Problems of Implementation of Virtual Time
for Parallel Simulation

Ing. Petr Hanaeek
Department of Computer Science and Engineering,
Faculty of Electrical Engineering and Computer Scee
Technical University of Brno
BoZetichova 2, 612 66 Brno
e-mail: hanacek@dcse.fee.vutbr.cz

ABSTRACT: The article deals with the problems of implementation of parallel
discrete event simulation in which every process represents an object in the
simulation. The main problem of parallel discrete event simulation is the time
synchronization of the processes, running on different processors. One approach to
the solution of this problem, called Virtual Time Concept, or Time Warp, is presented.
In this article we will describe an approach to implementing Time Warp and some
techniques that allows to implement Time Warp more efficiently.

Keywords: parallel simulation, distributed computing, eveniven simulation,
demand-driven simulation, Linda language.

Introduction

One of the major goals of the parallel discretengwsimulation is to simulate the
problems on the network of the processors faster tim a single processor. A number
of problems is known that may impact the perforneaotthe parallel discrete event
simulation system. They include: simulation timex@yonization, development of
models which identify parallelism, partitioning tfie problems for execution on
processors, scheduling strategy to select one ofmeady to run processes, and how
the partitioned problem is to be allocated to pssoes. In this article we will deal
with the first problem - simulation time synchroaiion.

Parallel discrete event simulation

The major issues in event-driven simulation are ghkeduling of events and the
evaluation of these events. For parallel executiorthe simulation program are often
used almost the same scheduling and evaluationcipis as for sequential
simulation. The simulation time synchronization the sequential environment is
trivial problem because of presence of common mgmisible for all processes. The
synchronization is performed after each advancsirotilation time. Since the target
environment for parallel execution is often loosequled multiprocessor architecture
(e.g. network of Transputers or local area netvadrkomputers, see Fig. 1) the loose
degree of coupling may result in relatively longroounication delays. Big effort

should be made to minimize the overhead of synehation in order to achieve
acceptable performance.

Processor 1 Messages Processor 2

Processor n

Fig. 1 Architecture for parallel simulation

To limit the overhead arising from frequent synchzation, it is desirable to increase
the interval between synchronization points. On&sjmlity that can be exploited is to
enforce restrictions on which elements can be glagea given processor, i.e. force
placement of elements on the processors in suchraen that there is no need for
synchronization at every time step. In that case rtfost of the synchronization is
performed locally inside the processor an the nunabesynchronization points for

interprocessor synchronization is reduced.

At these synchronization points the synchronizatimssages are exchanged among
the processors (see Fig. 2). The synchronizatiopeiformed by one of the two
approaches known as conservative and optimistpeatively (see [Fuj90]). Strict or
conservative interprocessor synchronization - in which eachcessor waits for
messages to arrive from all other processors upbithwthe given processor is
dependenbefore beginning the next phase of computation - may teadle periods
between successive simulation cycles which aredoiigan necessary. To reduce
idleness, it is possible to relax the strict syodiwation requirement by permitting
processors tooptimistically proceed with evaluation using currently available
information, then correct any erroneous computati®messages begin arriving.

Performance studies show that both of the appr@acihe susceptible to some
limitations. These studies indicate that conseveatnethod fails when the application
exhibits poorlookahead - in that case it may perform worse than sequentia
simulation. Accordingly, the optimistic approactcbmes exposed to state saving and
processing overhead especially when the applicdta@nan excessive rollbacks to the
simulation system.

When the problem size and the number of procedseceme large, the risk for

explosive cascading of rollbacks increases. Thigm8ons occurs mainly by processes
that rapidly advance far in future simulation tin@gascading rollbacks dramatically
decrease performance and prohibit the simulatictade.

In following sections we will discus one approaah dptimistic interprocessor
synchronization for parallel simulation, calkadtual time approach.

Virtual time

Virtual time [Jef85] and its implementation Time ¥as a method for organizing
distributed systems by imposing on them a tempodrdinate system more
computationally meaningful than real time, and wiefy all user-visible notions of
synchronization and timing in terms of it. The Tikvarp implements virtual time.

Processor 1
is still evaluating

—E- -~

S92 9
Processor 2 O OProcessorn

Fig. 2 Basic problem of parallel simulation

-

Simulation time

Most distributed systems (including all those basadocks, semaphores, monitors
etc.) use some kind dilock-resume mechanism to keep process synchronized. In
contrast, the distinguishing feature of Time Wagp that it relies on general
lookahead-rollback as its fundamental synchronization mechanism. Hadtess
executes without regard to whether there are spmcration conflicts with other
processes. Whenever a conflict is discovered #fierfact, the offending process is
rolled back to the time just before the confliat, matter how far back that is, and then
executed forward again along a revised path. Bo¢hdetection of synchronization
conflicts and the rollback mechanism for resolvingm are transparent to the user.

Local control mechanism

Although in the whole system is a single globatuat time, there is no global virtual
time variable in the implementation. Instead, epadcess has its owocal virtual
clock variable that containkcal virtual time (LVT) . The local virtual time of a
process does not change during an event at thaegspit changes only between
events, and then only to the value in the timestaimjhe next message in the input
gueue. At any moment some local virtual clocks Wwélahead of others, but this fact
is invisible to the processes themselves becawseddn read only their own virtual
clock. Whenever a message is sent, its virtual $iemel is copied from the sender’s
virtual clock.

Each process has a singtgut queue in which all arriving messages are stored in
order of increasing virtual receive time. Ideatlye execution of a process is simply a
cycle in which it receives messages and executest®uvn increasing virtual time
order. This ideal execution proceeds as long asnaesage arrives with a virtual
receive time less then local virtual time. Whatether reasons for the late arrival of a
message with a low timestamp, the semantics afalitime demands that incoming

messages be received by each process strictlynestamp order. The only way to
accomplish this is for the receiver to roll backato earlier virtual time, canceling all
intermediate side effects, and then to executedaoifvagain, this time receiving the
late message in its proper sequence.

Because it is impossible to wait for the ,next‘ m@&ge, each process executes
continuously, processing in increasing virtual tireeeive order those messages that
already arrived. All of its execution is provisibhhowever, because it constantly

assumes that no message will arrive with a virteaeive time less than the one

stamped on the message it is now processing.

State queue Output queue

State saving

Current ;
l<¢—p| Behavior _
state >
Stecljtet Messages sent
update
Current message to other processes
(current event)
Input queue
/
A4
Past messages Future messages

LVT

Fig. 3 Basic problem of parallel simulation

To understand the rollback mechanism, we must dbesenore of the structure of
processes and messages. The runtime represerdbioprocess is composed of (see
also Fig. 3):

e A local virtual clock LVT.

» A state which in general is the entire data space of ghecess, including its
execution stack, its own variables, and its progcaomter.

» A state queue containing saved copies of recent states of thegss.

* An input queue, containing all recently arrived messages someatder of virtual
receive time.

* An output queug containing copies of the messages the processebastly sent,
kept in virtual send time order. They are neededase of rollback, in order to
Lunsend“ them.

The semantics of rollback is following:

When a message arrives at the input queue of @gsomith a timestamp lower than
the virtual clock time, the recent work of the pFss is incorrect and must be undone
by rollback. The first step is recover the stat¢hef process to the state, saved in state
gueue. The second step is undone the effect ofremtomessages sent. This is done
by sending an antimessage for every incorrect ngessant. For every message there
exists amntimessagehat is exactly like it in format and concept gxicene field, its
sign. Whenever a message and its antimessage occuneirsame queue, they
immediatelyannihilate. If message and antimessage annihilate and nmeegssgnot
performed, nothing is done. But if message andragsage annihilate and message
was performed, there is need for secondary rollleac¬her process.

This antimessage protocol is extremely robust,aoiks correctly under all possible

circumstances. There is no possibility of deadldskmply because there is no

blocking). There is also no possibility of the ,dmm effect* (i.e., a cascading of

rollbacks far into the past); the worst case i¢ #hlaprocesses in the system roll back
to the same virtual time as the original one did] then proceed forward again.

Memory management schemes for Time Warp

The huge memory usage is one of the problems obfhienistic approach. Some
schemes were developed that reduce the memory .uddgewill present three
examples of reducing of the memory usage [Sam88je TWarp consumes memory
by storing three types of objects: state vectorthenstate queue, messages in input
gueue and messages in output queue. We can classimhory management schemes
in Time Warp into two types:

* Schemes that reduce average memory usage but caewcessarily reclaim
memory ,on demand*, when the system runs out.

» Schemes that can reclaim memory ,on demand*.
Following are the examples of schemes that redueege memory usage:

1. Incremental Sate Save. When state size is large and only a small portibthe
state is modified by an event, only the changeended rather than making a
copy of the entire state. This reduces both spaageuan copying time. However
when a rollback occurs, some time must be spenédover an old state from a
series of recorded changes.

2. Infrequent Sate Save. State saving frequency can be reduced to suimi@ory
available in the system. This, however, has a icegarformance penalty as some
correct computations must be executed that woutdbeorequired if state were
saved more frequently. Also, there is a tradeoffcduse infrequent state saving
precludes fossil collection of some past events.

3. Limited Optimism. Different variations of the optimistic approackavk been
developed that limit the degree to which processesadvance ahead of others.
Some of these bound all the processes within a timelow, and some try to

control the spread of erroneous computation asktyuas possible. These schemes
were suggested primarily to reduce rollbacks, bel timplicitly reduce memory
usage by limiting the number of future objects.

Schemes that can reclaim memory ,on demand® arée quomplicated and their
description is out of scope of this article. Monéormation about these schemes can
be found e.qg. in literature [Sam89].

Conclusion

The aim of the article was to present some probleitisimplementation of the Time
Warp for parallel or distributed simulation. The im@roblem presented is a local
control mechanism itself. This mechanism is therthefthe efficient Time Warp

system. The problems of memory management wasniegsas well.

References
[Fuj90] Fujimoto, R.: Parallel Discrete-Event Simtibn, Comm. of ACM vol. 33,
No. 10, 30-53

[Jag91l] Jagannathan, S.. Optimizing Analysis forstFClass Tuple-Spaces, in
Advances in Languages and Compilers for Parallelcéssing, Pitman
Publishing, London 1991, ISBN 0953-7767

[She91] Shekhar, K., H, Srikant, Y., N.: Linda SBfstem on Transputers, in
Transputing 91, I0S Press 1991

[Han92] Hanééek P., Pgikryl P.: The Linda Systam Distributed Environment --
the Experimental Implementation, SOFSEM'92, ZdMggura, 22.11. -
4.12.1992, 4 strany

[Car91] Carriero N., Gelernter D.: Tuple AnalysigdaPartial Evaluation Strategies
in the Linda Precompiler, in Advances in Languagad Compilers for
Parallel Processing, Pitman Publishing, London 1889BN 0953-7767

[Han93] Hanaéek P.: Parallel Simulation Using thedh Language, MOSIS'93,
Olomouc 1.6.-4.6. 1993

[Han96] Hanaeek P.: Virtual Time for Parallel Siation, MOSIS'96, Zabgeh na
Moravi, 1996

[Sam89] Das, S. R., Fujimoto, R. M.: A Performant¢he Cancelback Protocol for
Time Warp, NSF grant CCR-8902362, 1989

[Jef85] Jefferson, D. R.: Virtual Time, ACM Transaos on Programming
Languages and Systems, 7(3):404-425, July 1985

[Jef90] Jefferson, D. R.: Virtual Time Il: The Caflsack protocol for storage
management in distributed simulation, Proc. 9th walrACM Symposium
on Principles of Distributed Computation, page905August 1990

