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Abstract: The segmentation of teeth in 3D dental scans is difficult due to variations in teeth shapes,
misalignments, occlusions, or the present dental appliances. Existing methods consistently adhere
to geometric representations, omitting the perceptual aspects of the inputs. In addition, current
works often lack evaluation on anatomically complex cases due to the unavailability of such datasets.
We present a projection-based approach towards accurate teeth segmentation that operates in a
detect-and-segment manner locally on each tooth in a multi-view fashion. Information is spatially
correlated via recurrent units. We show that a projection-based framework can precisely segment
teeth in cases with anatomical anomalies with negligible information loss. It outperforms point-based,
edge-based, and Graph Cut-based geometric approaches, achieving an average weighted IoU score
of 0.97122± 0.038 and a Hausdorff distance at 95 percentile of 0.49012± 0.571 mm. We also release
Poseidon’s Teeth 3D (Poseidon3D), a novel dataset of real orthodontic cases with various dental
anomalies like teeth crowding and missing teeth.

Keywords: dental scans; tooth segmentation; 3D mesh segmentation; Poseidon3D; Poseidon’s Teeth
3D; LMVSegRNN; orthodontic mesh segmentation dataset

1. Introduction

Surface dental scans are increasingly popular in digital computer-aided dentistry
intervention planning [1]. One of the fields where teeth surface scans are widely used is
digital orthodontics and 3D printing of clear aligners [2]. For diagnosing and preparing the
patient’s treatment plan, individual teeth must be precisely recognized and subsequently
rearranged into a normal occlusion. Manual or error-prone (semi-)automatic segmentation
of orthodontic cases requires clinicians to undertake laborious and time-consuming actions
until satisfying results are produced.

Automatic and robust teeth segmentation is non-trivial for at least a couple of rea-
sons. One difficulty stems from the high prevalence of dental anomalies and irregularities,
particularly among orthodontic patients. The patient’s arch might be asymmetric or in-
complete (caused, for example, by extractions or retention). Positional tooth anomalies are
also frequently seen among patients (rotations, teeth transpositions, or transmigrations).
Occasionally, patients wear dental appliances such as braces or wires during dental scan ac-
quisition. Finally, depending on the clinician’s proficiency, the resulting mesh might contain
holes, blurred geometry, incomplete scans (completely omitted or insufficiently scanned
molars), and others. Second, unlike the volumetric representation obtained from CT or
CBCT scanners, surface scanning devices capture optical impressions as 3D shapes. The
direct application of operations like convolution and pooling is, hence, more challenging.

An automatic solution capable of segmenting teeth in 3D surface scans robustly in all
mentioned aspects is indispensable to streamlining clinicians’ workflow and focusing more
attention and focus on treatment planning. The aim of this study is to provide a public
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dataset of such cases and also a method that handles the segmentation of these cases with
the minimum necessary adjustments.

1.1. Related Works

A considerable number of frameworks aim at addressing the tooth segmentation task
in 3D surface scans [3–7]. Research in this line mainly utilizes point cloud representation
(point based), frequently combined with graph learning techniques (graph based). Instead
of relying on PointNet [8] or PointNet++ [9], which are agnostic to capturing local geo-
metric contexts, researchers often introduce more complex and sophisticated methods.
One example is MeshSegNet [3], where the authors propose a dense fusion strategy to
combine local-to-global geometric features for mesh cell labeling. Although it provides
promising results in simple cases, its performance in real-world orthodontic scenarios
remains uncertain since the evaluation was conducted on a dataset with restricted vari-
ability and complexity. Furthermore, the method relies on a Graph Cut-based refinement
process sensitive to parameter tuning. Another point-based method, TSegNet [4], follows
a detect-and-segment approach, enabling the localized segmentation of teeth masks. Its
limitation lies in the fact that the detection module identifies tooth centroids, which are
not very intuitive to adjust by clinicians. Consequently, any inaccuracies in the detection
step leave no room for intermediate corrections and can lead to substantial errors in the
segmented teeth masks. This leads to more labor-intensive refinements of the segmentation
masks. The works discussed in references [6,7] represent notable efforts towards clinically
applicable solutions that do not rely on a large-scale annotated dataset. They achieve this by
introducing self-supervision techniques and training with weak annotations. These detect-
and-segment solutions demonstrate the feasibility of utilizing highly accurate detectors
to significantly enhance the performance of segmentation networks. As aforementioned
papers, they are homogeneous in terms of point cloud utilization.

Two projection-based approaches have emerged in the literature [10,11]. The method
referenced in [10] encodes dental mesh into a plan view and panoramic depth image. It re-
lies on hand-crafted feature engineering rather than employing a deep learning framework.
In [11], the authors propose a deep learning approach, where each mesh face is encoded
into a feature vector of geometric attributes. Each such descriptor is converted into a 2D
feature map, an input to a 2D CNN. Since each encoded face is processed separately and the
method relies on optimization algorithms, it is computationally heavy, which may present
challenges in practical real-time applications. Additionally, the spatial relationships within
these maps can be challenging to exploit by 2D convolutions, as the values are not inher-
ently spatially correlated. Projection-based frameworks benefit from the well-explored field
of 2D CNNs and are usually very efficient in training and inference speed. To widen the
research field with a well-designed projection method, it begs the following question: could
a projection-based method be on par with or even outperform 3D geometric approaches in
robust mesh teeth segmentation?

A common characteristic among all the teeth segmentation frameworks discussed is
the unavailability of publicly released data. Consequently, any attempt to compare these
methods lacks complete fairness, making it unclear which approach stands out as superior.
Another common attribute is the heavy downsampling of the input point cloud, losing
important anatomical features captured in the fine geometric details.

In this work, we propose a projection-based method that does not need any mesh
decimation and effectively builds upon the detect-and-segment idea. Opposite to previous
projection-based approaches, we represent the 3D shape as a sequence of 2D maps that
locally encode the depth and geometry of each tooth in a form, where functional proximity
coincides with physical proximity, which introduces an important inductive bias to 2D
learning. To the authors’ best knowledge, there are no projection-based methods employing
CNNs for the segmentation of teeth in 3D mesh data represented as multiple geometry
maps. The mesh segmentation framework MV-RNN [12] is methodologically closest to
our work. It builds upon MV-CNN [13], where the shape is rendered and evaluated from
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various viewpoints, with the final joint optimization into a compact object descriptor. MV-
RNN extends MV-CNN by incorporating recurrent blocks that correlate predictions across
different views. While our teeth segmentation framework draws inspiration from MV-
RNN, it diverges in several key aspects: (i) we apply our method to segment anatomical
shapes characterized by intricate geometry and significant shape variability rather than
low-frequency shapes representing human bodies; (ii) our method is specifically tailored
for the tooth segmentation task, involving a localized analysis of each tooth to enhance the
geometric information at the network’s input; (iii) we utilize Bi-Directional ConvLSTMs [14],
which preserve more spatial information as opposed to LSTM [15]; and (iv) instead of
relying on shaded images, we render input maps with rich geometric information (depth
and curvature) invariant to changes in lighting, shading, and reflectance.

We believe in the potential of this projection-based approach, based on our previous
work on the tooth detection task on digital dental casts [16] as well as on our experiments
introduced in this paper. Our results show that networks can effectively learn features for
the perceptual parsing of 3D medical shapes from rendered images. Our work presents a
methodologically different method from the usual practices in neural tooth segmentation,
which is valuable for broadening the understanding of the problem.

1.2. Contributions

Our contributions to the field can be summarized as follows:

• Streamlined segmentation. Our method operates in a detect-and-segment manner,
where detected surface landmarks (rather than tooth centroids) offer practical advan-
tages for clinicians, enabling quick corrections compared to laborious adjustments
of segmented 3D regions. This demonstrates significant potential to reduce human
efforts in orthodontic treatment planning.

• Information-rich projections. Utilizing predictions from the detector, our segmentator
addresses typical projection issues related to unclear camera positioning and unknown
shape orientation. It allows for localized segmentation and reduces the task to a
binary segmentation problem. Given the general convex ovoid tooth shape and prior
landmark detection, the multi-view configuration can be preset, so pose sensitivity is
not an issue. Alongside the local tooth processing, we show that the rendered maps
capture the 3D shape with minimal information loss.

• Highly competitive performance. We achieve an average weighted IoU score of
0.97122± 0.038 and a Hausdorff distance at the 95th percentile of 0.49012± 0.571 mm.
We provide a comparative analysis with other point-based [8,9] and mesh-based [17]
methods and with a Graph Cut-based solution. Our method outperforms each of
the methods.

• Release of Poseidon3D dataset. We address a notable gap in the field by introducing a
new dataset of real-world orthodontic cases of increased anatomical complexity. We
name it Poseidon’s Teeth 3D (Poseidon3D). This dataset contains 3D scans of patients
who exhibit various dental anomalies like teeth crowding, damaged and missing teeth,
and teeth with visible roots. To the best of our knowledge, we are the pioneering
contributors of such a dataset, and we anticipate that it will establish a standardized
basis for fair evaluation in future studies.

2. Poseidon3D: Dataset of Anatomically Complex Dental Shapes

A new public dataset for tooth segmentation in 3D surface scans is presented. It is
named Poseidon’s Teeth 3D (Poseidon3D). Poseidon3D contains 200 3D triangular meshes:
88 maxillas and 122 mandibles.

All data samples are real orthodontic cases scanned by various intra-oral scanners
and by indirect scanners of wax impressions. The scanning process was handled by a
professional clinician prior to the orthodontic procedure. Example cases are shown in
Figure 1. All cases were anonymized, so it was not feasible to undertake a thorough
analysis concerning ethnicity, gender, or age. However, the data come from multiple
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clinical sites across several continents. Shapes in Poseidon3D retain geometry information
on vertex positions and topology, with an average face count of approximately 200,000, and
do not carry any information on colors or textures.

Figure 1. Representative cases from Poseidon3D, a new public dataset of anatomically complex 3D
dental scans introduced in this work. Focus on the anatomical variability across individual subjects.
Colored teeth regions are the predicted segmentation masks by the proposed projection-based method.
Zoom in to see the intricate anatomical details.

Individual tooth regions for each case were accurately labeled by a clinician and
subsequently reviewed and refined to ensure the high quality of the labels. A single
connected component always forms each region.

Poseidon3D was collected by focusing on patient cases that noticeably deviated from
healthy full dental arches. Cases containing teeth with significant orthodontic anomalies
were accumulated, such as diastema (abundant space between upper incisors), abundant
space between teeth in general, infraocclusion and retention (partially erupted teeth that
do not reach the occlusal plane), mesial and distal inclination, multiple types of crowding
of various severity, missing teeth, damaged teeth, teeth with visible roots, present third
molars, and others.

Compared to the only publicly available dataset called 3DTeethSeg22 [18], the presented
dataset is smaller in size (200 vs. 1800 mesh models). Still, it addresses significantly more
abnormalities naturally present in orthodontic procedures. We anticipate that Poseidon3D
will provide insights into the generalization capabilities of novel methods, particularly
in their practical application in routine clinical practice, where abnormalities in dentition
are prevalent. We randomly select five representative meshes from Poseidon3D and
3DTeethSeg22 and provide the visual comparison in Figure 2. Twenty simple cases are
included for additional evaluation of the generalization to complex cases.

All data samples in STL format, along with per-face annotations of teeth masks, are
available at https://tiborkubik.github.io/lmvseg-poseidon3d/ (accessed on 10 October 2024).

https://tiborkubik.github.io/lmvseg-poseidon3d/
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Figure 2. Randomly sampled cases from 3DTeethSeg22 [18] dataset (upper row) and Poseidon3D,
the dataset presented in this work (lower row). Focus your attention on the highlighted regions
marked by arrows in the figure. These areas represent natural anatomical challenges (teeth crowding,
missing, damaged teeth, retention, diastema, and others) relentlessly present in orthodontic cases. In
3DTeethSeg22, such features also appear but not as commonly as in our dataset.

3. Method: High-Level Overview

A schematic view of the proposed framework is given in Figure 3. Given a set of
vertices, V ⊆ RN×3, a set of edges E ⊆ V2, and a set of faces F = {(k, l, m) | k, l, m ∈
V ∧ (k, l), (l, m), (m, k) ∈ E}, input mesh is defined as M = (V , E ,F ). There are no
assumptions aboutM concerning manifoldness, closeness, resolution, or orientation. It is
expected to be a geometric object representing a single human dentition (either a maxilla or
mandible). The objective of our study is to model the function g ⊆ F × C, where C is a set
of classes such that C = {L1, L2, . . . , L8, R1, R2, . . . , R8, G} and |C| = 17, representing
sixteen classes for individual teeth regions encoded as L(eft) or R(ight) quadrant followed
by a number starting from the central incisor to the third molar (one to eight), and one class
G that represents gingiva. Intuitively, function g assigns each face fromM a specific class
representing 1 of 16 teeth or gingiva.

. .
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Figure 3. Outline of our proposed projection-based tooth segmentation method. †As the detector, we
employ the multi-view landmark detection method presented in [16]. We utilize the detected teeth
position information for transforming the input mesh to the canonical form using the ICP algorithm
(occlusion alignment), localizing the segmentation over individual teeth (next-view sampler), and
conditioning the training and inference via input tooth type signal (itt scalar). Generated 2D segmen-
tation maps from n viewpoints are correlated by recurrent network, unprojected to mesh cells, and
post-processed to suppress any region ambiguities (region voting) and isolated triangles (CCA).
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Note that mapping g is not surjective since, in most cases, the scanned dental arch is
incomplete, i.e., teeth are missing. To model g, we employ a detect-and-segment approach.

3.1. Detector

The proposed method runs the automatic tooth detection presented in [16]. It de-
tects two occlusal/incisal landmarks on the surface of each tooth by running a multi-view
2D pipeline coupled with RANSAC-based post-processing for outlier removal. Such land-
mark positions (in contrast to tooth centroids) offer quick adjustability, allowing clinicians
to review intermediate results and make efficient corrections as needed. The method is
also robust to missing teeth in dental arches. The detector predicts vector TtoothPos =
[(mL8, dL8), (mL7, dL7), . . . , (mR8, dR8)]; |TtoothPos| = 16, where each tuple (m[LR][1−8], d[LR][1−8])

is formed by two vectors in R3, representing the position of the distal and mesial landmark
on the corresponding tooth surface, respectively. If a tooth is missing, the corresponding
positions in TtoothPos are set to infinity. In practice, the clinician would see the intermediate
results of the detector and correct any inaccuracies, which is more time effective compared to
the tuning of segmentation masks.

3.2. Occlusion Alignment

Positions from TtoothPos (with excluded infinity values) are used, as well as a set of
reference landmark positions, to align the 3D shape into a canonical position. The ICP
algorithm [19] is run on these two sets of points in R3 to obtain a rigid transformation matrix
MICP = [R|t], where R ∈ SO(3) (3D rotation group in geometry) denotes rotation and
t ∈ R3 denotes translation. MICP is applied toM to align the scan to be upright oriented
along the z-axis and centered around the origin. Note that within the new coordinate
system, the approach makes no distinction between the maxillas and mandibles, handling
both types of jaws in a unified way.

3.3. Segmentator

Within the coordinate system of occlusion-aligned meshes, we run the segmentation
of individual teeth. Since the segmentator is the main body of the work, its detailed
description is presented in Section 4.

4. Method: Segmentator

Teeth are segmented in two stages: (1) per-tooth stage, which is applied on each
detected tooth separately, and (2) scan-level stage, where per-tooth predictions are merged
and post-processing corrections are applied. The segmentator uses localization and identifi-
cation information from the detector stage and analyzes 3D shapes transformed in canonical
position by applying MICP.

4.1. Per-Tooth Stage

Individual teeth regions are obtained in a multi-view manner. Unlike common multi-
view methods, our segmentation method overcomes concerns related to information loss
and the ambiguity of camera extrinsic setup. First, leveraging prior tooth detection, each
tooth is independently analyzed within its local neighborhood. This approach captures rich
geometric information within a 2D image of compact resolution. Second, operating within
a coordinate system featuring canonically aligned meshes and considering tooth crowns
typically exhibit a convex ovoid shape when viewed from the occlusal surface, the extrinsic
of the virtual cameras in a multi-view configuration can be accurately predetermined. So,
for each tooth with corresponding values TtoothPos not in infinity, the following subsections
describe the sequence of steps executed for each such tooth.

4.1.1. Input Map Generation by Next-View Sampler

The initial camera position is determined based on TtoothPos of the currently processed
tooth, calculated as the mean of the corresponding landmark positions. An additional offset
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of 15 mm is added to the z-position of the camera. This setup allows for the comprehensive
capture of the entire occlusal surface of the tooth, including the surrounding neighborhood,
thereby preserving the contextual information of adjacent teeth. Subsequent views are
obtained by systematically moving the camera in a spiral-like manner around the tooth,
maintaining a constant angular increase. Throughout this process, the camera consistently
points toward the mean position of the tooth landmarks. An orthographic camera is used
to obtain the input maps.

4.1.2. Extraction of 2D Segmentation Masks

From each camera viewpoint v, two input maps of size H ×W are generated via
orthogonal projection: Dv ∈ [0, 1]H×W , the depth map where 0 indicates infinity, and
Nv ∈ [−1, 1]3×H×W , the normal map with the normal vectors in screen space. These
maps make the method robust against a wide range of challenges, including variations in
lightning, shading, and reflectance models. It retains essential geometric details, accurately
capturing depth and curvature information. The input to the network can be written as
Iv := {Dv, Nv} ∈ R4×H×W .

To follow the multi-view approach, there is a set of such inputs I = {Iv,1, . . . , Iv,n},
where Iv,i is the map from the i-th (1 ≤ i ≤ n) position of camera, where n is the total
number of viewpoints.

An additional scalar signal is derived from the tooth type notation ([LR][1–8]). Each
distinct tooth type is associated with a unique floating-point value itt ∈ [0, 1]. These
values lie in the unit range to align with the overall distribution of I. Including itt is
a significant inductive bias that allows for efficiently sharing a substantial portion of
the network’s capacity for shared feature extraction. Then, the signal activates specific
weights trained to fine-tune the results for the given tooth class, enhancing the model’s
tooth-specific performance.

Each element of I, accompanied by the signal itt, serves as input for the segmentation
network referred to as CNN1, adopting the U-Net [20] shape. As outputs of CNN1 have no
inter-viewpoint context, they require further tuning by ConvLSTM to ensure the correlation
of views and the consistency of the boundaries of the segmented regions. This input
sequence I can be generated before the 2D segmentation mask prediction, allowing for
the use of Bi-Directional ConvLSTM [14]. The output for each tooth is then a sequence of
2D segmentation masks O = {Ov,1, . . . , Ov,n}, where each Ov,i ∈ {0, 1}H×W . It indicates
that we define the task as binary segmentation. Class information is incorporated into the
network through the tooth signal itt. We argue that the binary segmentation task is easier
to learn for the neural network.

4.1.3. Unprojection of the Predictions to 3D

In this step, the sequence of output maps O is transformed into a set of faces FC ⊆ F
representing the segmented tooth. For each output map Ov,i, rays are cast orthogonally
only through those pixels of Ov,i, whose value is 1. For each face f ∈ F hit by any of the
rays, we then set FC to FC ∪ { f }.

4.2. Scan-Level Stage

Upon completing the per-tooth stage, a post-processing step is carried out on the
entire model. Two major issues might arise from the independent generation of tooth
region masks: (1) some faces f ∈ F may be assigned to multiple classes from C, and (2) the
unprojected regions do not form a single connected component.

4.2.1. Region Voting

Our custom proposed region voting solves the situation when faces f ∈ F are assigned
to more then one region. To tackle this, we define multi-view certainty, a relation u ⊆
F × C ×P , where P = {p | p ∈ [0, 1]}. Each tuple ( fi, ci, pi) ∈ u defines the certainty pi of
face fi being a member of class Ci, and is obtained as the ratio of the number of views from
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which the face was hit by a cast ray representing the class Ci and the number of views from
which the face was initially visible.

For clearer demonstration, the relation can be perceived as mapping u : F ×C 7→ [0, 1]:

F ←

arg max
c∈C

u( f , c) if max
c∈C

u( f , c) ̸= 0,

G if max
c∈C

u( f , c) = 0.
(1)

This means that each face is assigned to the class with the highest multi-view certainty or
to the gingiva class if the certainty is 0 for all classes.

4.2.2. Connected Component Analysis

We assume that a single region forms each tooth in a dental scan. Therefore, any
outlying faces are removed. The CCA approach [21] from graph theory is utilized. In case
there is a class that is represented by more than one component, only the component with
the highest face count is preserved. Faces of the remaining components are associated with
classes respecting the multi-view certainty.

4.3. Implementation Details

CNN1 is designed as a U-Net [20] with the following hidden features: [32, 64, 128, 256, 512]
(five stages), and additional batch normalizations added in each stage to reduce overfitting
between the convolutional and ReLU layers. Transposed convolutional layers accomplish
upsampling. The recurrent unit (ConvLSTM) has 32 hidden states in both layers. The
method is trained on sequences of 49 maps. Rendered maps have a spatial resolution of
256× 256. This setting gives the best results concerning computational speed and memory
requirements.

5. Experimental Results

The experiments discussed in this work were run on a system with 24 GB NVIDIA
GeForce RTX 4090 and a 12-core AMD Ryzen 9 7900 with 64 GB RAM. Training of the
best-performing model took approximately 2 days. The inference time depends on the
number of viewpoints employed and falls within the range of seconds.

5.1. Training and Data Augmentation

Dental scans of the Poseidon3D dataset are divided into two groups: those used in the
training procedure and those used for the evaluation. From the 200 3D shapes, 160 models
are used for the network training, and 40 models are used to evaluate the proposed method.
Furthermore, 160 meshes of training phase are split in the ratio of 4:1 into a training set and
validation set, respectively.

To improve the generalization ability, we augment the training and validation data
samples. We apply different transformations on the 3D shapes to generate augmented
meshes. For each original surface already pre-aligned to occlusion via MICP, we generate
10 random rigid transformations, each represented by a matrix MAUG = [R|t|S], where
R ∈ SO(3), t ∈ R3 and S denote the scaling operation. We rotate the meshes with a
random angle uniformly sampled within [−π

4 , π
4 ] around an arbitrary axis. The vector t

displaces the mesh by translating it by a value uniformly sampled between [−5, 5]. The
dental scan is resized by an isotropic scaling value uniformly sampled between [0.8, 1.2].
Then, the sequence is generated without additional augmentations on the 2D maps. No
augmentation is applied in the testing phase.

The network is optimized via batches of size 4, using AdamW optimizer with a
learning rate and a weight decay of 0.001. Cosine annealing restarts are applied every
10,000 iterations. Models are trained by minimizing the Dice loss LDice [22]:

LDice = 1− 2 ∑N
n=1 pnrn + ϵ

∑N
n=1 pn + rn + ϵ

, (2)
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where rn are values from reference foreground segmentation image of N pixels, pn are
image elements of the predicted probabilistic map for the foreground labels, and ϵ is a term
to ensure the loss function stability.

To provide shorter paths for gradients to flow during backpropagation, deep supervi-
sion [23] is employed, so the final loss value is computed as follows:

L total
Dice =

S−1

∑
i
L i

Dice + L
f inal

Dice , (3)

where L i
Dice is the loss value computed at stage i of S-stage decoder and L f inal

Dice corresponds
to the loss value computed from the output layer.

For the detection module, we follow the setup as presented in [16].

5.2. Evaluation Metrics

To evaluate individual methods and setups, two complementary metrics are employed
that are suitable for the segmentation task [24]. Although the method operates in 2D
projections, all metrics are measured on the final unprojected segmentation masks in 3D.

Let V̂ be a point cloud of ground-truth boundary vertices, and V be a point cloud
of prediction boundary vertices. Let d be the Euclidean distance in R3. We define the
Hausdorff distance dH as our boundary metric, and it is calculated as

dH(V̂ ,V) = max{max
x∈V̂

min
y∈V

d(x, y), max
y∈V

min
x∈V̂

d(x, y)}. (4)

dH95 is its 95th percentile. This boundary metric detects artifacts in segmentated masks,
such as missing details or narrow protruding parts.

We choose Weighted Intersection over Union as the overlap metric. In contrast to the
standard IoU computed over meshes, W-IoU takes into account that different triangle sizes
contribute differently to the final value:

W-IoU =

∑
f∈F∩

A f

∑
f∈F∪

A f
, (5)

where A f is area of face f , F̂ and F are faces of ground-truth and prediction masks,
F∩ = F̂ ∩ F , and F∪ = F̂ ∪ F . W-IoU detects errors such as under/oversegmentation, or
shift errors. We consider an overlap metric that does not weight values by the polygon
area inaccurate.

5.3. Competing Methods

Using the Poseidon3D dataset introduced in Section 2, we compare the performance
of our projection-based method with two representatives of point-based approaches (Point-
Net [8], PointNet++ [9]), one representative of edge-based approaches (SparseMeshCNN [17])
and one representative of the traditional segmentation algorithm based on the Graph Cut
method. Their brief summarization follows.

• Localized PointNet [8]: We implemented the architecture by following the original
paper. The input is N × 3 or N × 6, where each row denotes the 3D coordinates of a
mesh cell, possibly extended by its normal vector. To make the comparison more fair,
we cut a submesh of the original dental scan for each tooth, following the localized
processing. We sample N = 8192 points from the mesh cut by farthest point sampling
(FPS). We train the network with a batch size of 8 and point Dice loss.

• Localized PointNet++ [9]: This method intuitively extends PointNet by hierarchical
modeling of spatial relations between neighboring points. Our architecture follows
the segmentation architecture presented in the original paper. We apply the same
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point sampling strategy as in the case of PointNet. Similarly to PointNet, each tooth is
analyzed locally, and the task is formulated as binary segmentation. Sampling and
training configuration also remain the same.

• Localized SparseMeshCNN [17]: This edge-based method directly taps into the ge-
ometric nature of meshes and redefines convolution over mesh edges. To build
hierarchical networks, mesh pooling via edge collapse is used. SparseMeshCNN
extends the original MeshCNN by using sparse tensors. This network is again used
to predict binary masks on mesh cuts in a detect-and-segment manner. As in the
original work, the input feature for every edge is a 5d vector: the dihedral angle, two
inner angles, and two edge-length ratios for each face. Each mesh cut is decimated to
contain approximately 8000 edges.

• Graph Cut: This is a conventional segmentation method based on classic 2D image
Graph Cut [25]. In 3D shape analysis, the graph is constructed from the mesh structure,
with edge weights reflecting local curvature information. The Graph Cut algorithm
is then applied to find the optimal cut, separating teeth from gum while following
regions of lower curvature [26].

5.4. Results

We present the results along two experimental axes: an ablation study demonstrating
the impact of key method components and a comparative analysis to show the competitive
performance of a projection-based approach compared to geometric methods.

5.4.1. Components of LMVSegRNN Gradually Improve Its Performance

Quantitative results of the ablation study are summarized in Table 1. The results
regarding the input format reveal a couple of key insights.

Table 1. Ablation studies on various method components. Ds: depth information at the input
in the form of depth maps. Ns: curvature information at the input in the form of normal maps.
itt: tooth type input signal. Deep s.: deep supervision. LSTMs: bi-directional ConvLSTM units
for inter-viewpoint content. Voting: region voting for correcting unprojected segmentation masks.
CCA: connected component analysis for removing isolated region cells. Results in bold are for the
best-performing method.

Basic Cases Complex Cases
Ds Ns itt Deep s. LSTMs CCA Voting W-IoU ↑ W-IoU ↑
✓ 0.91759± 0.087 0.91857± 0.067

✓ 0.90898± 0.093 0.88943± 0.101
✓ ✓ 0.92045± 0.125 0.92670± 0.011
✓ ✓ ✓ 0.92811± 0.103 0.92564± 0.065
✓ ✓ ✓ ✓ 0.92826± 0.090 0.92980± 0.098
✓ ✓ ✓ ✓ ✓ 0.94796± 0.105 0.94438± 0.051
✓ ✓ ✓ ✓ ✓ ✓ 0.95145± 0.105 0.95132± 0.047
✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.97676± 0.084 0.97122± 0.038

• Input format: First, depth information is crucial for robustly representing intricate
tooth shapes, while normal maps alone represent the teeth less informatively. Second,
stacking normal maps with depth maps enables learning a promising inductive bias for
improving the results at the tooth–gingiva boundary. Curvature information in normal
maps enables the network to generate smoother and more consistent segmentation
results, particularly in complex and irregular boundary regions.

• Tooth type input signal: Incorporating additional input signals that convey tooth type
information from the decoder delivers better results, speeds up training convergence,
and enhances training stability. These findings support the hypothesis that adopting a
detect-and-segment approach is beneficial.
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• Deep supervision: Auxiliary segmentation heads in the intermediate layers of the
decoder, optimized with the same loss, increase training stability and speed up con-
vergence. These aspects are essential in overfitting prevention when learning from
medical data.

• Recurrent units: Without imposing an inter-view context, the generated segmentation
masks exhibit inconsistent region boundaries, appearing unnatural in some cases,
featuring spiky and jagged artifacts. The addition of recurrent units improves the
smoothness of region boundaries, which is particularly important for practical ap-
plications, as it reduces the need for minor and potentially unnecessary adjustments
that do not affect the method’s usability. The performance gain (approximately 2% in
overlap metric for both simple and complex cases) also suggests that including LSTM
layers enhances the understanding of the 3D nature of the data.

• Region voting: Introducing the region voting procedure results in substantial improve-
ment (2% on complex test set). Each tooth region is assessed independently and is
successively back-projected to the mesh surface sequentially. Any inaccurate segmen-
tation (typically predicted from one viewpoint) is corrected thanks to the computed
multi-view certainty. The substantial impact of this module can be seen in Figure 4. It
is evident that it suppresses significant errors on surfaces close to areas of contact with
neighboring teeth. It allows us to define a multi-class task as single-class segmentation
without any faces assigned to multiple classes.

• CCA: The impact of CCA on performance is minor when considering overlap metrics
but notably impactful when considering boundary metrics (almost 0.4 mm improve-
ment in dH95 on complex cases). This finding is a notable sign of why combining
overlap and boundary metrics in segmentation tasks makes sense.

Figure 4. Qualitative assessment of the method without (left) and with (right) the region voting. In
the former, predictions are back-projected to mesh sequentially in canonical order, for example, from
R8 to L8. Blue and green region cells with misclassified labels are effectively reassigned based on a
higher certainty value.

5.4.2. LMVSegRNN Outperforms Conventional Geometric Approaches

Our proposed method outperforms the Graph Cut-based framework, specifically
tailored for tooth mesh segmentation. As evident in Table 2, the performance is almost on
par with our solution (1.5% worse on W-IoU metric then our performance). However, in
complex cases, the performance is worse by 2.6% on W-IoU. This suggests the effectiveness
of our learning-based method, which better generalizes to atypical cases compared to the
rule-based algorithm, even though explicitly tweaked for dental mesh segmentation.
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Table 2. Comparison of semantic tooth segmentation between LMVSegRNN and existing methods
using Poseidon3D dataset. By n, we refer to normal vectors as a part of input features. By ab
(attention blocks), we refer to incorporating edge self-attention blocks in the two bottom stages of
SparseMeshCNN. Results in bold are for the best-performing method.

Seg. Method Basic Cases Complex Cases
W-IoU ↑ dH95 ↓ W-IoU ↑ dH95 ↓

PointNet (w/o n) 0.822± 0.065 1.959± 1.611 0.785± 0.090 2.437± 1.231
PointNet (w. n) 0.928± 0.021 1.120± 1.773 0.921± 0.039 1.309± 1.262

PointNet++ (w/o n) 0.914± 0.043 0.983± 1.522 0.907± 0.058 1.396± 1.363
PointNet++ (w. n) 0.943± 0.053 1.033± 1.039 0.935± 0.051 1.022± 1.129

SpMeshCNN (w/o ab) 0.923± 0.095 0.784± 1.225 0.920± 0.092 0.893± 1.103
SpMeshCNN (w. ab) 0.948± 0.063 0.623± 0.794 0.918± 0.057 0.858± 1.074

Graph Cut 0.961± 0.184 1.013± 2.816 0.945± 0.109 0.985± 1.794
LMVSegRNN 0.976± 0.084 0.458± 0.993 0.971± 0.038 0.490± 0.571

5.4.3. LMVSegRNN Outperforms Learning-Based Geometric Approaches

The qualitative results obtained by the competing methods are summarized in Table 2.
Our projection-based method consistently surpasses the performance of other approaches
based on representation learning. More importantly, it shows the greatest generalization
ability to complex atypical cases and, thus, the highest potential to be exploited in daily
clinical practice.

In competing point-based methods, including curvature information in the input
representation is beneficial, which confirms and ties well with the results of our ablation
study. The complete absence of local information in PointNet solutions and the very limited
local information in PointNet++ methods, however, result in an inferior ability to uncover
intricate patterns in the geometry of dental shapes, making the methods less accurate. In
contrast, our projection-based method is built on hierarchical processing of depth and
normal information via local 2D convolutions with 3D information shared among different
views through recurrent units, effectively processing the input scan with information at
different scales. Although much information may be lost by reducing to 2D, we argue
that considerably more information is lost by strong undersampling of inputs required by
point-based methods.

The results of the qualitative analysis support the findings presented above. Refer to
Figure 5 for segmentation results produced on two randomly selected test cases. By visually
examining the performance of individual approaches, we deduce several valuable insights
regarding their typical error patterns. Outputs for the PointNet-based approach without
information about normal vectors are characterized by oversegmentation. As there is no
curvature information, the method learns blobs around teeth that are not bounded by the
tooth–gingiva transition. On the other hand, the remaining point-based methods produce
under-segmented masks. During the qualitative evaluation of edge-based methods, we
observe that the generated masks occasionally exhibit holes. We argue that the results of
point- and edge-based methods are not practically applicable due to the considerable effort
needed to tune most results. The Graph Cut solution provides more applicable results.
The segmentation mask grows from landmark positions on cusps until some significant
change in curvature is found. Such change in curvature should represent the tooth–gingiva
boundary. However, in cases where the input mesh lacks high-frequency information,
such boundaries are blurred, and the method fails. The performance is also limited in
cases where the central pit of the occlusal surface is deep or dental appliances are present.
Our proposed solution does not show evidence of these artifacts but may occasionally
introduce errors in teeth areas occluded during rendering, such as narrow inter-dental
spaces. Figure 6 depicts more results on test samples.
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Figure 5. Visualization of two segmentation results generated by the competing methods, our pro-
posed method, and ground truth. From left to right, top row first: input mesh, PointNet without
normal vectors, PointNet with normal vectors, SparseMeshCNN with attention blocks, our LMVSeg-
RNN, zoomed-in input, PointNet++ without normal vectors, PointNet++ with normals, Graph Cut,
ground truth. Zoom in to better see the details.

Figure 6. Detailed visualization of the results of the best-performing setup of LMVSegRNN on four
randomly selected complex test cases. For each sample, we visualize the results from the occlusal
view, and the lingual and buccal surfaces in orthographic projections. Zoom in for details.

5.4.4. LMVSegRNN Is Robust towards Mesh Tessellation

Naturally occurring small changes in mesh topology and geometry may be observed
in the analyzed data, as they are influenced by the scanning properties, which may vary
depending on the clinic, scanner, etc. We believe that methods should learn the structural
nature of the real-world object represented by the mesh rather than the discrete approxi-
mation encoded in raw mesh data. To examine this, we evaluate the robustness to various
geometry tessellations to see how individual methods handle changes that do not affect
object semantics. The test sets are modified with the subsequent methods:

• Random vertex displacements (RVD). Vertices are displaced by a value from ⟨0.0 mm,
0.2 mm⟩, sampled uniformly. The maximal displacement value is set so the perturba-
tion does not affect shape semantics and is determined according to the typical error
of modern intra-oral scanners [27].

• Planar flipping optimization (PFO). We utilize edge flip operation to locally remesh
the input shape, increasing local triangle quality. Again, a similar procedure is applied
during training data augmentation.
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• Explicit remeshing (ER). We apply local remeshing operators edge flip, edge collapse,
relax, and refine, to obtain isotropically remeshed geometry.

The obtained results are summarized in Table 3. From the results, the following con-
clusions emerge. The highest drop in performance is observed when RVD transformation
is applied, as it introduces the most considerable changes in geometry. All methods are
collectively sensitive to vertex displacements, with an average performance drop of ap-
proximately 3% on W-IoU metric. When visually examined, we find that the measured
increase in error is reflected in more jagged region boundaries. The remaining remeshing
adjustments aim to increase the mesh quality by introducing changes in the topology.
Though, in general, no significant performance drop is observed, the smallest performance
drop is measured in the results of our projection-based method.

Table 3. Robustness of methods towards various geometry tessellations. Abbreviations of topology
and geometry adjustment methods: RVD: Random Vertex Displacement, PFO: Planar Flipping
Optimization, ER: Explicit Remeshing. Blue text represents the performance change compared to
the reference performance (without any topology or geometry changes) of given method. Presented
point-based methods contain both 3D coordinates and normal vectors of mesh cells at the input.
SparseMeshCNN contains edge self-attention blocks in two bottom stages of the encoder. Bold text
represent the best-performing setup.

Method Topology Adjustment & Performance
Reference RVD PFO ER
W-IoU ↑ W-IoU ↑ W-IoU ↑ W-IoU ↑

PointNet 0.921± 0.039 (−2.4%) 0.897 ± 0.044 (−1.1%) 0.910 ± 0.073 (−0.7%) 0.914 ± 0.060
PointNet++ 0.935 ± 0.051 (−3.5%) 0.900 ± 0.058 (−1.3%) 0.921 ± 0.098 (−0.8%) 0.927 ± 0.049

SpMeshCNN 0.918 ± 0.057 (−2.8%) 0.890 ± 0.065 (−1.8%) 0.900 ± 0.052 (+0.2%) 0.920 ± 0.082
Graph Cut 0.954 ± 0.109 (−3.5%) 0.918 ± 0.133 (−1.6%) 0.937 ± 0.101 (−1.3%) 0.940 ± 0.113

LMVSegRNN 0.971 ± 0.038 (−1.8%) 0.953 ± 0.086 (−0.3%) 0.968 ± 0.055 (−0.5%) 0.966 ± 0.092

5.4.5. (Un)Projection Does Not Cause Information Loss

One of the frequent arguments against projection methods is the loss of information
when projecting a 3D shape into the 2D feature map space and subsequent information
unprojection back to mesh cells. In our proposed method, there is inherently no loss of
information, even on unsampled meshes. This is primarily due to local per-teeth processing,
a reasonable number of views (49) and camera extrinsic setup, and sufficient resolution
of the 2D feature maps (256 × 256). (Un)projection loss of information would be reflected
by the generated masks containing holes. Figure 7 shows an example of two teeth in
parameterization space obtained by prediction on a mesh with fine geometry: 312,854 faces,
where the dataset mean is 203,974± 49,800 faces. Occasional unprojection errors are present
near the tooth–gingiva boundary. The small errors in this part of the masks are driven by
the complex geometry near the gingiva and the lower number of views from which a given
part of the surface is visible. However, most cases contain no holes, even on meshes with
high-resolution geometric details.
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(a) Generated segmentation regions and wireframe with colored edge
distance for tooth regions

(b) Planar parametrizations of two segmented
teeth regions (L5 and R6) with colors encoding

the distance to closest boundary edge

Figure 7. Demonstration information preservation during the (un)projection process. (a) Visualization
of the segmentation results of one high-resolution test case. (b) Two generated masks from the case in
parametrization space (unwrapped to 2D). In most cases, the generated teeth regions are consistent
without any holes. Occasionally, masks contain small projection errors near the tooth–gingiva
boundary, see blue arrows.

5.5. Discussion

To summarize, we demonstrated that a projection-based method that might appear to
introduce potential information loss during rendering can precisely segment challenging
cases in 3D dental shapes when thoughtfully designed. The results demonstrate that the
method outperforms several established point- and edge-based methods [8,9,17], as well as
a Graph Cut-based conventional method specifically tailored for this task, indicating its
highly competitive performance. The proposed method does not produce errors where,
for example, half of the tooth is not segmented due to the low amount of geometric details
or scanned dental appliances. This is the case with conventional segmentation methods,
and it is considerably time consuming to fix when employed in actual clinical work; our
method could decrease this overhead. The results hold for both maxillas and mandibles, as
well as among individual tooth types (incisors, canines, premolars, and molars), without
any significant variance in performance.

Although our projection-based approach achieves high-quality results, it has certain
limitations in handling cases with very narrow inter-dental spaces. Our network is lim-
ited in precisely segmenting corresponding cells if the space is extremely narrow due
to occlusions.

In the future, our work could be extended in several ways. Recent work [5] has
demonstrated the benefit of splitting the geometry and curvature information into two
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streams and fusing their complementary information to learn more discriminative shape
representations. It would be intriguing to see if the same applies to projection-based
approaches that employ depth and normal maps, like ours.

Looking forward, further attempts could combine the benefits of projection and
geometric methods. Such a combination could lead to a more expressive encoding of the
input tooth shapes by analyzing visual and geometric aspects as in [28]. We believe that
such fusion could effectively suppress the errors of our method since the inter-dental space
could be segmented based on geometric information.

Future research should further develop and confirm the initial findings by comparing
the results of our projection-based method with more point-, edge- and graph-based
approaches.

Our framework can also be applied to other areas of digital dentistry. For instance,
a method inspired by our approach could be used to automate tasks such as margin line
detection or tooth preparation segmentation in automatic crown design [29].

5.6. Contributions

Lastly, we briefly summarize the contributions:

• Streamlined segmentation. Our method operates in a detect-and-segment manner,
where the detected surface landmarks (rather than tooth centroids) offer practical
advantages for clinicians, enabling quick corrections compared to the laborious ad-
justments of segmented 3D regions. This demonstrates significant potential to reduce
human efforts in orthodontic treatment planning.

• Information-rich projections. Alongside the local tooth processing, we show that the
rendered maps capture the 3D shape with minimal information loss.

• Highly competitive performance. We achieve an average weighted IoU score of
0.97122± 0.038 and a Hausdorff distance at the 95th percentile of 0.49012± 0.571 mm.
We provide a comparative analysis with other segmentation approaches.

• Release of Poseidon3D dataset. A new challenging dataset of real-world orthodontic
cases (teeth crowding, damaged and missing teeth, and teeth with visible roots) is
introduced: Poseidon’s Teeth 3D (Poseidon3D).

6. Conclusions

We have introduced a novel projection-based framework specifically tailored to the
task of teeth segmentation in 3D surface dental scans. To minimize the information loss, we
defined the task to generate binary segmentation masks in a detect-and-segment manner,
introducing local tooth analysis, followed by custom post-processing derived from multi-
view certainty. We have demonstrated that a 2D approach is able to not only produce
promising results for practical applications but it can also have a competing performance,
which we have shown by comparing our method with several established geometric
approaches. We also release the complete dataset publicly to elevate further research in
this field.
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3DIM, s.r.o. The authors declare no conflicts of interest.

References
1. Haidar, Z.S. Digital Dentistry: Past, Present, and Future. Digit. Med. Healthc. Technol. 2023, 2. [CrossRef]
2. Tartaglia, G.M.; Mapelli, A.; Maspero, C.; Santaniello, T.; Serafin, M.; Farronato, M.; Caprioglio, A. Direct 3D Printing of Clear

Orthodontic Aligners: Current State and Future Possibilities. Materials 2021, 14, 1799. [CrossRef] [PubMed]
3. Lian, C.; Wang, L.; Wu, T.H.; Wang, F.; Yap, P.T.; Ko, C.C.; Shen, D. Deep Multi-Scale Mesh Feature Learning for Automated

Labeling of Raw Dental Surfaces From 3D Intraoral Scanners. IEEE Trans. Med. Imaging 2020, 39, 2440–2450. [CrossRef]
4. Cui, Z.; Li, C.; Chen, N.; Wei, G.; Chen, R.; Zhou, Y.; Shen, D.; Wang, W. TSegNet: An efficient and accurate tooth segmentation

network on 3D dental model. Med. Image Anal. 2021, 69, 101949. [CrossRef]
5. Zhao, Y.; Zhang, L.; Liu, Y.; Meng, D.; Cui, Z.; Gao, C.; Gao, X.; Lian, C.; Shen, D. Two-Stream Graph Convolutional Network for

Intra-Oral Scanner Image Segmentation. IEEE Trans. Med. Imaging 2022, 41, 826–835. [CrossRef]
6. Qiu, L.; Ye, C.; Chen, P.; Liu, Y.; Han, X.; Cui, S. DArch: Dental Arch Prior-assisted 3D Tooth Instance Segmentation with

Weak Annotations. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 18–24 June 2022; pp. 20720–20729.

7. Liu, Z.; He, X.; Wang, H.; Xiong, H.; Zhang, Y.; Wang, G.; Hao, J.; Feng, Y.; Zhu, F.; Hu, H. Hierarchical Self-Supervised Learning
for 3D Tooth Segmentation in Intra-Oral Mesh Scans. IEEE Trans. Med. Imaging 2023, 42, 467–480. [CrossRef] [PubMed]

8. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; IEEE
Computer Society: Piscataway, NJ, USA, 2017; pp. 77–85. [CrossRef]

9. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, Long Beach, CA, USA, 4–9 December 2017; pp. 5099–5108.

10. Kondo, T.; Ong, S.H.; Foong, K.W.C. Tooth segmentation of dental study models using range images. IEEE Trans. Med. Imaging
2004, 23, 350–362. [CrossRef] [PubMed]

11. Xu, X.; Liu, C.; Zheng, Y. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans. Vis. Comput.
Graph. 2018, 25, 2336–2348. [CrossRef] [PubMed]

12. Le, T.; Bui, G.; Duan, Y. A Multi-view Recurrent Neural Network for 3D Mesh Segmentation. Comput. Graph. 2017, 66, 103–112.
[CrossRef]

13. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E.G. Multi-view convolutional neural networks for 3d shape recognition.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015.

14. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.c. Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems, NIPS’15, Montreal, QC, Canada, 7–10 December 2015; Volume 28, pp. 802–810.

15. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
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