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ABSTRACT

Complex scientific workflows describing challenging real-
world problems are composed of many computational tasks
requiring high performance computing or cloud facilities to
be computed in a sensible time. Most of these tasks are usu-
ally written as moldable parallel programs being able to run
across various numbers of compute nodes. The amount of
resources assigned to particular tasks may strongly affect the
overall execution and queuing time of the whole workflow
(makespan) as well as the total computational cost.

For this purpose, this paper employs a genetic algorithm
that searches for a good resource distribution over the particu-
lar tasks, and a cluster simulator that evaluates makespan and
cost of the developed workflow execution schedule. Since the
exact execution time cannot be measured for every possible
combination of task, input data size, and assigned resources,
several interpolation techniques are used to predict the task
duration for a given amount of compute resources. The best
execution schedules are eventually submitted to a real cluster
with a PBS scheduler to validate the whole technique.

The experimental results confirm the proposed cluster
simulator corresponds to a real PBS job scheduler with a
sufficient fidelity. The investigation of the interpolation tech-
niques showed that incomplete performance data can be
successfully completed by linear and quadratic interpolations
making a maximum mean error below 10%. Finally, the paper
shows it is possible to implement a user defined parameter
which instructs the genetic algorithm to prefer either the
makespan or cost, or find a suitable trade-off.
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1 INTRODUCTION

All fields of science and engineering use computers to reach
new findings, while the most compute power demanding prob-
lems require High Performance Computing (HPC) or Cloud
systems to give answers to their questions. The problems
being solved nowadays are often very complex and comprise
a lot of various tasks with mutual dependencies describing
different aspects of the investigated problem. Their computa-
tion can be formally described using scientific workflows [2],
also referred to as task graphs [16]. There is immense number
of scientific workflows spread around various fields [14], yet
they have one thing in common. They are all desired to be
computed in the shortest time for the lowest possible cost.

The execution of scientific workflows on HPC systems is
performed via communication with the HPC front-end, also
referred to as the job scheduler [11]. After the workflow data
has been uploaded to the cluster, the workflow tasks are
submitted to the computational queues where being waiting
until the system has enough free resources, and all task
dependencies have been resolved (predecessor tasks have
been finished).

Modern HPC schedulers implement advanced techniques
for efficient task and resource management [12]. However, the
queuing time, computation time and related cost depend on
the task execution parameters provided at submission. These
parameters include the required execution time accompanied
by the number of compute nodes, cores and accelerators,
the amount of main memory and storage space, and more
and more frequently, the frequency and power cup of vari-
ous hardware components. In most cases, only experienced
users are endowed by sufficient knowledge to estimate these
parameters appropriately knowing the size of the input data
for particular tasks. In other cases, default parameters may
be chosen leading to inefficient workflow processing.
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Complex compute tasks are usually written as moldable
distributed programs being able to exploit various amounts
and types of computing resources, i.e., they can run on differ-
ent numbers of compute nodes. However, the moldability is
often limited by many factors, the most important of which
being the domain decomposition [4] and parallel efficiency
(strong scaling) [1]. The goal of the workflow execution op-
timization is posed as the assignment of suitable amount of
compute resources to individual tasks in order to minimize
the overall computation time and cost.

While the field of rigid workflow optimization, where the
amount of resources per task is fixed or specified by the user
before the workflow submission, has been thoroughly studied
and is part of common job schedulers such as PBSPro [11]
or Slurm [20], the autonomous optimization and scheduling
of moldable workflows has still been an outstanding problem,
although firstly opened two decades ago in [8].

During the last decade, many papers have focused on the
prediction of rigid workflow execution time and enhancing the
HPC resource management. For example, Chirkin et al. [5]
introduces a makespan estimation algorithm that may be
integrated into job schedulers. Robert et al. [16] gives an
overview of task graph scheduling algorithms. The usage of
genetic algorithms addressing the task scheduling problems
has also been introduced, e.g., a task graph scheduling on
homogeneous processors using genetic algorithm and local
search strategies [13], and performance improvement of the
used genetic algorithm [15]. However, a handful works have
taken into the consideration the moldability and strong scal-
ing behavior of particular tasks, their dependencies and the
current cluster utilization [3, 7, 19].

In all cases, the estimation of the makespan and optimiza-
tion of the tasks execution parameters rely on the perfor-
mance database storing strong and weak scaling. However,
it is often not possible to benchmark the execution time for
all possible combinations of the task type, task inputs and
execution parameters. If a task has already been executed
with given inputs and execution parameters, the execution
time can be retrieved from the performance database. How-
ever, for unseen combinations, some kind of interpolation or
machine learning techniques have to be used.

In our previous work [DOUBLE-BLIND], Genetic Algo-
rithms (GA) [10] and a simple cluster simulator were used to
find optimal execution parameters for various workflows on
systems with on-demand and static allocations. This paper
follows up with our previous work and its main goals are to
(1) prove that GA is able to find execution plans for different
workflows when using incomplete performance datasets, (2)
prove a trade-off parameter to find different solutions meeting
contradictory optimization criteria can be introduced, and
finally (3) compare the outcomes from the cluster simulator
with the real workflow execution also considering the initial
cluster workload. The resilience of the optimization tech-
niques will be investigated on several scenarios and validated

against the real workflow makespan measured on the Barbora
supercomputer1.

2 AUTOMATIC OPTIMIZATION OF
WORKFLOW EXECUTION
PARAMETERS

The selection of suitable execution parameters for workflow
tasks plays the crucial role in the optimization and sched-
uling process aiming to reduce the computational cost and
the overall processing time from the workflow submission to
the results delivery, also referred to as makespan. A naive
selection of the execution parameters often leads to various
unpleasant situations such as unnecessarily long waiting times
if default execution time and/or high amounts of compute
resources were chosen to ensure the task completion with-
out premature termination, task crashes if the amount of
compute resources was not sufficient, task hangs up when
unsatisfactory amount or resources is requested, and so on.

Even if users have enough experience with applications
used within the workflow, they might see it very difficult
and tedious to set the execution parameters properly to get
good performance. For the less experienced ones, the default
values are usually the first and the only choice. Although
batch schedulers implement several optimization methods
and heuristics to maintain high cluster utilization and low
queueing times, bad execution parameters spoil their sub-
mission schedules, e.g., when tens of tasks enter the queue
asking for 24 hour allocations but actually finishing after an
hour.

2.1 k-Dispatch Workflow Management
System

Complex scheduling of scientific workflows goes beyond the
capabilities of common batch job schedulers which treat tasks
independently only paying attention to their dependencies.
For the workflow scheduling, a workflow management system
sitting in between the end user and the batch job scheduler
is required. k-Dispatch [DOUBLE-BLIND] is a Workflow
Management System (WMS) [6, 18] allowing the end users
to submit complex workflows with associated data via a
simple web interface and have them automatically executed
on remote HPC facilities. Although oriented on the ultra-
sound community and the popular k-Wave acoustic toolbox
[DOUBLE-BLIND], its general design allows simple adapta-
tion to other workflows and toolboxes.

k-Dispatch consists of three main modules depicted in
Fig. 1: Web server, Dispatch database and Dispatch core.
The user applications, e.g., a stand-alone medical GUI, Web
application, or Matlab interface, communicate with the Web
server using the secured HTTPS protocol and REST API.
The Dispatch database holds all necessary information about
the users, submitted workflows, jobs, computational resources,
available binaries and the performance data collected over

1IT4Innovations, Czech republic, https://docs.it4i.cz/barbora/
introduction/
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Figure 1: k-Dispatch’s modules and a brief descrip-
tion of the actions each module is responsible for.
Arrows show the communication between Dispatch
Core, Web Server and Dispatch Database.

all executed tasks suitable for the execution time estimation.
The Dispatch core is responsible for planning, executing
and monitoring submitted workflows. The communication
with HPC and cloud facilities is done via SSH and RSYNC
protocols. For more information, please refer to [? ].

2.2 Workflow Optimization within
k-Dispatch

The optimization algorithm providing suitable parameters
for particular tasks of the workflow is integrated inside the
Dispatch core. It is composed of four modules: Optimizer, Es-
timator, Evaluator and Collector. The Optimizer is based on
a Genetic Algorithm implemented in the PyGAD library [9]
and its parameter settings have been thoroughly investigated
in [DOUBLE-BLIND]. The goal of the Optimizer is to gener-
ate high quality candidate solutions, each of which holding
a list of execution parameters for all tasks in the workflow.
In the simplest case, a candidate solution is a vector where
the position of the task is given by a breath first traversal
through the workflow task graph and the value determines
the number of compute nodes to be used. The Optimizer is
based on a Genetic Algorithm implemented in the PyGAD
library [9] and its parameter settings have been thoroughly
investigated in [DOUBLE-BLIND]. The goal of the Opti-
mizer is to generate high quality candidate solutions, each
of which holding a list of execution parameters for all tasks
in the workflow. In the simplest case, a candidate solution is
a vector where the position of the task is given by a breath
first traversal through the workflow task graph and the value
determines the number of compute nodes to be used.

The Estimator is responsible for estimating the execution
time for particular tasks based on their input data and the
amount of required resources. The Estimator incorporates
various interpolation heuristics to reckon up missing perfor-
mance data.

The Evaluator uses a simplified simulator of job scheduler
called Tetrisator [DOUBLE-BLIND], which takes a candi-
date solution, simulates its execution on a given cluster and
calculates the workflow makespan and cost. Tetrisator is
a one-pass simulator of an HPC system with a predefined
number of uniform computing nodes. It is inspired by the
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Figure 2: Red line shows the strong scaling of the
k-Wave code measured for 10243 domain size on the
Barbora cluster. Blue line shows the evolution of the
computational cost when more nodes are added.

default strategy of the PBS job scheduler without the back-
filling support. The tasks are submitted to the simulator in
the order defined in the candidate solution. Workflows may
contains multiple dependencies among inner tasks, and the
initial cluster workload may be defined, i.e., the cluster is
not empty at the workflow submission time.

As soon as a satisfactory solution is found, the workflow
is submitted to the real cluster and executed. Upon finishing
the execution, the execution times for all tasks are collected
by the Collector and stored in the performance database.
This data is used to gradually improve the accuracy of the
Estimator.

2.3 Estimator Module and Interpolation
Techniques

There are many factors that may affect the execution time of
a given task. Obviously, the most important ones are the size
of the problem stored in the input file, and the amount of
resources assigned to the task. As a practical example, let us
talk about the MPI implementation of the k-Wave toolbox
[DOUBLE-BLIND] simulating (non)-linear propagation of
ultrasound wave through a heterogeneous absorbing medium.
The scaling of the execution time and cost for one specific
problem instance on the Barbora cluster with 36 processor
cores per node can be seen in Fig. 2. Here, a domain of 10243

grid points is partitioned into 2D slabs and distributed over
various numbers of compute nodes (1 to 32). The red curve
shows the execution time per one simulation time step (the
whole simulation usually executes tens of thousands of time
steps).

Although this strong scaling curve looks almost ideal, sev-
eral sudden drops in the execution time can be observed.
These drops are the consequences of well balanced workload
distribution. For example, if we cut the domain into 512
slices, we can distribute the work over 512 ranks mapped
onto 512 cores. Since k-Wave is a memory and network bound
application, it is often advantageous to undersubscribe the
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Figure 3: Strong scaling of the k-Wave code execu-
tion time measured for 10243 domain size on the
Barbora (36 cores / node) and Salomon (24 cores
/ node) cluster.

computing nodes and use higher aggregated memory and
network bandwidth. On the Barbora cluster, we can spread
512 ranks over 15 to 28 nodes in a round robin fashion. Since
the efficiency of such distribution is decreasing, the scaling
curve is flattening toward 28 nodes. However, when 29 nodes
are allocated to the task, the domain can be cut into 1024
slices leading to a much better workload distribution and
significantly lower execution time. This imperfect workload
distribution also renders into the simulation cost since there
is a direct proportion between the parallel efficiency and the
related cost. The blue curve shows several local minima and
maxima in the execution cost which provide very suitable
execution parameters or should be avoided, respectively.

Let us note that having a complete performance dataset
with all possible input sizes, numbers of nodes, and other
tens of simulation parameters is computationally intractable.
When having incomplete performance datasets where some
points on the curve are missing, the interpolation should
rather overestimate the execution time to prevent early task
termination. Even more important question is how the scal-
ing curve changes when a previously unseen domain size is
used. In this situation, it is necessary to estimate both the
shape and the position of the scaling curve from measured
strong and weak scaling. As interpolation functions, linear
and quadratic interpolation were used.

Finally, the scaling curves may change significantly among
different machines. One such an example can be seen in Fig. 3
where the same problem is solved on Barbora (36 Cascade
Lake cores per node) and Salomon (24 Haswell cores per
node). Not only is the curve shifted due to a lower node
performance, but it has a very different shape in the second
half. This may be the effect of a different interconnection
network topology, but also current cluster utilization. In this
case, it is very hard to use any interpolation. Thus when
a new cluster is connected to k-Dispatch, a few benchmark
runs for the most typical simulation settings are performed
to get a minimum amount of performance data.

3 EXPERIMENT SETUP

This paper follows the experimental setup presented in [DOUBLE-
BLIND] to evaluate the developed workflow schedules under
incomplete performance database. For the makespan and cost
evaluation, the Tetrisator simulator worked with a 64 node
cluster. The validation of the final schedules was performed
on the Barbora cluster, where a static allocation with 54
nodes2 was created to ensure the same initial conditions for
all tests.

3.1 Investigated Workflows

This paper uses two typical biomedical ultrasound workflows
applied in the ultrasound neurostimulation and photoacoustic
imaging, see Fig. 4. Both workflows consist of two types of
tasks. The simulation tasks (ST) executing the k-Wave MPI
solver represent heavy parallel jobs running for a few hours.
The ST tasks were limited to use between 1 and 32 nodes.
The data processing tasks (PT) perform data pre-processing,
post-processing, aggregation, etc. These tasks usually use one
or two nodes depending on the amount of memory requested,
and finishes within a few tens of minutes.

The first workflow starts with a single PT task generating
input files for the ST tasks. Consequently, a few independent
trains of ST-PT-ST tasks are executed. Finally, the results
from all trains are aggregated using a parallel reduction tree
composed of PT tasks. The second workflow starts by running
a few ST tasks operating on the same input file, but with
different parameters. The results are aggregated into a single
output file using a parallel tree reduction. But this time, the
result is used by the following wave of ST tasks. In practise,
this workflow is repeated in a loop until some error metric
calculated by the last PT task is satisfied.

3.2 Used Datasets

Let us here define the datasets used in our experiments along
with their short description:

∙ Dataset A. Reference strong scaling of the k-Wave
code measured on a domain size of 1024× 1024× 1024
grid points using 1-32 nodes.

∙ Dataset 1A. Based on Dataset A but having only 16
values including peaks and values in between them.

∙ Dataset 2A. Based on Dataset A but having only 8
values excluding peaks.

∙ Dataset B. Reference strong scaling of the k-Wave
code measured on a domain size of 810 × 810 × 810
grid points using 1-32 nodes.

∙ Dataset 1B. 810× 810× 810 domain interpolated for
1-32 nodes using the quadratic interpolation from the
known domain sizes: 512× 512× 512, 648× 648× 648,
1024× 1024× 1024.

2A 64 node allocation had been requested but due to a cluster failure,
experiments had to be performed on only 54 nodes. Thankfully, this
did not affect the obtained results significantly.
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Figure 4: The structure of investigated workflows. The heavy simulation tasks are interleaved with light data
processing tasks. The parts highlighted in black show the minimal workflow structure consisting of 20 and 11
tasks, respectively. The parts displayed in grey show how the workflow structure can grow.

3.3 Tetrisator Validation against Real
Cluster

To compare the simulator output with the real execution
carried out in a dedicated queue comprising 54 nodes of the
Barbora cluster, an artificial schedule based on the first work-
flow type was created. This workflow contained 20 tasks, (8
heavy STs alternated with 12 light PTs). The execution times
of particular tasks were taken from the Dataset A. The num-
ber of simulation time steps inside the ST tasks were reduced
to make the workflow finish in less that 1 hour. To prevent
premature termination, a safety cup of 10% calculated from
the estimated execution time was added to each task. The
real execution time actually covers net computing time as
well as overheads such as the computing node initialization.
Two experimental scenarios were performed: (1) no initial
workload, i.e., the cluster was empty when the workflow was
submitted and executed, and (2) predefined initial workload,
i.e., not all nodes were available for some time which impacts
the tasks execution order and may cause some delays. Since,
Tetrisator is inspired by PBS but does not perfectly imple-
ments all its features like backfilling, this experiment also
tries to capture the features that may be beneficial for future
simulator extensions. It is expected that the real makespan
may be shorter due to backfilling. However, a bit pessimistic
prediction is always better than the undervalued one.

3.4 Workflow Schedule Quality Measures

The quality of the developed workflow schedules is evaluated
by a fitness function the Optimizer calls after the execution
trace has been created by Tetrisator. This work investigates
two different fitness functions: GODA and GOSA.

GODA (Global Optimization of the workflow on systems
with on-Demand Allocations) calculates the makespan over
the longest critical path including queueing times. However,

the execution cost considers only truly consumed resources.
This is a typical cluster operation with users competing for
resources. Since having two contradictory criteria, a user-
defined scalarization parameter 𝛼 is used to balance between
the execution time and cost. The algorithm cannot perform a
true mutli-objective optimization because there is no further
feedback from the user that could select the preferred solution
from the Pareto front. Contrary, the most suitable solution
has to be chosen autonomously and submitted to the cluster
as soon as possible (before the cluster background workload
changes significantly).

GOSA (Global Optimization of the workflow on systems
with Static Allocations) expects the user holds a dedicated
part of the cluster and thus has to to pay for the whole
allocation no matter the some nodes may be idle. Although
this is a more expensive solution, it usually reduces the
queueing time. Since the makespan and cost are directly
proportional, no scalarization coefficient is needed and only
the makespan is considered.

3.5 Evaluation of Interpolation
Techniques

To estimate missing execution time for a particular task,
domain size, and number of nodes, two different interpolation
techniques from the Python’s scipy package [17] were used.
After a thorough investigation in [DOUBLE-BLIND] and new
experiments performed in the paper, a linear and quadratic
interp1d interpolations were chosen. Very similar results to
the quadratic interpolation were also obtained by cubic spline
CubicSpline with the bc type parameter set to natural.
Unfortunately, the use of the default value of bc type caused
high oscillations and strong underestimations of the execution
time. Therefore, we decided to use the quadratic interpolation
instead.
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Three different experiments with the interpolation func-
tions were conducted. The goals of particular experiments
were

∙ to estimate missing points on the strong scaling curve
for a domain size of 10243 grid points defined by the
points with ideal scaling (𝑁%(𝑃 * 36) ≈ 0), where 𝑁
is the domain size and 𝑃 is the number of nodes, see
Fig. 7.

∙ to estimate missing points on the strong scaling curve
for a domain size of 10243 grid points when having
also points in the middle of the intervals between two
points with ideal scaling, see Fig. 7.

∙ to reconstruct a completely unknown scaling curve for
an unseen domain size from the data stored in the
performance database. In this example, scaling curves
for 5123, 6483 and 10243 were used to estimate the
one for 8103 grid points, see Fig. 8. The domain sizes
chosen progressively doubles the total number of grid
points.

As the measure of the interpolation quality, a mean relative
error was used, see Eq. (1).

𝑚𝑒𝑎𝑛𝐸𝑟𝑟𝑜𝑟 =
1

𝑁

𝑁∑︁
𝑖=0

(
|𝑎𝑖 − 𝑏𝑖|

𝑎𝑖
) (1)

where 𝑎 denotes the measured data, 𝑏 the interpolated data,
and 𝑁 is the total number of the nodes (32).

In all cases, we can tolerate a small overestimation but shall
avoid underestimation which leads to premature job termi-
nation and necessary resubmission with prolonged execution
time.

4 EXPERIMENTAL RESULTS

This section presents and discusses (1) the similarity of the
workflow execution schedule to the one executed on a real
HPC cluster, and (2) the error reached by the interpolation
techniques.

4.1 Simulated Execution Plans Reliability

The following figures point out the differences between sim-
ulated execution plans created by Tetrisator and the real
executions performed in the dedicated queue on Barbora.
Figure 5 shows the first scenario where no initial workload is
expected and all 54 nodes are fully available at submission
time. As expected, the simulated makespan is a bit pessimistic
causing the overestimation by 15%. The second scenario il-
lustrated in Fig. 6 expects initial workload consuming 40
nodes for the first 18 minutes delaying the heavy simulation
tasks. In this case, the prediction error reached 10%. In both
cases, the overestimation is higher since the backfilling is not
implemented. This difference in plans is visible at the bottom
of both figures. When there is not enough free resources for
task 3, the cluster scheduler lets other tasks to overtake this
one while Tetirsator postpones the execution of all following
tasks.

Our observations suggest that the real PBS cluster sched-
uler works in the same manner as Tetrisator. This means the

tasks within the workflow are submitted to the real cluster
in the same order as they are processed by the Tetrisator,
and their submission time is more or less the same. Thus,
the tasks are also executed one by one in the same manner
as arriving to the cluster. The changes in the order happen
when a task has to wait for free resources. We may also say
that at least in the dedicated queue, the task executions do
not suffer from delays caused by the scheduler’s refresh time.

4.2 Interpolation Functions Accuracy

Figure 7 shows the measured and interpolated strong scaling
curves on a domain composed of 10243 grid points. Inspecting
the scaling curve created by a linear interpolation, a very
close match can be seen. When interpolating using values
where the scaling is close to the optimal, the mean interpo-
lation error reaches 4%. After adding the values from the
middle of particular intervals, the error drops below 0.8%.
Unfortunately, the interpolated values for sparser training
data are mostly underestimated, which can be corrected by
a small bias or picking the points with the worst instead of
best workload distribution.

When repeating the same experiment with a cubic spline
and a quadratic interpolation, the mean error gets higher up
to the level of 12% and 7%, respectively, depending on the
number of known values. The high error is caused by several
oscillations, and more specifically, by the extrapolation error
where the execution time is extremely underestimated.

The 4% error of the linear interpolation reaches the level of
uncertainty of real execution time measurement on clusters
due to unstable node, network and I/O performance. The
suitability of the linear interpolation may be also attributed
to a very good scaling of the ST tasks without any significant
anomalies.

The second experiment attempts to estimate the strong
scaling for an unknown domain size, see Fig. 8. The figure
reveals that the interpolation method rather overestimate the
scaling curve. When repeating this experiment with a linear
and a natural cubic spline interpolations, we got the mean
error of 25.4% and 13.5%, respectively, while the quadratic
interpolation and the cubic spline with bc type parameter
set to default produced better estimates reaching the mean
error at a level of 10.5%. The explanation is quite simple.
While the strong scaling of the ST tasks on a given domain
size is almost linear, the algorithm has an asymptotic time
complexity of 𝑂(𝑛 log𝑛). Moreover, the ST tasks heavily
employ fast Fourier transform which is very sensitive to the
domain size and its prime factors. The quadratic interpolation
thus better capture the nature of ST tasks.

The conclusion is to use a linear interpolation to estimated
values on known scaling curves while using a quadratic in-
terpolation when the domain size has not been seen before.
It is important to say that the k-Wave code is highly tuned
and scales very well. Employing a code the scaling of which
is be more ”wild” with many peaks or a dramatic slowdowns
may become a challenge. On the other hand, if the scaling
is relatively stable, it may be possible to construct a scaling
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Figure 5: Simulated execution plan (left) finishing in 32.1 minutes while the real execution on Barbora (right)
finishing in 27.3 minutes.

Figure 6: Simulated execution plan (left) finishing in 48.3 minutes and the real execution on Barbora (right)
finishing in 43.2 minutes. Pink rectangle denotes cluster workload at the workflow submission time.

equation and use a fitting methods to set its coefficients
using known performance data. Alternatively, we may try
to interpolate the known points using a various polynomial
interpolations and based on the error make a decision about
a selection of the interpolation method.

4.3 Interpolation Impact on Schedule
Makespan and Cost

This section investigates the quality and accuracy of the
developed schedules when using the performance database
containing all data, only a subset, or no data for particular
domain size.

Figure 9 shows the makespan and cost of the best workflow
schedules developed for the GODA situation on a known do-
main size of 10243 grid points, with all, 8 and 16 performance

values. These experiments also use different values of the 𝛼
scalarization coefficient (only three values of 𝛼 are used in
figure for better visibility). The schedules were collected over
twenty independent runs of the genetic algorithm. The Pareto
fronts (lines in the plot) for the same values of 𝛼 are close
to each other confirming that by employing interpolation
methods on incomplete datasets we are able to achieve very
similar results. When using Dataset 2A containing only 8
performance values, the solutions found may be deflected
from that ones evolved using dense dataset. This actually
does not mean that found solutions are bad, they just overlap
the area where solutions for different value of 𝛼 would be
expected. Next, it can be seen that solutions for different 𝛼
form isolated clusters. This implies we can affect the execu-
tion plan to prioritize different criteria. At this point, it is
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Figure 7: Reference and interpolated strong scaling
of ST tasks for a domain size of 10243 grid points
with a linear interpolation calculated from 8 and 16
known values, respectively. In the top figure, values
in unexpected peaks were selected intentionally to
see how much the value would be underestimated.
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Figure 8: Reference and interpolated strong scaling
of ST tasks for an unknown domain size of 8103 grid
points with a quadratic interpolation.

important to note that the execution plan may be adjusted
in makespan by a factor of 10.0 while in computational cost
by a factor of 1.7. The factors vary and the cost factor is such

small due to the highly optimised code used. This is a very
promising result showing that when the interpolation is rea-
sonably accurate, the impact on the best solution developed
by the Optimizer is rather small.

Table 1 summarizes conducted experiments of GOSA ex-
pressing the quality of the execution schedules as makespan.
The table may be divided into two parts. The left one is for
the domain size of 10243 where missing strong scaling values
were completed by a linear interpolation. The right one is for
the domain size of 8103 which was fully interpolated using a
quadratic interpolation. The difference between the achieved
makespan for the full performance dataset and interpolated
datasets is given by an interpolation error (investigated in
Sec. 4.2) and performance fluctuations of cluster’s nodes.

5 CONCLUSIONS

The paper has investigated the optimization of moldable
scientific workflow executions under incomplete performance
database, i.e., the execution times for some combination of
tasks, input data and amount of resources are not known
and have to be interpolated from already known data. Con-
sequently, the paper has proved that we can simulate the
workflow execution in the real cluster and this simulator
can be integrated in the k-Dispatch’s optimization module.
Although being a one-pass PBS-based simulator without
backfilling technique, the estimations provided are sensible.
The simulator gives accurate estimations especially for work-
flows executed on dedicated resources where other workload
is known. The cross validation of an artificial and the real
schedules created by the PBS job scheduler on Barbora show
a good general match.

The experimental results indicate that linear interpolation
works well in situations the input data has been seen before
and the task has been executed using a few execution param-
eters configurations. In such cases, the missing performance
data can be calculated with a very small error below 4%.
However, if the input data has not been seen before, it is
necessary to estimate the execution time from similar inputs.
In this case, a quadratic interpolation worked sufficiently well,
however, the error may reach 10%.

The paper also confirms it is possible to find different
schedules that prioritize various criteria using the trade-off
parameter 𝛼. The proposed optimization algorithm constructs
the Pareto front offering different reasonable solutions, i.e.
schedules. Users, however, (1) are not aware of what tasks are
executed within the workflow, (2) do not know what solution
to choose, and finally (3) the Pareto fronts are calculated
just before the workflow execution and this information is
not available at submission time to k-Dispatch. This is the
reason why the multi-criteria optimization is transformed
to an easier form where users can express their preferences
between two criteria (makespan vs. computational cost) using,
e.g., a slider bar. This is provided to users at the workflow
submission time and their preference is considered during the
optimization process. The experiments show that the scaling



Optimization of Execution Parameters of Moldable Workflows under Incomplete Performance Data PASC ’22, June 27–29, 2022, Basel, Switzerland

Table 1: The results show GOSA applied on the domain of 10243 on the left and 8103 on the right. Experiments
were performed using (1) the full performance dataset without interpolation, (2) the partial performance
dataset of 8 and 16 known values, respectively, and completed using linear interpolation, and (3) the full
performance dataset created using quadratic interpolation. The table depicts average (Avg), minimum (Min)
and maximum (Max) obtained values of makespan in minutes. The percentage difference between experiments
with partial and full performance datasets is also depicted.

40 Tasks 80 Tasks 40 Tasks 80 Tasks

1024 x 1024 x 1024
Makespan

[min]
Diff.
[%]

Makespan
[min]

Diff.
[%]

810 x 810 x 810
Makespan

[min]
Diff.
[%]

Makespan
[min]

Diff.
[%]

GOSA Avg 29.70 - 58.31 - GOSA Avg 14.82 - 30.05 -
with no Min 27.75 - 55.74 - with no Min 14.07 - 28.32 -
interp. Max 35.10 - 61.07 - interp. Max 16.88 - 31.76 -

GOSA with Avg 29.19 1.72 59.23 1.57 GOSA Avg 17.08 15.25 33.11 10.18
linear interp. Min 27.29 1.65 55.27 0.84 with quadratic Min 15.44 9.70 31.27 10.41
(Dataset A1) Max 33.25 5.27 65.47 7.21 interpolation Max 18.85 11.64 36.67 15.44

GOSA with Avg 26.74 9.98 51.06 12.44
linear interp. Min 24.87 10.36 49.05 12.00
(Dataset A2) Max 30.33 13.58 56.46 7.55

Figure 9: Pareto front together with dominated solutions showing the evolved schedules for workflows of 11
tasks not requiring interpolation, and two experiments both using linear interpolation (LI) but differing in
the content of the performance dataset.

factor of each criterion may differ. In our case, it is mostly
given by highly optimised and tuned codes.

The developed schedules tend to overestimate the execu-
tion time, which is partially caused by imperfect interpolation,
by missing support for backfilling which allows short jobs to
overtake the longer ones, and a reserve of 10% added to the
workflow to avoid premature termination. Nevertheless, the
error between developed and real schedules fits within a 15%
margin, which is considered to be acceptable for most users.

5.1 Future Work

There are three directions we would like to follow in our
future work. First, we would like to include the information
about the actual cluster utilization into the cluster simulator.
This will allow us to better simulate workflow execution in on-
demand allocations where the user competes with others. It
may have an impact on the shape of the developed schedules
because tasks asking for more resources sit longer in the
queue. Using smaller amounts of resources thus may improve
the workflow makespan. Second, we would like to implement
backfilling technique into our cluster simulator to better
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predict the time the task is started. Finally, we would like
to examine more advanced machine learning techniques to
improve the interpolation accuracy once the performance
database includes tens of thousands of records.
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