Framework for comparison of
network anomaly detection
algorithms

FIT VUT Technical Report

Vdclav Bartos, Martin Zadnik

Technicky report €. FIT-TR-2012-02
Fakulta informacnich technologii, Vysoké uceni technické v Brné

Last modified: 1.6.2012

Framework for comparison of network anomaly
detection algorithms

Vaclav Bartod and Martin Zadnik

IT4Innovations Centre of Excellence
Faculty of Information Technology
Brno University of Technology
Bozetéchova 2, Brno, Czech Republic
email: {ibartosv,izadnik}@fit.vutbr.cz

Abstract. This technical report describes a framework for evaluation
and comparison of several network anomaly detection (NAD) algorithms.
The framework addresses a need for reference implementations of various
NAD algorithms as well as a need for publicly available data sets.

1 Introduction

Anomaly detection systems helps to keep track of security violations and disrup-
tions to network and its services. Methods of anomaly detection have received
great research attention and large number of methods have been proposed. But
there is a lack of comprehensive comparison of existing methods and a lack of
annotated data sets for their evaluation.

In this paper we describe design and implementation of a framework for
comparison of existing methods. Its goal is to provide a set of tools to help
implementation and evaluation of various anomaly detection methods. It also
provides reference implementations of several methods. This reduces the effort
when comparing detection capabilities in terms of precision and types of detected
anomalies.

The framework focuses on network anomalies caused by spreading worms,
Distributed Denial of Service attack or network or port scanning. These anoma-
lies exhibit themselves by the increased number of flows which bare only few
packets (one in most cases) each. Traffic caused by such anomalies also exhibits
increased or decreased variability in packet header fields.

The report is organized as follows. A brief motivation for our work is given
in Section 2. The concept of the framework is described in Section 3. Section 4
provides description of selected algorithms. Section 5 describes the utilized data
set. The anomaly detection functions and methods are evaluated in Section 6.
The report concludes with Section 7.

2 Motivation

There are many methods proposed for anomaly detection systems. But they
usually vary in their properties. Some of them are specialized for detection of

particular category of intrusions, others are general. Some work upon short time
scales and detect anomalies within seconds, some can detect only a long-term
anomalies. Each method generates certain ratio of false alarms and misses certain
portion of existing anomalies. There are also great differences in computational
complexity.

Although several papers [6,8] categorize various methods according to their
properties, there is a lack of experimental evaluation and direct comparison of
their detection capabilities. Such evaluation is usually done in papers propos-
ing new methods. Authors usually compare proposed method with one or two
previous ones.

Unfortunately, there are no publicly available implementations of AD meth-
ods so every researcher who wants to compare his or her new algorithm to
others has to implement also all other methods. This is a lot of redundant work.
Moreover, many papers do not provide all the details needed for correct reim-
plementation, so it is possible that comparison of the same methods made by
different researches may vary significantly.

Because of these reasons we consider it very helpful to have reference im-
plementations of various anomaly detection methods, or at least a framework
containing libraries and tools to simplify writing of these implementations. Such
framework could also help a lot during development of new methods.

Another problem of evaluation and comparison of methods is a lack of test-
ing data. There are only few public sources of real network data (MAWTI traffic
archive [2], CAIDA [1]). Researchers often use their own data (e.g. from a uni-
versity network) but these data cannot be usually published due to privacy or
security issues. Moreover, the data set must be annotated, i.e. all anomalies in
the data set must be labeled. Unfortunately available data sets are only a plain
datal, so researchers have to annotate data themselves.

The framework addresses this issue by including several data sets which are
used to test implemented methods and may be used for cross-comparison with
other or new methods.

3 NADEX Framework

Because of the reasons discussed above, we have implemented a NADEX frame-
work (Network Anomaly Detection EXperiments). This framework contains ref-
erence implementations of several well-known anomaly detection methods, but
it is designed mainly to support easy implementation and evaluation of others.

With the framework a researcher is abstracted from data loading and pre-
processing routines or visualization of the results. She can focus only on the core
of an algorithm. It is also possible to easily reuse existing algorithms or their
parts (e.g. an algorithm for detection of anomalies in timeseries can be used as
a part of some more complex method).

! There exist annotated data sets from DARPA Intrusion Detection Evaluation 1998
and 1999, and KDD Cup 1999 data set, evidently these are very outdated now.

To enable objective evaluation and comparison of the methods, there is a
large data set included. Currently, the data set is not labeled, but in future
versions of the framework, the data will be annotated automatically (by com-
bining data from several detectors) or semi-automatically (with manual checking
and labeling of anomalies found by detectors). Of course, the framework is not
limited to the specific data set, others data may be used as well.

Most of the framework is implemented in Python?, because it is a powerful
high-level programming language well suitable for fast prototyping of algorithms.
It has also a large number of third party packages which can be used to simplify
coding. The only disadvantage of Python is its lower computing performance.
Because of this reason, some tools in the framework are written in C or C++.

3.1 Concept

The core of NADEX consists of many stand-alone modules. Some of the mod-
ules represent an implementation of given anomaly detection algorithm others
implement supporting functions. Since various algorithms process various inputs
and generate various outputs it is not possible to keep a unified structure of each
module. Rather than trying to unify the anomaly detection methods, we suggest
to identify those processing tasks that may be shared across the methods. Each
method must load its data, it may do some kind of filtering or signal processing
and it outputs the results, often in the form of graphs.

In our framework, each module loads input data from a file. Depending on the
method the input data may vary greatly. Some methods expect data in the form
of a signal, for example a vector representing a number of bytes received each
second, others accepts data in the form of packets or flows. In order to simplify
loading data the framework provides several functions to read data from text files
(vectors of values), pcap files or files containing flows. Loaded data are processed
within the module using other modules in the framework or third party libraries.

3.2 Loading data

There are three dedicated modules for loading input data. First module loader
serves for loading text files containing series of values, for example numbers of
bytes, packets and flows per time interval.

Module pcapfile allows to load data from pcap files as well as to write down
data into pcap files. It may be useful also as a stand-alone module outside the
framework, because it provides a way to read and write pcap files independently
on the libpcap library which is not multiplatform.

Third module flowfile allows to load data from files containing flow records.
This file can be in format of either well-known tool NfDump or it can be a
NADEX flow file generated by flowgen tool. The flowfile utilizes nfreader to
implement reading flowrecords from NfDump files.

2 The framework is tested under Python 2.6 (but some scripts may work on older
versions as well)

The nfreader is library providing an interface for reading NfDump files. It is
based on an example from source codes of NfDump. It is written in C but there
is also a Python wrapper, so it can be used to read NfDump files from both C
(or C++) programs and Python scripts.

Flowgen is a tool written in C+-+ that generates flow records from pcap
files. These records are stored in a very flexible format, called NADEX flow file.
There are always two or three files representing a set of records — nzfi (info)
file containing information about the contents and structure of records, nzf file
containing the records and optionally nzfd file containing payload data of the
flows.

The framework also implements nf2nzf tool which converts flow files produced
by NfDump to NADEX flow file format.

3.3 Integration of third-party packages

Besides modules themselves, framework integrates also several third-party li-
braries.

Pandas is a package for working with timeseries. Its classes — Series, Time-
Series and DataFrame — are used by several modules of the framework. Besides
effective implementation of arrays with indices, it provides various statistical and
signal processing functions such as mean, median, standard deviation, rolling
mean or exponentially weighted moving average ewma). It can also handle miss-
ing data very well. Such ability may be useful when processing data from a net-
work with outages of measuring equipment. This package works well together
with the next one — matplotlib.

Matplotlib is a Python plotting library. It can create various kinds of graphs
in a form of an interactive window or variety of image formats. Everything is
fully customizable via object-oriented interface or interface similar to Matlab
functions. All detection methods in the NADEX framework use this package to
visualize its results in the form of nice graphs.

Both these packages needs numpy — the fundamental package for scientific
computing. It provides mainly an effective representation of arrays and many
mathematical functions to work with them.

The last package used in the framework is dpkt. It is used for effective parsing
of packets.

3.4 Supporting AD functions

The framework also contains specific functions and tools to simplify experiment-
ing with new methods.

Entropy tool Nfentropy tool computes sample entropy upon various combina-
tions of fields of flow records. It uses the classical Shanon’s definition of entropy:

H(X) = =" log, g ®

I

where n1,n9,...,ny are number of occurrences of every unique value of the
observed feature in the sample X and S is the total size of the sample. Normally,
this requires to compute a histogram of values which occurred in the data. In
case of large values (e.g. IP addresses) the size of the histogram might not fit in
the memory. Therefore nfentropy utilizes a modified version which suffices with a
relatively small histogram. The trick is to utilize hash of the value as an address
in the histogram instead of the value itself. Since the equation 1 does not need
original values to compute the entropy the only issues are hash collisions. But
these collisions introduce only a small error in comparison with sub-sampling
the histogram.

Nfentropy function computes entropy of:

— source IP address

— destination IP address

— source port

— destination port

— two’s logarithm of number of packets in flow
— two’s logarithm of number of bytes in flow
— TCP flags

— source and destination address pair

— source and destination port pair

— source address and source port pair

— source address and destination port pair

— destination address and source port pair

— destination address and destination port pair

Computing entropy of logarithm of packet and bytes allows to decrease num-
ber of distinct values. At the same time, it allows to distinguish between sizes
of small flows such as one-packet flow and two-packet flow. Whereas it gives up
on distinguishing between large sizes. Such a bias is deliberate and allows to
alleviate the effect of small flows on the entropy.

Moreover, all these values are computed separately for these protocols:

All protocols
— TCP

— UDP

— ICMP
Others

Due to performance reasons, the nfentropy was implemented in C rather than
in Python.

TCP scan detector scan_ detector is a rule-based Python script designed to
reveal the TCP scanning activities in pcap files. It looks for a lot of connection
attempts (SYN packets) with the same source IP address. It reports only those
activities where more than 90% of flows have only one packet and the number
of responses from a target is less than 25%.

DDoS generator dos_generator is a Python script which generates pcap file
containing TCP SYN flood with random source addresses and ports.

Other scripts There are also several simple bash scripts to help working with
large datasets. These include volumestats.sh and entropy.sh which can be used
to obtain timeseries of the traffic volume or entropy from a set of NetFlow files.
It traverses directory structure and calls nfdump -I or nfentropy to all specified
files and transforms output to a format readable by load_series function in
the framework. These scripts must be modified before use, to customize it to a
particular directory structure and file naming conventions.

There is also a similar script astute.sh which calls the ASTUTE detection
method (see Chap. 4.1) to all files in specified directories.

Next, there is a script download_ mawi.sh which helps to download data from
MAWT traffic archive. Lastly, pcapcat.sh can effectively concatenate pcap files.

4 Anomaly Detection Algorithms

The framework contains three AD algorithms proposed by other authors and a
prototype of our own algorithm. More methods are being implemented and will
be included in future releases.

We try to implement existing algorithms exactly as they are described in
the papers. Therefore, the modules are meant not only as an example how to
write algorithms in the framework but also as reference implementations of the
methods which can be used for comparison.

4.1 ASTUTE

A Short-Timescale Uncorrelated-Traffic Equilibrium (ASTUTE) [7] is a detector
based on an assumption that each flow changes independently on others at a suf-
ficiently aggregated and unsaturated link. In case this assumption does not hold
then the underlying traffic is considered to be caused by an attack or suspicious
activity. The detector operates at fixed time intervals. Volumes of individual
flows are measured for each interval. At the end of each interval, the difference
to a previous interval is calculated for each flow. The resulting differences form
input data for detecting an anomaly. The standard deviation and the confidence
interval is computed from the differences. Anomaly is reported if the confidence
interval is biased so that it does not contain zero. The detection is done on 6
levels of flow aggregation (5-tuple, TP address pair and source and destination
addresses and ports). The fact, that anomaly may occur only on some levels
of aggregation, provides additional information about detected anomaly which
allows to a certain point automatic backward annotation.

The computational complexity of ASTUTE is quite low. The only issue is
a storage of two consecutive values per each active flow. The implementation
in the framework utilizes dictionaries to index these values. It takes approx. 1
minute to process a pair of files with a million flows each on a modern PC. Since

this method usually operates on time intervals of 5-minutes the performance of
such implementation in Python is sufficient.

4.2 Wavelet

Wavelet method is strongly based on signal analysis of input data. In the pa-
per [3] authors of Wavelet method report good results on detection of four classes
of network traffic anomalies: outages, flash crowds, attacks and measurement fail-
ures. The wavelet method was proposed to find anomalies in timeseries of traffic
volume, but it can be used with series of any numerical values.

The wavelet filters are used to distinguish between ambient and anomalous
traffic. As a basis for wavelet authors suggest to use a pseudo-spline filter tuned
at specific aggregation levels. First the data are decomposed into different, strata.
In the second step, the strata are divided into three groups representing different
frequencies and these groups are synthesized back to signals. High, mid and low
frequency signals are obtained. Then, local variance of low and mid signals is
computed. If the weighted sum of these variances (deviation score) exceeds the
threshold an anomaly is reported. Such technique allows to expose anomalies
even in the presence of a large amount of legitimate traffic.

4.3 EWMA

Next method for detection of anomalies in timeseries is based on computation
of exponentially weighted moving average (EWMA). This average is defined re-
cursively for each time interval as:

Et = ax¢ + (1 — O[)Et_l (2)

where z; is input value at time ¢ and « is a coefficient defining weight of the
last value.

For anomaly detection purposes, the current EWMA is always used as a pre-
diction of next value. If a difference between predicted and actual value (predic-
tion error) exceeds a threshold, the value is considered anomalous. The threshold
is computed using exponentially weighted moving variance of the prediction er-
ror, so it is low if the signal is relatively stable, while it is much larger if the
signal is noisy.

So, for signal = at time ¢, the prediction of next value, y;, is computed as:

yr = azy + (1 — @)ys—1 (3)
A prediction error e; and its moving variance ¢7 are given by:

e =Ty + Y1 (4)
of = fe + (1 - B)oy_y (5)

To be considered normal, a value at time ¢ must lie between upper and lower
control limits, UCL and LCL.

UCLt = Yt—1 +T*O’t,1 (6)
LCLt = Yt—-1 7T*O’t_1 (7)

Initialization values yy and oy are computed during a short training period
in the beginning. For more details see [5].

4.4 Fast Exporter Anomaly Detection

The Fast Exporter Anomaly Detection (further referred to as FAST) is designed
with the aim to be as simple as possible so it can be installed directly in the
probes on the network. Its idea is to observe behavior of the probe’s flow cache.
Namely the number of new flows per short time interval. An alarm is triggered,
if the measured number of new flows differs significantly from a predicted value.
The predicted value is an output of specific predictor which must be simple
enough to run on the probe yet robust to withstand certain unpredictability of
network traffic.

The predictor is based on EWMA and Holt-Winters forecasting methods.
Predicted value is a sum of two components — base and seasonal. Base component
is exponentially weighted moving average (EWMA) of previous values, seasonal
component is included to cancel out periodic daily deviations. For each time in
a day it is computed as EWMA of values at the same time of previous days.
Prediction 341 computed at time ¢ is given as follows:

biv1 = ozt — si-r41) + (1 —)by (8)
sep1 = Y(xs — be) + (1 —7)se—r41 9)
Y1 = b1 + se1 (10)

where x; is an input value at time ¢, L is length of a season and « and v are
parameters of the method.

Normally, it is necessary to store last L values of s;, but as we are using
short time intervals (5 to 30 seconds) and long seasons (day or week), L may
be very large. In order to save memory and also to smooth noise in the data,
not all these values are stored. Instead, only an average of N samples (e.g. for
N corresponding to half an hour) is stored and s; is linearly interpolated from
these values.

Initialization values by and {sg...sy} are computed during a training phase
of length of one season (L samples).

In normal conditions, difference of prediction and actual value (prediction
error) should be small. Large error signifies an unexpected change in the time
series, i.e. an anomaly. Prediction error e; is given by:

€t = Yt — Tt (11)

Last @) values of e; are stored and 0.05 and 0.95 quantiles of these values are
used as lower and upper limits, (UCL, LCL) respectively.

When the input value exceeds the limit, an anomaly is not reported immedi-
ately. Instead, a CUSUM method is used. Exceeding values are summed up and
the anomaly is reported only when the sum exceeds a threshold. The threshold
T is computed as:

T={UCL-LCL)S (12)

where S is a sensitivity parameter. When error drops back below limit, the
sum is set to zero.

5 Data sets

Besides the functions and methods, the framework includes also its own data set.
The data set is provided separately from the framework package due to its large
volume. The data is obtained from two ten gigabit access points. These access
points serves as a connection of Brno University of Technology into CESNET
backbone network. The traffic mix is generated by more than 15000 users from
academic and campus network. The source of data are INVEA-TECH FlowMon
probes. These probes are capable of generating NetFlow about passing traffic
(both directions of the link are monitored without sampling or packet loss). The
provided raw data constitutes of anonymized NetFlow records in the form of
compressed nfdump files. The anonymization procedure is the default prefix-
preserving method implemented in nfdump.

The provided data set was collected from 01.09.2011 till 29.02.2012 continu-
ously. Each day consumes 10 to 30 GB of disk space. Due to the size we make
publicly available only one day out of the whole data set. The rest may be
obtained individually (please send email to ibartosv@fit.vutbr.cz).

Further, precomputed time series are provided from the whole measurement
period. This includes volumes of flows, packets and bytes per 5 minutes interval
differentiated by a protocol (TCP, UDP, ICMP). Additionally, the data set is
extended with entropy series computed upon various dimensions as listed in
Section 3.4 Entropy tool.

Figures 1, 2 display the number of bytes and flows, respectively, in the pre-
sented sample. The graph follows daily as well as weekly pattern. During the
night the activity (number of users and volume of traffic) is low as well as dur-
ing weekends whereas during working hours the activity is at its peak.

6 Evaluation

Presented functions and anomaly detection methods were applied on a sample
of data set provided with the framework. We select one week long sample (from
13.2.2012 to 19.2.2012) which is sufficiently long for demonstration of behavior of
all the functions and methods. In general, the evaluation shows various behavior
of signals produced by the functions and gives a notion how these signals may

data/vol/datasetl.vol

lel0

Fig. 1. Number of bytes per five minute in the a week sample of the data set (interval
from 13.2.2012 till 19.2.2012).

data/vol/datasetl.vol
3500000

3000000

25000001

2000000

1500000

1000000

500008 2 2 2 2 2
o> o> o> o™ I\ I\
?p\}’L N o7 o 47 &7
<«

Fig. 2. Number of flows per five minute in the a week sample of the data set (interval
from 13.2.2012 till 19.2.2012).

be used for detection of anomalies. Figures are presented in the same order in
which the functions and methods are described in Section 3.4. First, the output
of nfentropy tool is plotted in Figure 3.

The nfentropy produces several signals, one for each dimension. Only some
of them are plotted here. It is clearly visible that there are groups of signals
which are strongly correlated. One group is formed by signals of TP addresses
and ports, another is formed by size of flows in terms of their volume measured
in packets and bytes, and a special category is formed by a signal representing
entropy of accumulated TCP flags per flow. The anomaly detection based on
the entropies may be based on Principal Component Analysis as suggested by
Lakhina [4] or on searching of large deviance from the base trend of the signal. If
the deviation is detected, the decrease or increase of various entropy signals may
provide additional information necessary for recognition of an anomaly type.

10

T ‘HW

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00
[— SrclP — DstlP — SrcPort —— DstPort — Pkt Byt — Flg]

Fig. 3. Example of plotted output of nfentropy function.

_ I L i L i i
Feb %3 2012 Feb 14 2012 Feb 15 2012 Feb 16 2012 Feb 17 2012 Feb 18 2012 Feb 19 2012

|- - 5-tuple - - IP_pair - - srcip ¢ - dstip - - srcport - - dstport‘

Fig. 4. Example of output from ASTUTE method.

Figure 4 displays the output of ASTUTE method. The output is formed by
points as there is no relation among subsequent values. These points represent
the degree of mutual correlation between flows when considering various aggre-
gation schemes. The further the point is from zero on Y-axis the more flows
are correlated and the more likely it is an anomaly. Setting up the threshold
values is subject of balance between reported false negatives and false positives.
The threshold denoted in the figure by red line corresponds to theoretical false
positive rate of 0.01%.

Figure 5 displays the output of Wavelet method applied on the number flows
per 5 minute interval. The red signal represents the deviation score which is a
subject for thresholding when the anomaly should be detected. If a specific type
of traffic is selected and analyzed then the detection might be more detailed and
precise. Figure 6 depicts analysis of ICMP traffic only. It is clearly visible sudden
change of the deviation score for ICMP anomaly at the time where no anomaly
is detected in case of an analysis of all traffic, depicted in previous Figure 5.

11

3500000 T T T T T T 9

3000000

~

2500000

2000000 /H,L
1500000 Ad \
\

o

o

Flows
deviation score

IS

w

1000000

|

5%%%093 2012 Feb 1“1 2012

L L L
Feb 15 2012 Feb 16 2012 Feb 17 2012 Feb 18 2012 Feb 19 2012

Fig. 5. Example of Wavelet deviation score computed upon all flows.

180000 60

160000 : : :
i ; : 50

140000

120000

&
S}

100000

_icmp

Flows

80000

60000
40000 :

10
20000 m LJ

i - N i i
Feb ?3 2012 Feb 14 2012 Feb 15 2012 Feb 16 2012 Feb 17 2012 Feb 18 2012 Feb 19 2012

w
S
deviation score

N
)

Fig. 6. Example of Wavelet deviation score computed upon ICMP only flows.

Figure 7 displays the output of EWMA method applied on the number flows
per 5 minutes interval. The output constitutes of several signals. The signals
represent the actual (blue), predicted (gray) and threshold values (yellow). If
the threshold is exceeded by the actual an anomaly is detected. The anomalies
are depicted by a star in the graph.

Again, ICMP traffic is analyzed separately. Figure 8 depicts the outcome.
Similarly to Wavelet, the method detects sudden increase or decrease in the
number of flows or other dimensions. An anomaly is reported several times until
the limits adapts on the on-going traffic. The anomaly traffic is then considered as
a normal one. Therefore when the anomaly ends an anomalous event is reported
again. This redundant reporting could be mitigated by further post-processing.
Minor anomalies (which might not be anomalies at all, i.e., false positives) might
be ignored in dependence on the limits.

Further, we present the results of our own method designed specifically for
fast exporter anomaly detection. Figure 9 displays the output of FAST method

12

350000 ,‘

— Flows
— Prediction|{

Limit
* * Anomaly |

3000000

2500000

2000000

Flows

1500000

1000000

500000

xgl e e \Y 1 W W
v\,ﬂ“ “\)ﬂ“ v\;ﬂ“ v\,&“ o5 ® 0\;67'0 o »
<@ <@ <@ <@ <@ <@ <@
Fig. 7. Example of EWMA output for all flows.

250000
— Flows_icmp
—— Prediction

200000 Limit
* * Anomaly

150000

Flows_icmp

100000

500001

Fig. 8. Example of EWMA output for ICMP flows only.

applied on the number of flows per 5 second interval. Due to the analysis of
such a short interval it is possible to observe anomalies which would otherwise
vanish if longer interval is used. The outputs plotted on the Figure 9 depicts
various signals such as base (black), seasonal (gray), limits (green). An anomaly
is reported (red star) when the CUSUM (orange) exceeds the CUSUM threshold
(dashed orange).

It is interesting to observe behavior of the base signal. If the input signal
was perfectly periodic then the base would be zero as the seasonal signal would
perfectly predict the next input value. Since the input signal is not periodic the
base compensates for the error of the seasonal.

Figure 10 shows a detailed view of an anomaly. When value exceeds upper
limit, CUSUM (orange dots) is increased but anomaly is not reported yet. It is
reported at the time when CUSUM exceeds the threshold (dashed orange line).
Start of the anomaly is then determined as a time when value exceeded the limit
for the first time. Yellow and red stars label anomalous values. Red star labels

13

120000 600000

+— New records — Limits CUSUM threshold
100000 H — base E VPFEdICtIOnS 7 7 . 5 - CUSUM 1500000

. « seasonal {stored) = « Anomaly

80000 - — seasonalninterp.) + « Anomaly (detection) vily . > s .
e ¢ Y I ST E |)) M%7+ I P & [+400000
LY K V11 S 1 LA i o 1l
60000 [| 14 i I+ 011 % R IEmalhs B : Lot
f 2 -+ | *
2 } iy : fglel) TIHERE T THI+ el] fel {30000
40000 | 3 Lt Al L RSN 0§ A TR
J 3 .i T % ,*ﬁ f 41
4 1 200000
20000 - ! h i '
1 o
H 'y $
} [} \
* 1A et | '_.__ . Rl 5 Sl 100000
’ i/ A A N
N [8 RY R Yy N .
SRk IR i i Rt Rt
—2000! - - 0
9052012 Feb 142012 Feb 152012 Febl162012 Feb17 2012 Feb 182012 feb 19 2012

Fig. 9. Example of FAST output for all flows.

r T T T T T
60000 | .. New records — Limits ' ' : CUSUM threshold | |°90%°
— base Predictions >+ CUSUM
50000 - J B [1300000
« o seasonal (stored) » « Anomaly ; ;
| — seasonal (interp. + » Anomaly (detection o]
40000 | - - (interp.) . maly (det ! 4250000
30000 - -
- --200000
20000 s ™ e ot o gl A T T e T ey v
- - — - - - | R —{150000
10000 1
--100000
or g -
o
o
~10000 F-= - e . o :hf» . o . . -130000
i y.
e
—20000 < L
17:30:00 17:35:00 17:40:00 17:45:00 17:50:00 17:55:00

Fig. 10. Detailed view of one anomaly detected by FAST method.

the time when the anomaly is reported for the first time while yellow star labels
detection of an anomaly.

To sum up, each method provides different output with varying behavior. For
example, while ASTUTE reports several anomalies between 16" and 17t Febru-
ary other methods working upon 5 minute intervals does not detect any anomaly
during this period. FAST detects large amount of anomalies in comparison to
other methods. We have manually checked some of them and confirmed that
most of them are true positives. Other methods do not detect these anomalies
as they work upon a longer interval.

14

7 Conclusions

This paper described the framework for experimenting with network anomaly
detection methods. Its aim was to address several issues related to experimenting
with current methods, designing new ones and comparison to others. To this
end, the framework consists of various functions and methods used for anomaly
detection. A sample of traffic from BUT network was utilized to compare outputs
of various methods. The utilized traffic sample may be obtained upon notice.

Our future plan is to further extend this framework with new methods and
build a system for automated or semi-automated annotation.

Acknowledgments

This work was supported by the research programme MSM 0021630528 and the
IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070, by the Research
Plan No. MSM, 0021630528 - Security-Oriented Research in Information Tech-
nology, the grant BUT FIT-S-11-1 and TeamIT project CZ.1.07/2.3.0067.

References

1. The CAIDA web page.
URL http://www.caida.org

2. MAWTI Traffic Archive.

URL http://mawi.wide.ad. jp/mawi/

3. Barford, P.; Kline, J.; Plonka, D.; aj.: A signal analysis of network traffic
anomalies. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, IMW 02, New York, NY, USA: ACM, 2002, ISBN 1-58113-603-X, s.
71-82.

4. Lakhina, A.; Crovella, M.; Diot, C.: Mining Anomalies Using Traffic Feature
Distributions. ACM SIGCOMM Comp. Com. Rewv., ro¢nik 35, ¢. 4, Oct. 2005.

5. Nong Ye, Y. Z., Connie Borror: EWMA techniques for computer intrusion
detection through anomalous changes in event intensity. Qual. Reliab. Engng. Int.,
ro¢nik 18, 2002: s. 443-451.

6. Patcha, A.; Park, J.-M.: An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Computer Networks, ro¢nik 51, August
2007, ISSN 1389-1286.

7. Silveira, F.; Diot, C.; Taft, N.; aj.: ASTUTE: detecting a different class of traffic
anomalies. In Proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM,
SIGCOMM °’10, New York, NY, USA: ACM, 2010, ISBN 978-1-4503-0201-2, s.
267-278.

8. Zhang, W.; Yang, Q.; Geng, Y.: A Survey of Anomaly Detection Methods in
Networks. In International Symposium on Computer Network and Multimedia
Technology, CNMT 2009., January 2009, ISBN 978-1-4244-5272-9,
doi:10.1109/CNMT.2009.5374676.

15

