum by
implementation of suitable measures or controls. The process of identification, analysis,
and reduction of risks is called risk analysis. For risk analysis process automation we
proposed the approach of risk analysis modelling.

We are searching an optimal internal structure of the risk analysis model that is capable
of expressing a variety of different assets with various values that bring a broad range of
vulnerabilities into the system. The vulnerability is a weak point in a system that can be
exploited and can consequently lead to a malfunction of the system or to a security incident.
The intention or potential of the outside world (called environment) to exploit the present
vulnerabilities is called a threat.

A clear understanding of the concept "risk" is necessary to establish a common frame of
reference for further discussions in this paper. For the purpose of this paper, a risk is
viewed as:

• the adverse effect if a threat is realised

• the adverse effect if vulnerability is exploited
Viewing a risk with the use of these dual, but parallel, concepts enhances the

comprehension of the concept, which is essential for the effective modelling of the risks
within a computing facility.

By using the above concept of a risk, risk analysis can be viewed as a systematic
examination of:

• all the possible vulnerabilities and the probability that these vulnerabilities will be
exploited

• all the possible threats and the likelihood that these threats will be realised
This view of the risk analysis process will now be used to describe a framework for a
systematic analysis of computer related risks.

The risk analysis process has three main input values - assets, threats, and
vulnerabilities.

Assets

Assets include hardware (computers, memory devices, peripheral equipment), software
(operating systems, application programs), data, networks (transmitting equipment and
media), and personnel (operators, users, managers). From a risk viewpoint, the assets
within a computing environment are interrelated. A vulnerability can affect more than one
asset or cause more than one type of loss.

Threats

Threats to all types of assets include people (who may intentionally damage assets), natural
events (such as earthquakes, floods, and tornadoes), and accidents (such as fire, burst water
pipes, and human mistakes).

Vulnerabilities

Vulnerabilities are physical (unprotected entrances, unreliable environmental control,
unreliable power, and weak fire protection). Personnel vulnerabilities are those that can be
caused by personnel (mistakes, fraud, theft, blackmail, bribery), and those that can happen
to the personnel (injury, death). Hardware vulnerabilities include environmental effects on
hardware, failures, and design mistakes. Software has also some vulnerabilities because of
the storage media used, and because of unreliability or poor design. Network vulnerabilities
include physical and hardware vulnerabilities, as well as insufficient protection against
tapping, eavesdropping, and other forms of interception.

The output of the risk analysis process is a set of recommended countermeasures. These
countermeasures should be as specific as possible.

As the risk analysis procedure is a creative, intuitive and systematic process, the tools
that are used to model this process must likewise be flexible, to be able to reflect the
real-world scenario as truly and effectively as possible. Risk analysis often relies heavily on
producing numbers, and does not rely sufficiently on human analysis and a common sense
to interpret the results. The model must place a minimal hindrance on the intuitive,
common sense and creative spirit necessary for the risk analysis process.

As it is not possible to establish the correctness of a risk analysis procedure, it is
necessary to ensure that the model is as understandable and comprehensible as possible.
Risk analysis should not be a black box system which "magically" provides answers that
are to be trusted. It is necessary for the user to be able to intuitively follow the modelling
and reasoning the process of the risk analysis, and in this way to verify the correct
functioning of the model.

The proposed risk analysis methodology internally contains two models (see Fig. 1).
The first one is a knowledge based behaviour model. This model is fixed (it does not
change in the risk analysis process) and it is based on a reality knowledge base. This model
describes relations among assets, threats, vulnerabilities, and countermeasures. The second
model is a system model. This model is system-dependent and it is based on a system

knowledge base. It is created in the first phase of the risk analysis process. This model
describes the structure of the analysed system and the interdependencies among the assets
in the system.

Inference
Engine

Dynamic
Prolog
model

System
knowledge

base

Model
generator

Decision
Engine

Reality
knowledge

base

Case
builder

User
interface

User

Fig. 1 The structure of the risk analysis system

Most of the above factors are difficult to be quantified and they are usually expressed
using vague estimates. The probability of occurrence of threat is not a single value that
could be determined with an absolute certainty, but it can be expressed in terms as “low”,
“middle”, “high”, or “unknown”. This uncertainty can be modelled in fuzzy logic with the
use of fuzzy sets.

2. Design of risk analysis model

Because of the complexity of the problem being solved and due to the incompleteness of
the input information, we have decided to build a methodology of risk analysis as an
integration of a number of different methods and tools. The basic part of the system is an
object-oriented environment of the programming language C++. In this environment, the
simulation library SIMLIB/C++ is implemented. The SIMLIB library contains tools for
different kinds of system description, including fuzzy logic description.

In a heterogeneous simulation system, we need a fuzzy description each time we do not
know an exact description of the model, or we need a simple (fast, but less accurate)
solution of the problem.

In SIMLIB/C++, the fuzzy part of the model needs suitable interfaces. The developed
fuzzy block has continuous/fuzzy input and output, it can be used as any other continuous
block.

The fuzzy representation of a model encapsulated in a fuzzy block should implement
the following operations: optional fuzzification of inputs, application of fuzzy operators and
implication methods for all the fuzzy rules given, aggregation of outputs from all the rules,
and optional defuzzification of outputs. This process is shown in Figure 2 together with the
types of the processed data.

• Fuzzification is the conversion from a continuous input value (real number) to a fuzzy

set value. We use membership functions to determine the degree of membership for a
given numerical value.

• If-then rules are defined by the user in the general form

 if (antecedent) consequent
These rules allow computing outputs as the consequence of a user-defined

antecedent. The problem here is the partial degree of membership of the antecedent,
which should be applied to the consequent with the given weight of the rule. This
process is called an implication.

 Both the antecedent and consequent can have multiple parts. In the antecedent, we
can use fuzzy && (AND), || (OR), and ! (NOT) operators. The method of computing the
result of an AND operator is usually the minimum of both operands (which are
numbers), the OR operator uses a maximum of the operand values, and NOT operator
computes 1-x. There are other algorithms to be used for the fuzzy operator evaluation,
too.

• Aggregation is the method used for evaluating a single output value (for each output
variable) from partial outputs of many if-then rules in the description of a fuzzy block.
The output value is computed using one of the suitable algorithms (maximum, sum).

• Defuzzification is used for conversion from a fuzzy set to a single numerical value.
There are many applicable methods, where most often the method of centroid is used.
Other possible methods are for example: bisector, middle of max, largest max, smallest
max.

and *w1rule 1

if ((a==small) && (b==big)) o=middle

n

n n

f

or *w2rule 2

if ((a==middle) || (b==middle)) o=small

n

n n

f

a binputs output o1

fuzzification

defuzzification

ff

aggregation

f = fuzzy set
n = numerical valuef

n n

Fig. 2 Fuzzy inference diagram

3. Implementation

We use the C++ language for the fuzzy inference system implementation. This language
allows the use of encapsulation, polymorphism, and operator overloading.

Fuzzy set

The class FuzzySet implements the description of a fuzzy set value. It contains a reference
to a set of membership functions and the associated values in the range <0,1>. Each fuzzy
set contains a range of possible numerical values, which can be fuzzified to this fuzzy set.

Fuzzy set membership functions are defined as subclasses of the abstract base class
FuzzyMembershipFunction. The user can add any kind of membership functions by
inheriting this class and defining a suitable methods.

The correct value of a fuzzy set can be created by the fuzzification method or by an
assignment. Each membership value can be obtained using operator [].

The class FuzzyOutput is defined for a fuzzy output specification. This class has a
method for defuzzification and some special behaviour used by the aggregation phase of
the fuzzy inference, but other characteristics are inherited from FuzzySet.

Fuzzification and Defuzzification

Fuzzification is a method of a fuzzy set. It assigns a new value to a fuzzy set object. If
the input value does not fall into the range of possible values, an error is reported.

Defuzzification is implemented as a method of class FuzzyOutput. It computes the
numerical value of the output. Various defuzzification methods can be used.

Inference rules

The inference rules implementation uses operator overloading. The operator == computes
the degree of membership and the operators && (AND), || (OR),! (NOT) allow for rule
combinations. All those operators return the object of the class FuzzyValue, which
represents real number.

We use FuzzyValue::operator bool for some actions at the end of the if-condition
evaluation. Those actions include storing of the condition result in a special variable used
later by the operator = and setting the rule weight to 1.0. In the statement after if(condition),
we can use the function weight to change the weight of the rule. The operator = should be
used for an output value specification.

The next examples show the use of overloaded operators:

if(in=="small") weight(0.9), out="big";
if(in=="big" || in == "medium") out="small", o2="ze ro";
if(in=="big" || in == "medium") { out="small"; o2=" zero"; }

where in is a fuzzy input variable, out and o2 are fuzzy output variables, "small", "big" ,
"medium" are fuzzy values, which can be members of fuzzy set in.

The rules are evaluated in the given order, results are stored to the output variables out,
o2 and can be aggregated later. We can use any number of rules. As the output variables
should be initialised before the execution of fuzzy rules, we defined the abstract class
FuzzyBlock with the method Evaluate, which is suitable for a fuzzy rules definition. The
evaluation of the block (performed automatically) ensures the initialisation, evaluation of
inputs, fuzzification, inference of rules, aggregation, and defuzzification.

4. The structure of the knowledge base rules

The expert system used will allow easy orientation in the large amount of information and
will compare the results of simulation experiments with similar cases and their
consequences that are stored in the knowledge base. The expert system creates new
questionnaires with questions for gathering input data for new simulation runs.

The behaviour model knowledge base contains the following types of knowledge:

1. Relevancy of an impact/threat, vulnerability and countermeasure to the asset type,
e.g.:

”An impact I applies to the asset type A .”
2. A relation between an impact/threat and the vulnerability, e.g.:
”A threat T exploits the vulnerability V with factor x.”
3. A relation between a countermeasure and vulnerability, e.g.:
”A countermeasure C minimises the vulnerability V by factor x.”
4. A relation between a countermeasure and impact/threat, e.g.:
”A countermeasure C minimises the probability of threat T by factor x.”

These rules have to be expressed in the fuzzy logic notation. The rules of type 1 are exact
logic rules that can be expressed in the conventional logic and they do not need the use of
fuzzy logic. The rules of type 2, 3, and 4 need the fuzzy logic to be used. Now we will
show some examples of fuzzy logic rules:

”If Quality_of_password_management is low then

Probability_of_user_masquerade is high.” (type 2 rule)
”If Authentication_calculators_are_used then

Probability_of_user_masquerade is low.” (type 3 rule)

4. Conclusion

The design of the described system for the risk analysis of information systems is based on
extensive experience of the authors in this area. The experience includes classical
modelling, building knowledge based models, and information system security.

Although the areas of simulation of systems and knowledge-based methods were
developed separately, we can find a lot of similarities and common principles in both of
these scientific areas. These similarities show close methodological relations between these
areas and the techniques and tools used.

The SIMLIB library used for an implementation of a fuzzy logic inference engine was
previously tested with other applications. This simulation library is not only limited to the
fuzzy logic operations, but supports a wide variety of other simulation primitives that can
be used for modelling other aspects of target system as well.

References

[1] Courtney, R.: Security risk assessment in electronic data processing, AFIPS Conference Proceedings
of the National Computer Conference, AFIPS, Arlington, Va., 97-104

[2] Zadeh, L.A.: Fuzzy Logic, Computer, Vol 1, No. 4, 1988

[3] Hanáček P.: Information System Security Models, XVI. Moravo-Silesian International Colloquium
"Selected Problems of Simulation Models", CSS, SCS, EUROSIM, Brno 6.-8.9. 1994, pp. 35-39

[4] Hanáček, P., Rábová, Z.: Processing of Input Data for Risk Analysis, In: Proceedings of Conference
ASIS'97, MARQ, Krnov, 1997, s. 91-96, ISBN 80-85988-17-8

[5] Hanáček, P., Rábová, Z.: Knowledge-Based Simulation in Risk Analysis, In: Proceedings of ASIS
1998, MARQ, Krnov, 1998, s. 79-84, ISBN 80-85988-26-7

[6] Jenkins, B.: Security risk analysis and management, Norman Data Defense Systems, Inc., 1995

[7] Ru, W.G., Eloff J.H.P.: Risk analysis modelling with the use of fuzzy logic, Computer & Security,
Vol. 15, No. 3, pp. 239-248

This work was supported by the research intention No. CEZ:J22/98: 262200012 -

“Research in Information and Control Systems” and by the Grant Agency of Czech
Republic grant No. 102/98/0552 " Research and Application of Heterogeneous Models".

