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Abstract

The general subject of my interest is finding concurrency bugs in complex soft-
ware systems written in object-oriented programming languages. Concurrent, or
multi-threaded, programming has become very popular in recent years. How-
ever, as concurrent programming is far more demanding than sequential, its
increased use leads to a significantly increased number of bugs that appear in
commercial software due to errors in synchronization. This stimulates a more in-
tensive research in the field of detecting of such bugs. Despite persistent effort of
wide community of researchers, a satisfiable solution of this problem for common
programming languages like Java does not exist. I have focused on combination
of three already existing approaches: (i) dynamic analysis which is in certain
cases able to precisely detect bugs along an execution path, (ii) static analysis
which is able to collect various information concerning tested application, and
(iii) systematic testing that helps to examine as many different execution paths
as possible. Moreover, I plan to incorporate artificial intelligence algorithms
into process of testing of complex concurrent software and for bugs that are
hard to detect I consider development of self-healing methods that can suppress
manifestation of detected bugs during execution.
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Chapter 1

Introduction

Concurrent, or multi-threaded, programming has become popular. New tech-
nologies such as multi-core processors have become widely available and cheap
enough to be used even in common computers. True concurrency moves to ev-
eryday life and currently popular object-oriented programming languages like
Java, C++, C#, and others support concurrent programming. But, these lan-
guages put more demands on skills of programmers because it is easy to make
an error when implementing concurrency. Moreover, concurrency bugs are hard
to discover because of their non-deterministic nature and especially rare occur-
rence. Their manifestation depends on interleaving of threads.

The aim of my work is to contribute to the research in detection and healing
of concurrency bugs in object-oriented programming languages. The focus is
put on detection and healing of concurrency bugs in complex real-world soft-
ware systems. The complexity of such products limits deep analysis of the whole
system using existing techniques. Therefore, companies still exploit mainly soft-
ware testing to maintain software quality. However, most of concurrency bugs
are very difficult to localize just by testing. Thus, the subject of this work is
to combine techniques for dynamic and static analysis of concurrent programs
and systematic testing with intention to ensure certain quality of complex con-
current software with effort similar to testing. Moreover, dynamically detected
bugs can be dynamically suppressed, e.g., when a bug gets into production.
This leads to another goal of my work—developing of self-healing techniques for
detected bugs.

In my work, I plan to focus on the Java programming language because of its
clear memory model, support for various synchronization constructs, simplicity
of modifications in already compiled code (bytecode), and its popularity among
programmers of complex software systems. But, most of detection and healing
techniques can be later modified for other languages similar to Java (C++, C#,
etc.). This work extends the work I have done during my master’s studies [37].

Outline. The report is organized as follows. The rest of this chapter contains
introduction to concurrency bugs, an overview of techniques for their detection,
and introduction to principles of self-healing. The next chapter presents the
state of the art in detection and self-healing of concurrency bugs followed by
a chapter presenting the goals of my research. Then, a chapter shortly presenting
so-far achieved results is given and finally, general ideas for near and further
future work are presented.
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1.1 Concurrency Bugs

A concurrency bug can be defined as a mistake in the code that allows unwanted
interleavings of threads leading to a wrong behavior of the program. This can
be expressed formally as follows [18]: For a program P , let a set I(P ) represent
all possible interleavings. Then, let C(P ) ⊂ I(P ) contain all interleavings for P
under which the program is correct. Finally, the set of all interleavings which
leads to the bug can be defined as the difference of those sets E(P ) = I(P ) \
C(P ). The set E(P ) is non-empty if the program P contains one or more
concurrency bugs.

There exist several taxonomies of concurrency bugs and their patterns. For
instance, in [41], a Petri net model is used to describe different kinds of con-
currency bugs. But the taxonomy of concurrency bugs given in [18] fits more
the subject of this work, and therefore is used. Concurrency bugs (or patterns
leading to concurrency bugs) are according to this taxonomy sorted into three
groups: (1) code assumed to be protected, (2) interleaving assumed never to
occur, and (3) blocking or dead thread. All three groups are described in more
detail in the following paragraphs together with a few examples.

Code assumed to be protected. The first group of concurrency bugs
is related to isolated execution of multiple instructions. A segment of code
(sequence of instructions) is protected if execution of that segment cannot be
disturbed by a computation done by other threads. Therefore, execution of such
code segment gives the same result for any possible interleaving scenarios I(P ).
In some sources, the code segment is then called an atomic section [20] and bugs
in this group are called atomicity violations. The following bugs belong to the
first class of concurrency bug patterns:

1. Non-atomic operations assumed to be atomic. An operation seems
to be atomic (executed without interfering interleaving) but actually con-
sists of several unprotected operations. For example, x++; seems to be
atomic but in fact this single command consists of at least three instruc-
tions (load, increment, store) which could be interleaved.

2. Two-Stage Access. A sequence of operations needs to be protected but
the programmer wrongly protects each operation separately. For example,
consider a non trivial access to a collection in which a check whether the
collection contains an item is performed and, based on the result, the
operation is executed.

3. Wrong lock or no lock. A code segment is protected by a lock but other
threads do not obtain the same lock instance when executing this segment
and inference between these threads is possible. For example, a lock l is
taken each time a variable v is accessed. If some thread does not acquire
l before access to v, it is not synchronized with other threads.

Interleaving assumed never to occur. The second group of concurrency
bugs is related to the order in which certain instructions are executed. Such
bugs are also called order-violation bugs [42]. The cause of these bugs is that
programmer wrongly assumes that certain interleavings are not possible in prac-
tice (E(P ) is empty) because of relative execution length of different threads,
underlying hardware, or inserted instructions influencing the scheduler (e.g.,
sleep()). The following bugs belong to this class of concurrency bug patterns:
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1. Sleep does not control interleaving. The programmer wrongly as-
sumes that some thread t must be faster than a thread t′ that contains
a sleep() instruction. However, in some situations, the thread t′ is still
faster than the thread t.

2. Losing a notification. The bug is caused when a notify() statement
is executed before its corresponding wait() statement. The notification
is then missed by the receiving thread. This causes that receiving thread
hangs because it waits for the missed notification. And therefore, this bug
can be also listed among bugs in the third group.

Blocking or dead thread.The third group contains concurrency bugs that
are related to the lifecycle of threads. In this bug category, some interleavings
in E(P ) contains a blocking operation that blocks indefinitely (such situation is
also called a deadlock [56]) or some interleavings in E(P ) contains an operation
that causes that one of threads terminates unexpectedly. The following bugs
belong to this class of concurrency bugs:

1. A blocking critical section. A thread entering the critical section is
assumed to eventually exit it. For example, a thread which performs some
blocking I/O operation may never exit and does not release owned lock
on all paths.

2. Orphaned thread. When the main thread terminates abnormally, the
remaining threads may continue to run. For example, a queue can be used
to synchronize threads in the way that the main thread puts messages to
the queue and other threads are getting the messages from the queue. If
the main thread terminates abnormally without informing other threads,
they can wait infinitely and block the termination of the execution.

There exist also other concurrency related problem than those mentioned
above—a data race. The notion of data race is orthogonal to the taxonomy
above. The definition of so called (low-level) data race [65] is as follows: A data
race occurs when two concurrent threads access a shared variable and when at
least one of the accesses is a write and the threads use no explicit mechanism
to prevent the accesses from being simultaneous. In other words, the value of
the variable over which a data race exist is not deterministic.

The reason why data races are orthogonal to the taxonomy above is that
a data race is not always a bug. Moreover, many important synchronization
mechanisms are based on low-level data races, e.g., a flag synchronization, bar-
riers, or queues [59]. But, if the data race exists over a variable, a non-careful
use of such variable can lead to a concurrency bug. For instance, lets look at the
non-atomic operations assumed to be atomic bug. If there is a data race over
a variable, there exists no explicit mechanism which prevents accesses to this
variable from being simultaneous and therefore atomicity of operations can be
violated. In general, it can be said that data race can cause directly or indirectly
concurrency bugs from all three groups.

1.2 Bug Detection Techniques

There exist multiple approaches to detect bugs in programs including program
testing, dynamic analysis, static analysis, and model checking. An ideal tech-
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nique for bug detection should be sound and complete. Sound analysis does not
produce so-called false positives/false alarms (warnings about bugs that are
not real). Complete analysis does not produce so-called false negatives (miss to
warn about a real bug). So, sound and complete analysis detects all real bugs
and does not miss any bug. Let me briefly introduce all mentioned techniques.

Program testing. This is the most common way of finding bugs in pro-
grams. A programmer or tester creates a test case which is usually defined by
inputs and corresponding outputs. If the expected outputs are not achieved
or the program crashes before the output is produced, there is a bug in the
program or in the test case. Program testing checks only the code along the ex-
ecution path of the test case and usually does not provide information about the
root cause of the bug. Program testing is accepted as unsound and incomplete
technique.

Dynamic analysis. This technique also detects a bug along an execution
path. But instead of checking outputs of a test, dynamic analysis automatically
gathers information concerning the execution and analyzes it with an intention
to discover abnormal execution conditions. Usually, an instrumentation which
injects some code into original is used to gather the information. The infor-
mation can be analyzed on-the-fly, during the execution, or post-mortem, after
the end of the execution. Despite the analysis gathers information concerning
a single execution, sometimes, if an approximation is taken into account, it can
discover also bugs that are not directly on the execution path. In the best case,
dynamic analysis is sound and complete with respect to an examined execution
path but incomplete with respect to all possible execution paths.

Static analysis. Static analysis represents a different approach than previ-
ous two. Both techniques described above need the code to be executed and are
able to observe only the code along the path of the execution. Static analysis
is based on a compile-time analysis and it only requires code to be compilable
(sometimes even this is not needed). Usually, it infers abstraction of the pro-
gram behavior from the code and tries to find a bug in this abstraction. Usually,
it suffers from false positives due to taken approximations. The code coverage
may be total, and sometimes, the static analysis is even analyzing dead code
which is never used along any possible execution paths (this is also source of
unsoundness).

Model checking. This technique does not execute the program either,
however, it requires the code to be executable. The code of the program is usu-
ally turned into a model representing the semantics of the program. Exhaustive
exploring of the model state space brings the problem of state space explosion.
This prevents model checking to be used on large pieces of code. Model checking
provides a 100% code coverage. Model checking is sound and complete if the
surrounding environment is modeled correctly.

1.3 Self-Healing

Self-healing (or simply healing) is a technique that automatically influences the
program execution in such way that a detected problem does not manifest and
the program executes correctly. Typical self-healing steps include:

1. Problem detection. Before any self-healing action can be performed, it
is necessary to detect that something is wrong with the system.
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2. Problem localization. When an incorrect behavior of the monitored
system is witnessed, one has to find the root cause of the problem.

3. Problem healing. Applying a fix to the problem found in the localization
stage.

4. Healing assurance. By an application of the self-healing action, the
system and its behavior are modified in the hope that the problem will be
resolved while no new problem will be introduced to the system. However,
it is desirable to check/prove whether this goal was achieved or not.

It is important to note, that a similar approach has been around for a long
time under the name of fault tolerance, c.f., e.g., [63]. This concept similarly as
self-healing offers detection and suppressing of problems. The difference is in
a way which is used to accomplish this goal. Fault tolerant techniques work with
redundancy [32]. The redundancy is usually accomplished by mirroring. De-
tection and/or fault suppression is then implemented using comparators which
compare results from duplicated parts of a system which worked on the same
task.

Self-healing can be understood as a next step in fault tolerance. Self-healing
capable systems perform analysis of a computational process (not only of the
results) and healing is based on influencing and/or modification of this process.
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Chapter 2

State of the Art

This chapter describes the state of the art in techniques for dynamic and/or
static detection of concurrency bugs, self-healing of detected concurrency bugs,
and an overview of testing of concurrent software.

There has been done a lot of work in the area of dynamic and/or static
analysis of concurrent software in the past two decades. But as was pinpointed in
a recent comprehensive study [42], most of works focus on data races, atomicity
violations, or deadlocks and only little address multiple-variable bugs. Moreover,
there are nearly no works focusing order-violation bugs.

Self-healing of concurrency bugs is a relatively new area of research and
therefore there exist only a few works regarding the topic. In the case of sys-
tematic testing, there has been done a lot of research in the areas of systematic
automatic testing but only a few works focus on applying these techniques on
concurrent software.

2.1 Dynamic Analysis of Concurrent Software

Dynamic analysis is very popular for analysis of concurrent software because
analysis of only one particular execution path is much easier than modeling of all
possible paths and all possible interactions among threads. I divide publications
mentioned in this section into three groups according to concurrency bugs they
detect: (1) detection of data races, (2) detection of atomicity violations, and
(3) detection of deadlocks.

2.1.1 Detection of Data Races

There are two main techniques for detection of data races. One is based on
locksets and the second on happens-before relation. At first, I briefly introduce
both principles and then describe tools and algorithms that use them.

The first technique is based on reasoning about so called locksets [65]. The
lockset is defined as a set of locks that guard all accesses to a variable. Detectors
then use observation that if every shared variable is protected by a lock, there
is no possibility of operations on this variable being simultaneous, and therefore
a race is not possible.
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The happens-before based technique reasons about so called happens-before
relation [35] (denoted →) which is defined as least strict partial order on events
such that: (1) If event x occur before event y in the same thread, then x → y,
and (2) If event x is the sender of a message and event y is the receiver of the
message, then x→ y after successful receive of the message. The happens-before
relation is like all strict partial orders transitive, irreflexive and antisymmetric.
Detectors build this relation among accesses to a variable and check that accesses
cannot happen simultaneously.

Lockset-based algorithms. The first algorithm based on locksets was
Eraser[65]. The algorithm maintains for each shared variable v, the set C(v) of
candidate locks for v. When a new variable is initialized, its candidate set C(v)
contains all possible locks. Eraser updates C(v) by the intersection of C(v) and
the set of locks held by the current thread L(t) when the variable is accessed.
The Eraser algorithm warns about a data race if along the execution for some
shared variable v the C(v) becomes empty.

In order to reduce number of false alarms, Eraser introduced for each shared
variable internal states Virgin, Exclusive, Shared, and Shared-Modified. When
a new variable v is initialized, its state is set to Virgin. The variable state is
changed to Exclusive, if v is later accessed from the thread that initialized it.
If another thread access v, the state is changed to Shared describing that the
variable v is shared among multiple threads. The state is changed to Shared-
Modified if the variable v is shared among multiple threads and at least one
thread access the variable for write. The C(v) is updated only if v is in Shared
or Shared-Modified states and warning concerning a data race is issued only if
C(v) becomes empty and the state of v is Shared-Modified. This modification
helps to reduce false alarms but still the Eraser algorithm produces plenty of
them.

The original algorithm designed for C was then modified for object-oriented
languages, c.f., e.g., [73, 11, 9, 79]. The main modification (usually called own-
ership model) is inspired by the common idiom used in object oriented programs
where a creator of the object is actually not the owner of the object. This idea
is reflected by inserting a state Exclusive2. The variable is in state Exclusive2
when it is accessed from the first thread different from thread that initialized v
variable. In other words, the first owner is replaced by the thread that access
variable after the first owner. This modification introduces a small possibility
of having false negative [34, 73] but reduce number of false alarms caused by
this object oriented attribute.

The problem of techniques based on locksets is that they do not support
other synchronization than locks and therefore produce too many false alarms
when applied to common concurrent software. Their advantage is in relatively
low overhead.

Happens-before-based algorithms. The happens-before relation is con-
structed based on memory model of particular programming language. In the
case of Java, memory model[39, 45, 59] induces happens-before relation in the
following situations: (1) Sequence of instructions executed in the same thread in-
duces happens-before among them according to order of their execution. (2) Re-
leasing a lock l happens-before the following acquire of the same lock l. (3) Write
to a volatile variable v happens-before the following read of v. (4) Instruction
starting a new thread t happens-before any instruction executed in t. (5) Any
instruction executed in thread t happens-before a successful join operation on
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thread t. (6) Instruction notify happens-before any instruction following wait
instruction successfully notified by the notify instruction.

Most of algorithms use so-called vector clocks introduced in [47] for handling
happens-before relation. The idea of vector clocks is as follows. Each thread t
maintains its own clock that is incremented during execution and a vector Tvc

indexed by thread identifiers (size of the vector is equal to number of threads,
one position in the vector represents thread’s own clock). Each entry in Tvc holds
a logical timestamp indicating the last event in a remote thread that could have
influenced maintainer of the vector. Recently, a new variation of this algorithm
was published[3]. The modification is in distributive computation of vector
clocks. Each thread then maintains not a vector but a tree structure holding
values of vector clocks. But, according to my knowledge there is no detector
that uses this new algorithm yet.

The problem of algorithms which use vector-clocks is efficiency of handling
constructed happens-before relation. This is reason why there exist only a few
algorithms based purely on happens-before relation[61, 62, 22]. Algorithms[61,
62] detect data races via maintaining vector clocks for each thread Ct, each
lock Lm, and two vector clocks for write Wx and read Rx operations for each
shared variable x. Maintaining such a big number of vector clocks generates
considerable overhead. Therefore, in [22] vector clocks for variables and locks
are generated only in situations where thread vector clocks are not sufficient.
This way, the overhead of vector clocks algorithm was rapidly decreased to the
level of algorithms computing locksets.

The advantage of algorithms mentioned above is their preciseness in detec-
tion of data races. But big overhead generated by these algorithms forces many
researches to come up with some combination of happens-before-based and lock-
set based algorithms. These combinations are often called hybrid algorithms.

Hybrid algorithms. Hybrid algorithms, c.f., e.g., [11, 57, 16, 79, 20],
combine the two approaches described above. In RaceTrack [79], a notion of
a threadset was introduced. The threadset is maintained for each shared vari-
able and contains information concerning threads currently working with the
variable.The method works as follows. Each time a thread performs a mem-
ory access on a variable, it forms a label consisting of the thread identifier and
threads current private clock value. The label is then added to the variable
threadset. The thread also uses its vector clock to identify and remove from
the threadset labels that correspond to accesses that are ordered before the
current access. Hence the threadset contains only labels for accesses that are
concurrent. Only races caused by these concurrent accesses are reported.

One of the most advanced lockset algorithms that uses notion of happens-
before is Goldilocks presented in [16]. The main idea of this algorithm is that
locksets can contain not only locks but also threads and volatile variables. In
general, if the last action a on variable v happens-before another action b, a
must be included in lockset L(v) when b is going to be performed. Advantage of
Goldilocks is that it allows lockset grows during computation (when happens-
before relation is established on operations over v, set of locks guarding the
variable is reset). The computation of basic Goldilocks algorithm is expensive
but with introduction of optimizations, mainly lazy computation (handle thread
local variables and other cases when there is no need to compute happens-before
relation) and short circuit (a lockset is build only in the case that there is no
happens-before relation between accesses in conflict and is build only addition-
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ally) the algorithm has considerably lower overhead approaching in some cases
lockset-based algorithms.

A quite different detection approach has been introduced in TRaDe [12]
where a topological race detection [24] was used. This technique is based on
an exact identification of objects which are reachable from the thread. This is
accomplished by observing manipulations with references which alter the inter-
connection graph of the objects used in a program—hence the name topological.
Then vector clocks are used to identify possibly concurrently executed segments
of code, called parallel segments. If an object is reachable from two parallel
segments, a race has been detected. The disadvantage of this solution is con-
siderable overhead.

2.1.2 Detection of Atomicity Violations

As was explained in Section 1.1, data race is not always a bug and programs
that are free of data races still can contain concurrency bugs. Therefore, re-
searches focus on more general concurrency problem tightly coupled with data
race—atomicity violations. Atomicity [76] is the property that every concurrent
execution of a set of so-called transactions is equivalent to some serial execution
of the same transactions. Therefore, some authors use term serializability [77]
as synonym for atomicity despite in the area of databases and distributed com-
putation these two terms denote distinct properties [8] and above mentioned
definition of atomicity corresponds to the definition of serializability. I will
continue to use the term atomicity (atomicity violation) in the following text.

The problem of atomicity is nowadays also intensively studied as a part
of research devoted to transactional memory [36]. In systems with transac-
tional memory, the data race problem does not exist but one has to infer set of
instructions that must be executed together (in one transaction) to avoid atom-
icity violation. Problems related to transactional memory go behind the scope
of this work and therefore I mention only algorithms related to systems with-
out transactional memory. Algorithms described in this section can be sorted
into two groups: (1) algorithms considering atomicity over one variable and
(2) algorithms considering atomicity over a set of somehow connected variables.

Atomicity over one variable. Most of algorithms considering correctness
of a set of accesses to a single variable are based on detecting so-called unseri-
alized interleavings [77, 43, 72]. Unserialized interleavings is a set (usually very
small) of accesses to a single variable from different threads that can not be
transformed to some serial execution. The terminology here is not fixed yet as
can be seen in the following paragraphs.

In [77], a notion of computational units (CU) is introduced. A CU is an ap-
proximation of a piece of code that should be executed atomically. A CU starts
with the read operation on some shared variable and ends before the next read
of the same variable. The end of the CU is conservative because the atomic
region may have ended earlier. Interference with CUs is then checked on serial-
izability. Checking serializability is bit complicated here and involves checking
if related CUs does not overlap.

Much easier way of checking serializability was introduced in [43]. Authors
introduce so-called access interleaving invariants (AI invariants) which reflect
the idea that any of two consecutive accesses from one thread to the same
shared variable should not be interleaved with an unserializable access from
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another thread. Based on this observation all eight possibilities (a previous
access, a current access, and an interleaving access from another thread) are
discussed. Four of them are marked as unserializable. Checking is then based
on simple interleaving pattern matching. AI invariants are easy to check and
therefore detectors based on them are very fast. Disadvantage of this solution
is that sometimes transactions span more than just two subsequent accesses to
a variable.

More complicated approach has been introduced in [20, 76]. The atomicity
is checked based on Lipton’s reduction theorem [40] using so-called reduction
algorithm. All instructions are classified according to their commutativity prop-
erties: right-mover instruction R (can be swapped with immediately following
instruction), left-mover instruction L (can be swapped with immediately pre-
ceding instruction), both-mover instruction B (can be swapped with preceding
or following instruction), and non-mover instruction N (not known to be left or
right mover). Classification is based on synchronization operations, e.g., lock ac-
quire events are right-movers, lock release events are left-movers, and race free
accesses to variables (lockset-based dynamic detection algorithm is used) are
both-movers. A transaction is considered to be equivalent to program method.
A set T of transactions is atomic according to Lipton’s reduction theorem if T
has no potential for deadlock and each transaction in T has the form R∗N?L∗.
The mentioned works [20, 76] improve this principle to support reentrant locks,
thread local locks, etc. Again, overhead of this approach is quite high.

Atomicity over multiple variables. Previously mentioned algorithms
consider only atomicity of multiple accesses to the same variable. But, there
are situations where we need to check atomicity over multiple variables. For
instance, a point in a three-dimensional space is described by three coordinates
x, y, z. These variables must be operated in a way that preserves consis-
tency [72, 4].

In [4], the problem is referred as high-level data race and its detection is based
on checking of so-called view consistency. A view is generated by a thread and
consists of a set of variables that are operated together (accessed within a single
method). Algorithm checks whether a set of views form a chain (can be sorted
according to set inclusion) and are compatible with a current view of a thread.
Algorithm has to operate with a big number of sets (each view is a set) and
therefore has very big overhead.

A different approach is presented in Velodrome [23] where a graph of trans-
actional happens-before relation is built (happens-before among transactions).
If the graph contains a cycle, transactions involved in the cycle are unserializable
and therefore atomicity violation is detected. To create a graph for the whole
execution is inconvenient and therefore nodes that can not be involved in a cy-
cle are garbage collected or even are not created. Disadvantage of Velodrome is
that programmer has to annotate program to identify transactions and in some
cases the overhead generated by the algorithm.

The simple idea of AI invariants described above has been enriched to sup-
port a pair of variables in [72, 26], where 11 (respectively 14) problematic in-
terleaving scenarios was identified for a given pair of variables and detectors of
these patterns were proposed.

The problem of the above described algorithms for both single or multiple
variables is in inferring of set of instructions (atomic sections, transactions)
that should be executed atomically. This is according to my knowledge still
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considered as an open problem which is heavily studied mainly in the area
of transactional memory. Some approaches tries to infer atomic sections from
multiple executions of the program, i.e., [77], and others force programmers to
annotate code, i.e., [23].

2.1.3 Detection of Deadlocks

Deadlocks introduced in Section 1.1 are similarly to other bugs hard to detect
during testing phase but they are usually easier to analyze because threads stop
their execution in an error state. Therefore, dynamic analysis focus mainly on
finding potential deadlocks [2, 1]—deadlocks that do not occur during current
execution but could occur in another execution if the scheduling changes a bit.

Detection of deadlocks usually involves graph algorithms as it is for instance
in the case of algorithm introduced in [56] where a thread-wait-for graph (re-
source allocation graph) is dynamically constructed and analyzed for presence
of cycles. Thread-wait-for graph is arc-classified digraph G = (V,E) where ver-
texes V are threads and locks and edges E represent waiting arcs which are
classified (labeled) according to synchronization mechanisms (join, notification,
finalization, and monitor wait). A cycle in this graph involving at least two
threads represents a deadlock.

In [27], a novel algorithm called GoodLock for detecting deadlocks was pre-
sented. The algorithm constructs synchronization tree-based on runtime lock
trees and uses depth-first search to detect cycles in it. The runtime lock tree
Tt = (V,E) for a thread t is a tree where vertexes V are locks acquired by t and
there is an edge from v1 to v2 when v1 ∈ V represents the most recently acquired
lock that the thread t holds when acquiring lock v2 ∈ V . The synchronization
tree is a directed graph G = (V,E) such that V contains all the nodes of all
runtime lock trees, and the set E of directed edges contains: (1) Tree edges in-
duced by runtime lock trees, and (2) so-called inter edges—bidirectional edges
between nodes that represent the same lock and that are in different runtime
lock trees. The program has potential for a deadlock if synchronization tree con-
tains so-called valid cycle—a cycle that does not contain consecutive inter edges
and nodes from each thread appear as at most one consecutive subsequence in
the cycle.

The original GoodLock algorithm is able to detect deadlocks only between
two threads. Later works [2, 7, 1] improve the algorithm to detect deadlocks
among multiple threads. In [1], a support for semaphores and wait-notify con-
structions was added. Recent work [29] modified the original algorithm in the
following three ways: (1) A lock graph is not constructed—instead the algorithm
uses stack to handle so-called lock dependency relation. (2) The algorithm com-
putes transitive closure of the lock dependency relation instead of performing
depth first search—it uses more memory but the computation is much faster.
(3) The algorithm gathers context information (thread identification and where
it acquired a lock) which can be then used to identify cause of the detected
deadlock.

All algorithms above can produce false alarms because they do not consider
the happens-before relation among lock operations and most of them (except
[1]) do not consider other synchronization primitives than locks.

13



2.2 Static Analysis of Concurrent Software

Static analysis is a very popular technique for detection of bugs and therefore
there exist plenty of different static approaches, algorithms and techniques for
analyzing programs [53]. Nondeterminism introduced by concurrency is very
difficult to handle for most of existing analyzes and therefore it is subject of
intensive research in few past decades. I divided static analysis techniques used
for detection of concurrency bugs into the following four groups: (1) pattern-
based static analyzes, (2) type system based static analyzes, (3) data-flow static
analyzes, and (4) heavy-weight static analyzes. The groups are described in the
following paragraphs.

Pattern-based static analysis. Searching for specific patterns in the code
or in the bytecode of concurrent programs is primitive but very efficient way
of finding some types of concurrency bugs. In [28], six different code patterns
leading to concurrency bugs were introduced. These patterns are very simple,
e.g., wait not in loop pattern describes situation that a wait() command is
not enclosed by a loop checking condition. In Java 5 [39], it is possible that
wait routine is interrupted unexpectedly. Checking presence of a loop around
each wait() command is relatively simple task. It is evident, that such pat-
terns approximate reality and can produce many false positives and negatives.
For instance, described pattern omits check whether the loop really checks the
condition used in the specific situation.

Type system-based static analyzes. This approach uses so-called type
systems [53]. A type system is defined as “a tractable syntactic method for
proving the absence of certain program behaviors by classifying phrases accord-
ing to the kinds of values they compute” [60]. Formal type system provides
powerful and efficient checker of correctness of the code mainly if the program-
ming language is strongly (each variable has a deterministic type in each point
of computation) and statically (types can be inferred without execution) typed.
Detection of concurrency bugs is usually done by extending the initial type
system with a number of additional types that handle concurrency. These ad-
ditional types are usually expressed by code annotations. Type system then
checks code and search for violations of rules defined over newly defined types.

In [19, 21], a clone of classic Java called ConcurrentJava has been proposed.
The paper presented several annotations that make ConcurrentJava race-free.
For instance, each definition of a shared variable can be annotated with the
annotation guarded-by l which express that each access to the particular vari-
able has to be guarded by a lock l. ConcurrentJava solves problem of data races
but does not address atomicity violation and deadlock problems.

Pure type analysis is powerful formal technique that is unable to fully un-
derstand threading effects of the code. The analysis also expects programmers
to annotate their code what is very expensive mainly for already written code.
Moreover, type analysis is usually flow insensitive (does not respect flow of con-
trol during execution) and therefore detectors based purely on this technique
produce many false alarms.

Data-flow-based static analyzes. On the other hand, data-flow-based
analysis respect flow of control during execution [53]. The analysis computes so-
called fact for each statement (or basic block). A set of so-called flow-equations
is used to pass facts along statements according to control flow of the program.
Computation is usually done iteratively until a fixpoint is reached (a state where
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facts do not change with further iterating). Data flow analysis can be so-called
intraprocedural (considers control flow only within procedures) or interprocedural
(considers control flow within procedures and among procedures).

A combination of type-based and data flow analysis has been presented in
[78]. The type system presented in the paper uses so-called typestates introduced
in [67]. Typestates extend the ordinary types defined in language. The ordinary
type does not change through lifetime of the object but its typestate may be
updated during the course of the computation. A typestate property can be
captured by a finite state machine where the nodes represent typestates and
the arcs correspond to operations that lead to state transitions. The proposed
algorithm uses typestates to handle locksets and correlated variables that should
be operated together (high level data race). Typestates are computed using
intraprocedural data-flow analysis. The technique is able to handle relatively
big programs but still produces false alarms due to unsupported synchronization
mechanisms (only locks are supported) and threading effects.

Purely data-flow interprocedural static detector of data races and deadlocks
called RacerX has been presented in [17]. Detection has three phases: (1) Con-
trol flow of each procedure is obtained and complement control flow graph of the
whole system is constructed. (2) Data-flow analysis based on lockset algorithm
is performed over the constructed graph. A datarace is reported if an access
to the variable is not guarded by a lock that is mostly held during another ac-
cesses to the variable. Deadlock is reported when a locking cycle (locks are not
obtained every time in the same order) is discovered. (3) Final inspection algo-
rithm then ranks each detected bug and reported are only those that are real
with a high probability. The presented approach produce many false alarms and
has tremendous memory requirements because uses a lots of procedure caches
gathering sets of locks.

Better results were obtained, e.g., in [51, 31] where two more static analyzes
were incorporated into detecting machinery. Alias analysis [53] identifies a set
of variables that refer to the same memory location. Detectors use so-called may
analysis which computes over-approximation of the set of variables. The may
analysis computes a set of variables that may at some point of computation refer
to the same program location. Detectors can then better assume which locks
are held and which objects are accessed. The second analysis that improves
static detectors is called escape analysis [53]. The analysis identifies set of
objects that are accessible in more than one thread. The set usually contains all
globally accessible objects and objects that so-called escape thread where they
were initialized. Again, usually over-approximation is used. An object escapes
a thread if it is initialized in a procedure and then a pointer to the variable
is returned from the procedure. Then a place of use of such object is hard to
determine and therefore the object is add to the set of variables that escaped
a thread.

There are plenty of works devoted to different kinds of static data race and
deadlock detectors. They incorporate different alias and escape analyzes, various
ways of inferring of variables that should be operated together, different kinds
of ranking of detected errors and various kinds of optimizations that decrease
computation and/or memory requirements of the whole machinery. But still,
they can produce false alarms because of approximation they accept and because
they usually rely on simple lockset-based algorithm.
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Heavy-weight static analyzes. It is evident that all previously described
static analyzes cannot be accurate because they do not model threads. Such
analyzes are relatively cheap and can analyze hundreds of thousands of lines
of code but still produce false alarms because they do not understand what is
happening during multi-threaded execution. The following approaches model
threads and therefore are able to reason about concurrency more accurately.

Abstract interpretation for detection of high-level data races has been pre-
sented in [75]. Abstract interpretation [53] is a static analysis technique that
analyzes instructions along the control-flow and gains selected information about
their semantics without performing all the calculations. The presented analysis
collects information about concurrency (thread start/stop), accessed objects,
and locking operations (lock/unlock). Each thread is modeled by so-called ab-
stract thread identified by a place of their creation. The analysis symbolically
executes the main thread first and collect threads that were created by the main
thread. Then the next yet unanalyzed thread is chosen and processed. During
abstract interpretation a heap shape graph is constructed. Heap shape graph
is graph which nodes represent abstract objects (individual objects or set of
aliased objects) and edges represent points-to relation induced by references.
A problem is reported if inconsistency in accesses to a set of abstract objects
by abstract threads is detected. The algorithm still produce many false alarms
due to accepted abstractions but shows a new direction in analysis of concurrent
systems.

A similar approach has been introduced in [74] where during abstract in-
terpretation object use graphs are constructed. Object use graph extends heap
shape graph and captures accesses from different threads to related abstract ob-
ject. It can be said that object use graph approximates happens-before relation
among accesses to the abstract object from different abstract threads. This so-
lution is more precise then previously mentioned but consumes a lot of memory
because to every shared object is constructed complex object use graph. More-
over, even this algorithm produces many false alarms due to approximations it
accepts.

A very expensive and precise static analysis has been firstly introduced in
[46]. So-called non-concurrency algorithm proposed in this paper constructs
may happen in parallel (MHP) relation. The happens-before relation mentioned
in previous sections can be represented as set of pairs of statements that cannot
be executed in parallel. MHP is a conservative complement to this relation. In
the original paper, MHP is computed in two steps. Initially, any pair of instruc-
tions can happen in parallel (MHP is total). Then, the initial set of statements
are pruned using happens-before relation induced by detected happens before
relation.

The original algorithm for computing MHP relation is very inefficient and
therefore several modifications has been proposed in recent years. In [52], a data-
flow computation of MHP has been presented. The data-flow analysis is per-
formed over so-called parallel execution graph. This graph combines control-flow
graphs of all threads that could be started during the execution with special
edges induced by synchronization actions in the code. The size of the graph in-
creases exponentially to the size of the program and to the number of threads.
Therefore, this algorithm can handle only small programs.

The data-flow computation of MHP has been then slightly improved in [6] by
so-called thread creational tree that helps to compute rough over-approximation
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of MHP relation before the data-flow evaluation is used. But still this precise
analysis of concurrent programs is too expensive for common programs contain-
ing a lot of concurrency.

From the examples above, one can see that static analysis is powerful tech-
nique for checking correctness of common programs. But non-determinism intro-
duced by multi-threaded programs present a big challenge for these techniques.
Current techniques are either not precise and produce many false alarms or too
expensive so they can not handle common programs. In fact, these expensive
analyzes get very close to model checking.

2.3 Combinations of Static and Dynamic Ana-
lyzes

Previous sections demonstrated strong and weak sides of dynamic and static
approaches. Dynamic analyzes can be very precise but results obtained by this
kind of analyzes describe only particular vicinity of analyzed execution paths
and overhead generated by dynamic analyzes is very important metrics for prac-
tical use. On the other hand, static analyzes are usually imprecise but are able
to handle whole systems. Therefore, it is straightforward to combine these two
approaches to get better analyzers. There exist plenty of works applying com-
bination of static and dynamic analyzes (some of them were already mentioned
in previous section but the combination was omitted). The goal of this section
is to pinpoint basic ways used for combinations of static and dynamic analyzes.
Combination scenarios are grouped according to direction of information flow.

From static analysis to dynamic analysis. Vast majority of detectors
that combines static and dynamic approach use static analysis first and pass
obtained results as input to dynamic analysis, c.f., e.g., [33, 2]. Usually, this
combination is motivated by intention to decrease overhead generated by dy-
namic analysis. This is case of deadlock detector [2], where type-based static
analysis is used to identify possible deadlock scenarios for a program. Based
on these possible scenarios, following dynamic analysis omits to perform checks
that are not necessary.

From dynamic analysis to static analysis. Less popular is other di-
rection when dynamic analysis is used as source of information for static ana-
lyzer. For instance in recently published framework called Radar [13], a dynamic
lockset-based data race detector is used to collect data concerning simultaneous
accesses to a variable which are then used within classic sequential data-flow
analysis. More precisely, data-flow analysis asks race detector whether there ex-
ist any concurrent write access statement to a read access statement currently
being analyzed. If the answer is yes, data-flow analysis mark read statement
as possibly corrupted and fact based on this statement is not spread using flow
equations. This solution helped to decrease number of false alarms produced by
their data-flow analysis.

Bi-directional exchange of information. There are nearly no approaches
that use bi-directional flow of information between dynamic and static meth-
ods for detection of concurrency bugs. This lack was pinpointed in a recently
published paper [10]. In this paper, an approach combining static and dynamic
analyzes has been proposed. Static analysis uses coarse-grained analysis to
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guide the dynamic analysis to concentrate on the relevant code, while dynamic
analysis collects concrete runtime information during guided exploration. Pro-
posed collaboration of static and dynamic analyzes is not only bi-directional
but also iterative. The communication between static and dynamic analyzes is
repeated several times during analysis. However solution described in the paper
was in preliminary stage, I believe that such cooperation of static and dynamic
analyzes has a big potential.

2.4 Self-Healing of Concurrent Software

Algorithms for self-healing of concurrency bugs can be grouped according to
types of concurrency bugs they heal into three groups: (1) algorithms that
heal data races, (2) algorithms that suppress atomicity violations, and (3) al-
gorithms healing deadlocks. All following algorithms focus only on detection
and suppressing of concurrency bugs. The algorithms do not address healing
assurance which is an open problem to all of them.

Healing of data races. The idea of automatic healing of data races was
probably firstly presented in our paper [34] which is described in Section 4.2.
In this paper, we proposed two possibilities how to heal data races: (1) Legal
influencing of the scheduler using noise injection technique, and (2) adding syn-
chronization to force execution behaves correctly (can cause deadlock and/or
considerable overhead in some cases). Problem of our solution is that detected
(previously unknown) race can be successfully healed only during the next ex-
ecution of the application. This is caused by the fact that we detect data race
when it is already happening.

Different approach was presented in [50, 64]. The algorithm called ToleR-
ace presented in these papers is based on ideas known from fault tolerance—
specifically on mirroring. The algorithm duplicates shared data inside a critical
section and so provides an illusion of atomicity when the shared data is updated.
The healing is based on propagating the appropriate copy when the critical sec-
tion is exited. ToleRace detects only asymmetric races, i.e., races caused by
two threads accessing a shared variable, one that correctly acquires and releases
a lock and another that does not. The lock acquiring and releasing defines the
critical section.

The healing technique has to know for successful healing an atomicity of the
healed application and therefore data race healers can be linked together with
healers of atomicity violations described in the following paragraphs.

Healing of atomicity violations. In papers [38, 33], we presented a new
algorithm called AtomRace that is able to detect and heal atomicity violations
(and also data races as a special kind of atomicity violations). The algorithm
uses the same healing techniques which we proposed in our previous work. More-
over, this algorithm is able to heal even atomicity violations that are about to
happen. Atomicity of the application is obtained in advance using static anal-
ysis or AtomRace checks for AI invariants. The algorithm is described in more
detail in Section 4.

Similar approach but focused on hardware solution was presented in [44].
The main idea presented in this paper is that a program execution is divided
into so-called chunks. Chunks (atomic parts of execution) are chosen according
to accesses to variables (based on AI invariants). Threads can be switched only
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between chunks. It was shown that chunk granularity systems have a lower
probability of exposing atomicity violations than instruction granularity sys-
tems. Detection algorithm then dynamically checks memory addresses which
consecutive chunks access. If an address in memory is accessed by two consecu-
tive chunks (executed in one thread), the latter one is enlarged to contain also
previous access to the memory address.

The problem of healing data races and atomicity violations is that healing
must preserve atomicity of the application. Inferring of correct atomicity of the
application is still an open problem as was mentioned in previous sections.

Healing of deadlocks. A bit more work than in previous cases has been
done on dynamic healing of deadlocks. Healing usually use analysis of simple
thread-wait-for graphs. In [54], detection algorithm looks for strongly connected
components (SCC) in the graph which means a potential for deadlock. These
components are then during execution guarded by so-called gate-lock. The gate-
lock for a given SCC must be acquired before any lock participating in SCC is
acquired and is released after all locks participating in SCC are released. The
algorithm also checks for deadlock caused by a gate-lock and when such deadlock
is detected healing is canceled. Very similar idea was also presented in [81] where
a term ghost-lock is used instead of gate-lock.

Another approach [80] tries to derive patterns from already detected dead-
locks and use these patterns for detection of possible deadlocks at runtime.
Patterns are described as tuple (PA, PW ) where PA represents a set of places
in the code where threads acquire a problematic lock l and PW represents set
of places where threads are waiting for the lock l. When a deadlock pattern is
detected, Java exception handling subsystem is used to analyze it and deduce
related pattern. During the next run of the program, deadlock can be avoided
either by adding a ghost-lock guarding problematic code regions or by dynamic
changing of order in which problematic locks are acquired.

Similar pattern-based solution (patterns are called templates) was presented
in [30] where detected deadlock patterns are healed using waiting before acquir-
ing a problematic locks. Such healing technique avoids deadlocks but can cause
livelock. Livelock is situation similar to deadlock, except that the states of the
involved threads constantly change but no thread is progressing. Proposed algo-
rithm is able to detect such situation and handle it similarly to deadlock—yields
are put to another places in the code.

Many of mentioned approaches can similarly to previously described tech-
niques produce false alarms and start to heal bugs that are not real. Healing
assurance is in most of cases done by a prove that healing works and only some
works also checks whether healing does not introduce a new bug.

2.5 Testing of Concurrent Software

Nondeterminism induced by concurrent computation is hard to test as was men-
tioned in the introduction. Therefore, researchers focused mainly on dynamic
analysis (some authors also call it testing) and other detection techniques men-
tioned above. For all kinds of testing concurrency and also for dynamic analysis,
it is very important to see as many different (and still legal) interleavings of pro-
gram threads as possible. Approaches addressing this challenge are described in
the following subsection. The second subsection briefly introduces techniques
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for systematic testing of programs.

2.5.1 Increasing Coverage of Concurrent Behavior

All techniques mentioned in this subsection are based on repeated execution
of the same test with the same inputs. During each execution, algorithms try
to affect the scheduler with intention to see as many different interleavings
as possible. Basically, there are two techniques which can achieve this goal:
(1) modifying the scheduler and (2) noise injection techniques.

Modifying the scheduler. The classic Java scheduler is by design non-
deterministic [59]. But if a deterministic scheduler is used, one can control
interleavings among threads. An example of this approach is the tool called
RaceFuzzer [66]. RaceFuzzer uses imprecise hybrid dynamic race detector to
detect pairs of statements (s1, s2) that are probably in a race (can happen
concurrently and access the same variable). The program is then reexecuted
with a deterministic scheduler. The scheduler blocks the thread which reach
statement s1 and tries to let other threads to reach the corresponding statement
s2. If both s1 and s2 statements are reached in different threads, both statements
can be executed concurrently and therefore a true race is detected. Here, the
modified scheduler is used to discover interleaving that cause a true race.

A more advanced solution has been presented in the tool called Chess [49].
The tool records already seen interleavings in all previous executions and based
on model checking techniques [5] choose suitable interleaving for the current
execution. Because there are too many possible interleavings, the tool limits
the number of thread switches that are examined only to a few most likely
causing a bug.

Above mentioned techniques can be very efficient but require a modified
version of the scheduler and in general the whole execution environment. This
is a big disadvantage of these methods.

Noise injection. Noise injection techniques do not require any modification
of the execution environment. The technique influences scheduling indirectly
by injecting so-called noise into execution. Noise is usually generated by in-
structions like yield() and wait() [71]. An example of this approach is a tool
called Concurrency Testing Tool (ConTest) [15, 55]. ConTest randomly or based
on a chosen heuristics puts noise into the execution. The noise increases the
probability of spotting a different thread interleaving. This stochastic solution
combined with dynamic detection techniques works quite well even for complex
systems as was shown, e.g., by us in [33, 38].

A similar approach can be found in several other recent works. For instance,
in deadlock detectors presented in [29, 54], a noise is injected into code with
intention to achieve interleaving leading to situation where a previously detected
deadlock manifests. This way, the proposed algorithm checks whether a detected
deadlock is real (similarly as RaceFuzzer checks whether the race is real). Noise
injection is a cheap and promising technique for testing concurrency of complex
software systems.

2.5.2 Systematic Testing

Systematic testing [14] is a style of testing which is complete under some chosen
metrics. Systematic testing is opposite to incomplete or random forms of testing.
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Metrics used for systematic testing are called coverage metrics. A test either
examines a particular part of the tested system (the particular part is covered
by the test) or not. Systematic testing tries to cover the whole (search) space
induced by the chosen metrics.

There are several types of testing scenarios where systematic testing has been
successfully applied [48]: (1) structural (white-box) testing which derives tests
from the internal structure of the software under test, (2) functional (black-box)
testing which tests the logical behavior of the system, (3) hybrid (gray-box)
testing which combines the previous two approaches, and (4) Non-functional
testing which concentrates on other properties of the tested system, e.g., on the
best-case and worst-case execution times of real-time systems.

In all these areas of systematic testing, testers have to provide tests and
their inputs (and in some cases expected outputs). This is a nontrivial and time
consuming work. Therefore, several methods for automatic test generation have
been developed, c.f., e.g., [58, 69, 68]. The Randoop approach presented in [58]
constructs unit test inputs (in the form of sequences) iteratively for randomly
selected methods. Unlike a pure random approach, Randoop generates inputs
for the next test based on a feedback obtained from previous tests. Another
approach generating unit tests has been presented in [68] where static analysis
is used to mine so-called sequences that model sequences of method calls of the
particular class under test. These sequences are then used for generating unit
tests that cover all methods of the tested class.

Because the state space of possible test inputs is usually huge, different
heuristics for choosing suitable inputs were proposed [48]. The heuristics can be
divided into two groups: (1) search-based heuristics which get use algorithms
searching for best place in the specified state space of test inputs (e.g., simu-
lated annealing algorithm), and (2) evolutionary algorithms which use simulated
evolution as a search strategy (e.g., genetic algorithms).

The state of the art in applying of different kinds of heuristics to different
types of program testing has been mapped and moved ahead by recently finished
European project called Evolutionary Testing for Complex Systems (EvoTest)1.
Within this project, a new framework for Evolutionary white-box software test-
ing [25] has been developed. The framework uses genetic algorithms to generate
suitable inputs for structural tests with intention to achieve a maximal code
coverage.

According to my knowledge, there are no approaches applying systematic
testing and heuristics mentioned above to the field of testing of concurrent
systems.

1http://www.evotest.eu
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Chapter 3

Goals of the Thesis

The primary goal of my thesis is to propose a technique that detects concurrency
bugs in complex software systems with effort similar to testing. The key idea is
in suitable incorporation of dynamic and static analyzes into systematic testing
approach. The primary goal can be divided into two aims: (1) to improve
algorithms for detection of concurrency bugs and (2) to modify and/or develop
algorithms for systematic testing of concurrency in complex software systems.

Regarding the primary aim to detect concurrency bugs, given goals can be
concretized as follows:

• Analyze possible bugs in synchronization of complex software systems.
Mainly focus on so far less studied synchronization mechanisms (barriers,
wait-notify constructs, etc.), library constructs specified in the Java spec-
ification request 1661 (synchronized queues, executor interface, etc.), and
their usage patterns in complex software systems.

• Develop detectors of order-violation bugs which are not supported by ex-
isting approaches.

• Design a suitable combination of dynamic and static techniques for detec-
tion of chosen bugs.

Concerning the secondary aim to develop systematic testing of concurrent
software, given goals can be concretized as follows:

• Design a suitable incorporation of dynamic and static analyzes of concur-
rency bugs into the testing process.

• Propose application of systematic testing techniques for testing of concur-
rency in complex software systems.

• Develop new heuristics based on artificial intelligence algorithms and/or
statistics for controlling systematic testing of complex concurrent software.

Besides the primary goal of my thesis, I would like to propose new self-
healing methods for bugs that can be effectively detected by dynamic analysis
and hardly detected using static analysis.

1http://www.jcp.org/en/jsr/detail?id=166

22



Chapter 4

So-far Achieved Results

The results that we have achieved concerns the following three topics: (1) dy-
namic detection of concurrency bugs, (2) dynamic healing of detected concur-
rency bugs, and (3) an infrastructure for experimenting with combining artificial
intelligence, dynamic analysis, and systematic testing techniques. All three re-
sults are shortly described in the following sections.

The results within the first two topics were achieved during my participation
in the European research project called SHADOWS1. Within this project our
research group cooperated with the research group led by Dr. Shmuel Ur from
IBM Research Laboratories in Haifa, Israel. The cooperation continues even
after the end of the SHADOWS project and the third topic is also product of
our joint work.

4.1 Dynamic Detection of Concurrent Bugs

We have developed dynamic detection techniques for finding data races, atomic-
ity violations, and mishandled notify bugs. Detectors of data races and atomic-
ity violations were implemented and published on reputable international work-
shop PADTAD [34, 38]. A tool which uses proposed algorithms were released
in the form of authorized software2 and presented in the tool paper [33]. Our
work on mishandled notify is still ongoing and we plan to publish it this year.

Finding data races. We have proposed and implemented two algorithms
for detection of data races. The first is a modification of the well known lockset-
based algorithm Eraser [65] and we call it Eraser+. We enrich the original
algorithm with an ownership model [20, 73] described in Section 2.1 and we add
a support for Java join synchronization.

In Java, if a thread t1 calls the join() method of another thread t2, it ensures
that all the events of the thread t2 are executed before the events following the
join() call in the thread t1. That, in fact, introduce a happens-before relation
among instructions executed in t2 and instructions executed in t1 after successful
call to join(). We reflect that by introducing a set S(t) for each thread t such
that a terminated thread t1 and all threads in its set S(t1) are added into the set
S(t) after a successful join synchronization of t1 with the thread t. Each variable

1 http://sysrun.haifa.il.ibm.com/shadows/
2 http://www.fit.vutbr.cz/research/groups/verifit/tools/racedetect/
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v maintains a set of threads T (v). A thread t is added to the set T (v) when t
accesses v. If a thread t is accessing a variable v and S(t)∪{t} ⊇ T (v), we know
that the thread t is the last currently existing thread accessing v and all others
have been successfully join synchronized with t. Then, the variable v changes
its status back to Exclusive2, its C(v) is set to contain all possible locks, and
T (v) contains only the current thread t. This way, we rapidly decreased number
of false alarms produced by the original algorithm.

The second algorithm for detection data races which we call AtomRace de-
tects data races as a special case of atomicity violations. As for detecting data
races, it is based directly on the definition of a (low-level) data race which says
that a data race occurs if two or more threads access a shared variable and at
least one access is for writing and there is no explicit synchronization which pre-
vent these accesses from being simultaneous. Thus, a data race can be detected
by finding a situation when such an access scenario occurs.

In AtomRace, this is detected as a special case of an atomicity violation
when atomic sections are defined simply as sequences of instructions BeforeAc-
cessEvent, i, AfterAccessEvent where i is a read or write instruction on shared
data and BeforeAccessEvent/AfterAccessEvent are special instructions that are
added by instrumentation before/after i. Of course, a data race happens only
when at least one of two colliding atomic sections is based on a write instruc-
tion. The probability of spotting a collision of this kind in a regular program
is low, however, we exploit noise injection techniques [71, 15] that significantly
increase this probability.

Finding atomicity violations. The atomic sections monitored by Atom-
Race may be extended to span more subsequent instructions on a shared variable
v. Then, BeforeAccessEvent (entry point) and AfterAccessEvent (end point) can
be used to determine a part of code that should be executed atomically with
respect to accesses to v—atomic section asv related to variable v. Then, we
associate a (possibly empty) subset of the set {read,write} with each atomic
section asv. This subset indicates which kind of operations can be performed
by other threads on v while a tracked thread is running between the entry point
of a given atomic section and a given end point of this atomic section.

Efficiency of AtomRace in detection of atomicity violations depends on ac-
curacy of atomicity sections which are given as input to AtomRace. In [38], we
proposed three methods which can be used to automatically infer correct and ac-
curate atomicity sections. The so-called pattern-based static analysis looks for
appearances of typical programming constructions that programmers usually
expect to execute atomically. Another static analysis builds on the access inter-
leaving (AI) invariants with the serializability notion from [43] which identifies
triplets of accesses to v from two different threads which are not serializable and
therefore problematic. We also tried to dynamically learn atomicity sections.
Initially, we claim each two subsequent accesses to a variable v to construct
atomic section. Then, by repeated execution of the application with AtomRace
attached, we identify those atomic sections which were violated and remove
them from the initial set.

Applying noise injection technique. Both algorithms (Eraser+ and
AtomRace) for dynamic detection of concurrent bugs were implemented using
IBM tool called ConTest [15] which supports noise injection technique intro-
duced in Section 2.5.1. Our experiments show that suitable heuristics for noise
injection increases efficiency of dynamic detection tools dramatically. There-
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fore, we proposed heuristics that insert noise only into atomic sections used
by AtomRace. This increases efficiency of AtomRace and keep its overhead on
a reasonable level.

Detecting mishandled notify. Our work on mishandled notification is
still in early stage. We proposed an algorithm which link together conditions
(bool expressions) on which threads are waiting and monitors used for a wait-
notify synchronization. This information helps us to identify problems in pro-
grams which use multiple conditions on a single monitor. For instance, the
algorithm is able to detect situation when a thread waiting for a different con-
dition is notified instead of another which really waits for a condition that has
arisen.

4.2 Healing of Concurrent Software

We proposed and evaluated several techniques for dynamic healing of detected
data races and atomicity violations. This work was published in several work-
shop papers [34, 38, 33]. Our techniques can be divided into two classes.

Healing by affecting the scheduler. The first class of healing techniques
is based on legal affecting the scheduler. This technique is motivated by the
idea of noise injection technique. Before executing a problematic part of code
where a problem was detected, the currently running thread invokes for instance
the Thread.yield() method, which causes a context switch. Next time, the
thread gets an entire time window from the scheduler and so it can pass the
problematic code section without an interruption with a much higher probabil-
ity. This technique works only on computers having just one core CPU where
interleavings of threads is dependent on context switches on CPU.

The technique can also be used in an opposite way. If some thread t is
accessing a shared variable or is executing some atomic section, all other threads
can detect this situation and call Thread.yield() or Thread.sleep() and allow
t to finish the problematic piece of code. This technique provides much better
results. However, all healing techniques based on legal influencing the scheduling
do not guarantee that a detected problem will really be completely removed,
but they can decrease the probability of its manifestation. These techniques
do not work well for instance if the section whose atomicity is to be enforced
is longer. On the other hand, due to the nature of the approach, the healing
is safe from the point of view that it does not cause new, perhaps even more
serious problems (such as deadlocks).

Healing by additional synchronization. The second class of self-healing
techniques injects additional healing locks to the application. Every time a crit-
ical variable on which a possibility of a data race or atomicity violation was
detected is accessed, the accessing thread must first lock a specially introduced
lock. Such an approach guarantees that the detected problem cannot manifest
anymore. However, introducing a new lock can lead to a deadlock, which can be
even more dangerous for the application than the original problem. Moreover,
a frequent locking can cause a significant performance drop in some cases.

On-the-fly healing. We proposed not only techniques that are able to heal
already detected problems (detected in previous executions) but also a modifi-
cation of AtomRace algorithm which blocks thread that is about to interleave
an atomicity section in an unallowed manner. This way, we still detect an atom-
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icity violation or a data race but accesses to a problematic variable are serialized
and therefore problem is suppressed on-the-fly.

4.3 Systematic Testing of Concurrent Software

We have designed and partially implemented prototype of infrastructure for
systematic testing which can be later used for experiments with applying search
techniques and evolutionary algorithms in the field of software testing. The
infrastructure is similar to one presented in [25]. This framework has been
developed within European research project EvoTest and is written in C. The
framework focus only on application of evolutionary algorithms in the field of
structural (white-box) testing. Our framework is more general. We expect that
our framework could be used for both search and evolutionary techniques and
applied to any kind of testing include testing of concurrency. We also plan to
interconnect the framework with other tools used for testing of Java programs
(e.g., JUnit) and libraries providing data mining algorithms. We plan to publish
the infrastructure this year.

Shortly, the infrastructure takes as input a set of tests of an application, a
description of valid parameters of tests, and a search algorithm used for choosing
a test and its parameters. The infrastructure works iteratively. Each iteration
has three steps: (1) The (possibly big) state space made of tests and possible
parameters is analyzed using search algorithm which identifies test and parame-
ters to be used. (2) The chosen test is executed (dynamic and/or static analysis
can be also performed) and obtained results are stored. (3) The results are
analyzed and transformed to a knowledge which can be used either by search
algorithm or by dynamic and/or static analysis during the next iteration.

The infrastructure has multiple scenarios of utilization in our further re-
search. It can be used for evaluation of various search algorithms, finding tests
and parameters which can be used for optimal testing of a given application
with respect to various constraints, etc. I plan to utilize this infrastructure in
achieving my research goal. Currently, three research groups are interested in
the development of the infrastructure—our group , group of Dr. Shmuel, and
people from the Center of Research on Evolution Search & Testing (CREST) at
King’s College London. This group was also involved in the EvoTest European
project.
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Chapter 5

Future Work

In accordance with the set-up goals, my future research concerns development
of methods for detection of concurrency bugs and their suitable incorporation
into the systematic software testing process.

In the area of dynamic detection, I am going to focus on less studied syn-
chronization constructs and on a fairly new library java.utli.concurrent
which provides new synchronization primitives and tools to Java developers. I
would also like to address the problem of missing detection algorithm for order-
violation bugs and propose new self-healing methods for chosen bugs. A work on
dynamic detection of problems with mishandled-notify construction has already
started and we plan to publish our results this year.

A new framework for systematic testing, which is also going to be published
this year, allows me to experiment with different search heuristics, testing meth-
ods, and data analysis algorithms. I plan to continue in development of this
framework and research new heuristics which can be used for efficient system-
atic testing of complex concurrent systems. At first, I plan to get use of recently
published concurrency coverage metric [70] and develop a suitable heuristic for
efficient insertion of noise into execution of tests with intention to get maximal
concurrency coverage during the testing phase.

Later, I would like to design a new heuristics based on work done by re-
search group of evolvable hardware at our faculty led by Dr. Sekanina (genetic
algorithms) and Center of Research on Evolution Search & Testing (CREST)
group at King’s College London (search techniques).

I plan to perform experiments with my prototypes on complex software
systems provided to me by IBM (within cooperation of our research groups)
and by RedHat (within cooperation of RedHat and our faculty where I am also
involved).
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