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Abstract

In the realm of digital forensics, password recovery is a critical task, with dictionary attacks representing one of the oldest
yet most effective methods. To increase the attack power, developers of cracking tools have introduced password-mangling
rules that apply modifications to the dictionary entries such as character swapping, substitution, or capitalization.
Despite several attempts to automate rule creation that have been proposed over the years, creating a suitable ruleset
is still a significant challenge. The current research lacks a deeper comparison and evaluation of the individual methods
and their implications. We present RuleForge, a machine learning-based mangling-rule generator that leverages four
clustering techniques and 19 commands with configurable priorities. Key innovations include an extended command set,
advanced cluster representative selection, and various performance optimizations. We conduct extensive experiments
on real-world datasets, evaluating clustering-based methods in terms of time, memory use, and hit ratios. Additionally,
we compare RuleForge to existing rule-creation tools, password-cracking solutions, and popular existing rulesets. Our
solution with an improved MDBSCAN clustering method achieves up to an 11.67%pt. higher hit ratio than the original
method and also outperformed the best yet-known state-of-the-art solutions for automated rule creation.
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1. Introduction

Since the advent of password authentication in comput-
ing, password cracking has been a significant area of focus.
This technique is used not only by malicious hackers but
also by the “good guys” such as law enforcement, cyber de-
fense organizations, penetration testers, security analysts
to measure password strength (Proctor et al., 2002; Vu
et al., 2007), or individuals recovering lost credentials. In
digital forensics, recovering passwords is crucial for access-
ing encrypted evidence, making it an essential step in the
investigative process.

Among the wide range of strategies invented and em-
ployed over the years, dictionary attacks have stood the
test of time as one of the oldest yet still prevalent meth-
ods of breaching password-secured entry points. These at-
tacks, leveraging a predefined list of potential passwords,
exploit the human tendency to use memorable, hence often
weak, passwords (Bishop and V. Klein, 1995).

The introduction of password-mangling rules (Peslyak,
2017; Steube, 2024) to dictionary attacks has significantly
enhanced their effectivity, enabling attackers to system-
atically test modifications of candidate passwords far be-
yond simple wordlist matching. These rules apply a series
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of modifications, such as character substitution, insertion,
deletion, and capitalization, to each entry in a wordlist to
expand the attack vector by orders of magnitude. This
approach preys on the common practice of creating pass-
words that are slight variations of dictionary words or pre-
dictable patterns (Bishop and V. Klein, 1995).

Despite advances in cracking techniques, the process of
creating and optimizing mangling rules has for many years
been largely manual, time-consuming, and somewhat eso-
teric. In recent years, researchers and developers have pro-
posed several methods to automate the rule-creation pro-
cess (Marechal, 2012; Kacherginsky, 2013; Steube, 2020;
Drdák, 2020; Li et al., 2022). Recent approaches leverage
machine learning, particularly clustering (Drdák, 2020; Li
et al., 2022), with MDBSCAN (Li et al., 2022) being the
latest method proposed. While these approaches show sig-
nificant potential, they lack a comprehensive comparison
of clustering methods and rule-creation strategies, leaving
room for further research and improvements.

1.1. Contributions
Firstly, we conduct a comprehensive evaluation of rule-

set creation with four clustering methods, assessing gen-
eration time, memory usage, and hit ratios on real-world
datasets. Secondly, we introduce optimizations to the rule
creation process, including an extended rule command set
and advanced techniques for selecting cluster representa-
tives, improving flexibility and efficiency. Third, we test
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these optimizations on MDBSCAN and benchmark our
solution against the state-of-the-art approach of Li et al.
(2022), achieving an improvement of up to 11.67% points
in the hit ratio. Next, we compare our approach with
other rule-creation and password-guessing tools, achieving
the highest average hit ratio among all studied methods.
Lastly, we compare the hit rate with popular widely used
rulesets, outperforming nearly all of them. We also an-
alyze the rules created and the strength of the recovered
passwords. Our contributions are demonstrated through
RuleForge, a clustering-based mangling-rule generator we
developed as both a proof-of-concept and a practical tool
for password research and real-world password cracking.
Its flexibility allows to create of context-specific rulesets
to match the unique characteristics of each investigation.

1.2. Structure of the Paper
The paper is structured as follows. Section 2 overviews

existing research in smart password guessing, the history
and the current state of using password-mangling rules for
dictionary attacks. In Section 3, we propose the design
and a proof-of-concept implementation of our machine-
learning-based rule generator. This section also describes
our proposed enhancements to the rule-creation process.
Section 4 describes the experimental evaluation of the rule
generator and a comparison of ruleset-creation methods.
Finally, Section 5 discusses the achieved results and pin-
points ways for possible future improvements.

2. Background and Related Work

Users frequently choose simple, memorable passwords
(Bishop and V. Klein, 1995) that make them vulnera-
ble to intelligent password-guessing techniques that mimic
human behavior in password creation. Narayanan and
Shmatikov (2005) proposed password guessing based on
character distribution represented by Markovian models,
later adopted by the famous Hashcat tool (Steube, 2020)
as the default method for creating passwords in brute-
force attacks. Düermuth et al. (2015) presented OMEN
(the Ordered Markov ENumerator), an algorithm based
on iterating over bins in order of decreasing likelihood,
outperforming previously-known Markov-based password
guessers. Weir et al. (2009) introduced password crack-
ing with Probabilistic Context-Free Grammars (PCFG).
The method was further improved by Houshmand et al.
(2015), who added keyword and multiword patterns, Hran-
ický et al. (2019, 2020), who proposed a faster and a dis-
tributed version, and Veras et al. (2014), who added se-
mantic patterns, dividing password fragments into cate-
gories by semantic topics like names, sports, etc. Kanta
et al. (2022, 2023) utilized contextual information for cre-
ating fine-tailored password dictionaries against specific
targets. In recent years, deep-learning approaches for pass-
word guessing have been introduced. Ciaramella et al.
(2006) studied Principal Component Analysis (PCA) pre-
processing and different architectures of neural networks

for password guessing. Melicher et al. (2016) deployed
the “Fast, Lean, and Accurate” (FLA) technique for mea-
suring password strength based on Recurrent Neural Net-
works (RNN). Hitaj et al. (2019) proposed creating pass-
words with Generative Adversarial Networks (GAN) and
released the PassGAN generator. Xia et al. (2019) in-
troduced password guessing based on PCFG, Long Short-
Term Memory (LSTM) and a model called GENPass based
on Convolutional Neural Networks (CNN).

Despite the invention of sophisticated techniques for
guessing passwords in the past decades, the dictionary
attack is still one of the most widely used methods, of-
ten used with additional mangling rules that multiply the
number of password candidates and increase the chance of
finding the correct password.

2.1. The Evolution of Password-Mangling Rules
The origins of password-mangling rules for dictionary

attacks date back to 1991 when Alec Muffett released the
legendary Crack program (Muffett, 1996). Crack offered
a programmable dictionary generator and mangling rules
that applied additional modifications to candidate pass-
words. The 1995 version 5.0 contained 21 pre-defined rule-
sets and a cookbook for creating new ones using 29 sup-
ported commands like character substitution or append-
ing. The syntax was similar to those used in state-of-the-
art cracking tools like John the Ripper (Peslyak, 2015) and
Hashcat (Steube, 2020).

In 1996, Alexander “Solar Designer” Peslyak created
the John the Ripper (JtR) tool as a replacement for the
popular Cracker Jack UNIX password cracker. In addi-
tion to a complete redesign of the tool, Peslyak (2015)
added support for mangling rules compatible with those
used in the original Crack program. Over the years, vari-
ous improvements to John’s rule engine have been added,
including word shifting and memorization.

Jens “atom” Steube later decided to fix the missing
multi-threading support in JtR’s dictionary attack mode.
In 2009, he released the Hashcat tool (Steube, 2020), orig-
inally called “atomcrack.” The initial version was a simple
yet very fast dictionary cracker. Hashcat had a native sup-
port for password-mangling rules and adopted the syntax
and semantics from JtR.

The release of NVIDIA CUDA and OpenCL started
a revolution in the password cracking. Developers quickly
reacted by adding GPU support to their tools (Steube,
2020; Peslyak, 2019). Steube was no exception and, in
2010, released cudaHashcat and oclHashcat, the latter be-
ing eventually transformed into a single unified tool named
just “hashcat”. OpenCL support was also added to JtR
in 2012 (Peslyak, 2019). Unlike Cracker Jack and JtR,
Hashcat applied the rules directly inside the GPU ker-
nel, which dramatically reduced the number of necessary
PCI-E transfers. Hashcat also introduced new such as
ASCII value incrementation, character block operations,
or separator-based character toggling (Steube, 2024). To
the best of our knowledge, Hashcat is the only password
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cracker with an in-kernel rule engine and a self-proclaimed
“world’s fastest password cracker” (Steube, 2020). This
could be true as Hashcat now computes all hash algo-
rithms on OpenCL devices using highly optimized kernels.
Moreover, the team Hashcat won several years of DEF-
CON and DerbyCon “Crack Me If You Can” (CMIYC)
contests1. The latest 2022 v6.2.6 release of Hashcat sup-
ports 56 unique mangling-rule commands (Steube, 2024).

2.2. Approaches to Automated Rule Creation
While both Hashcat and JtR provide several default

rulesets and their respective websites document the syntax
and semantics of the supported mangling rules (Peslyak,
2017; Steube, 2024), creating new rulesets is not a trivial
task. To this day, several approaches have been proposed
to automate the rule creation (Marechal, 2012; Kachergin-
sky, 2013; Steube, 2020; Drdák, 2020; Li et al., 2022).

The hashcat-utils repository includes generate-rules.c,
a simple utility by Jens Steube that generates random
password-mangling rules based on a time-based or user-
defined seed. While the generated ruleset can theoretically
be used for password cracking, their form is purely random
without any deeper meaning, as there is no sophisticated
system for their creation. From a research perspective,
the tool serves as a baseline for comparing more advanced
techniques. The algorithm was later integrated directly
into hashcat (Steube, 2020).

Marechal (2012) proposed generating mangling rules
by applying handpicked or randomly generated initial rules
to a wordlist, producing mangled passwords. Their algo-
rithm identifies the largest common substring among the
results and derives append/prepend operations to recre-
ate it from the remaining passwords. These operations
represented rules that were then ranked according to the
number of passwords created. Marechal’s proof-of-concept
tool, rulesfinder, remains actively maintained. Although
the approach is working, its major drawback is the need
for an existing set of rules.

Peter "iphelix" Kacherginsky (2013) introduced a novel
technique and a proof-of-concept tool called Rulegen within
the Password Analysis and Cracking Kit (PACK). It uses a
similarity-based approach but does not apply clustering in
the true sense of the word. For each candidate password,
it creates a group of similar passwords. For each group,
Rulegen calculates the Levenshtein distance (Levenshtein,
1966) between the originating password and other pass-
words in the group. By analyzing the calculated distances,
the optimal sequence of operations is found and described
by a series of rules (Kacherginsky, 2013).

Between 2019 and 2020, Drdák and Hranický (Drdák,
2020) explored using machine learning for automated rule
creation by clustering a training dictionary based on pass-
word similarity. From each cluster, a password was cho-
sen as a representative. Mangling rules were then cre-
ated to describe necessary modifications for transforming

1https://contest.korelogic.com/

the representative to the remaining passwords in the clus-
ter. Using Affinity Propagation (AP) (Frey and Dueck,
2007), Drdák developed a proof-of-concept with promising
results published in his bachelor’s thesis (Drdák, 2020).
While the general idea has been later proven usable by
other researchers (Li et al., 2022), Drdák’s study had its
limitations. Firstly, Drdák tested only a single clustering
method. The second issue was an extremely long comput-
ing of the distance matrix for larger training dictionaries.

The same issue was independently identified and later
addressed by Li et al. (2022). They proposed a novel
method called MDBSCAN, a modified version of the clas-
sic DBSCAN algorithm (Ester et al., 1996), that was cus-
tomized for clustering passwords. To accelerate the dis-
tance calculation, they used the SymSpell (Garbe, 2012)
fuzzy search algorithm. The research on using MDBSCAN
for the rule generation problem shows great success in ex-
perimental results, even compared to PCFG (Weir et al.,
2009) and PassGAN (Hitaj et al., 2019).

While MDBSCAN (Li et al., 2022) is, to the best of
our knowledge, the most efficient clustering-based tech-
nique for automated rule creation, the authors focused
mainly on DBSCAN and MDBSCAN and have not tested
other clustering methods like Affinity Propagation (Frey
and Dueck, 2007) or Hierarchical Agglomerative Cluster-
ing (HAC) (Han et al., 2012). The rule-creation method
is also not optimal, namely in terms of cluster representa-
tive selection, and, as we demonstrate in our paper, fails
in certain scenarios. Also, a selection of only 14 rules was
implemented. Moreover, we have not found any released
proof-of-concept implementation of the proposed method.

2.3. Research goals
Although several approaches for automated mangling-

rule creation have been proposed, significant gaps and
unanswered questions remain. To fill these gaps and ad-
vance the state of the art in the field we have decided to:

1. Compare tested and yet-untested clustering meth-
ods: DBSCAN (Ester et al., 1996), MDBSCAN (Li
et al., 2022), AP (Frey and Dueck, 2007), HAC (Han
et al., 2012).

2. Implement missing rule commands and experimen-
tally verify their contributions.

3. Explore other possibilities for choosing a cluster rep-
resentative and verify their benefits.

4. Compare these clustering-based approaches to other
mangling-rule creation methods like PACK/Rulegen
and other password-guessing tools like OMEN, etc.

5. Create an open-source proof-of-concept implementa-
tion to allow researchers and forensics practitioners
to experiment with automated rule creation.

6. Analyze the hit ratio of the generated rules and com-
pare it with existing popular rulesets.
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Figure 1: Rule generation process

3. The Proposed Mangling-Rule Generator

To fulfill the research goals from Section 2 and also to
provide a tool for both experimental and actual password-
cracking purposes, we propose a design and a proof-of-
concept implementation of RuleForge, an ML-based mang-
ling-rule generator with four clustering methods: AP (Frey
and Dueck, 2007), HAC (Han et al., 2012), DBSCAN (Es-
ter et al., 1996), and MDBSCAN (Li et al., 2022). Our tool
is also equipped with an extended rule command set, en-
hanced methods for choosing cluster representatives, and
configurable rule command priorities.

3.1. Design
The RuleForge rule generation process consists of sev-

eral key steps, illustrated in Fig. 1. The workflow starts
with processing the training password dictionary. For DB-
SCAN and MDBSCAN clustering methods, we find similar
passwords according to the Damerau–Levenshtein (Dam-
erau, 1964) distance and use the SymSpell (Garbe, 2012)
fuzzy search algorithm to accelerate the process, like Li
et al. (2022) proposed. For AP and HAC, we calculate
a classic edit-distance matrix utilizing the Levenshtein dis-
tance metric (Levenshtein, 1966). Password clusters are
then created using the selected method.

Next, we select strings to be considered representatives
of their respective cluster. The reason is to create rules
based on comparing passwords within a cluster with their
given representative and model necessary transformations

Table 1: Rule commands implemented in RuleForge, ap-
plied on “Password” (bold are newly added)

Rule Description E.g. Output
: Do nothing : Password
l Lowercase all letters l password
u Uppercase all letters c PASSWORD
c Uppercase all letters c PASSWORD
t Toggle case t pASSWORD

TN Toggle case at position N T2 PaSsword
zN Duplicate first character N times z2 PPPassword
ZN Duplicate last character N times Z2 Passworddd
$X Append character X to end $1 Password1
^X Prepend character X to front ^_ _Password
[ Delete first character [ assword
] Delete last character ] Passwor

DN Delete character at position N D2 Pasword
iNX Insert character X at position N i4! Pass!word

oNX Overwrite ch. at pos. N with X o2$ Pa$sword
} Rotate the word right } dPasswor
{ Rotate the word left { asswordP
r Reverse the entire word r drowssaP

sXY Replace all Xes with Y ss$ Pa$$word

by the produced rules. With AP, the representative is de-
termined by the clustering method itself. For the remain-
ing methods, the representative is selected using one of the
techniques from Section 3.3. DBSCAN and MDBSCAN
do not necessarily categorize every element into a cluster;
they put these unclusterable elements into an “outlier clus-
ter”. Creating rules from this cluster is, understandably,
ineffective. Therefore, we added an option to exclude these
outliers from rule creation.

Once clusters are created and their representatives se-
lected, the process of generating passwords starts. Rule-
Forge generates rules by leveraging a user-provided rule-
command priority file, specifying the sequence in which
rules are formulated. The process is thoroughly explained
in Section 3.4. Finally, RuleForge creates an output rule-
set consisting of rules sorted by frequency or, optionally,
a ruleset with a user-specified top number of rules.

3.2. Clustering Methods
As discussed above, RuleForge uses clustering to find

groups of similar passwords. Once identified, we can notice
differences between passwords in a group. These differ-
ences typically reveal how users create their passwords and
serve as anchors for rule identification. Applying different
clustering methods may lead to varied ways of grouping
passwords and creating diverse rules. By experimenting
with these methods within the tool, it is possible to at-
tain varying password-cracking success rates. The follow-
ing paragraphs describe the supported clustering methods
and their use in RuleForge.

AP. Affinity Propagation treats all objects as potential
exemplars, exchanging messages to identify high-quality
exemplars and clusters (Frey and Dueck, 2007). Key pa-
rameters are damping, which is the extent to which the
current value is maintained relative to incoming values,
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and convergence_iter, representing how many iterations
without change stop the clustering. In our experiments,
convergence_iter is 15, while damping is 0.7, as these set-
tings produced the best results.

HAC. The Hierarchical Agglomerative Clustering method
places each object into a cluster of its own. The clusters
are then merged into larger clusters according to the cri-
terion set by distance_threshold (Han et al., 2012). Our
setup uses distance_threshold of 3, which has been exper-
imentally verified to be the most effective for our use case.

DBSCAN. Density-Based Spatial Clustering of Applica-
tions with Noise identifies core points—objects that have
at least MinPts neighbors within ϵ distance. Each core
point initially forms a cluster with itself and then expand-
ing by including neighboring objects. The result is a set of
clusters and a set of non-clustered noise objects. We set ϵ
as 1 and MinPts to 3. In our experience, higher values of
ϵ lead the algorithm to output a single cluster containing
the vast majority of passwords. Higher values of MinPts
categorize the majority of passwords as noise.

MDBSCAN. Modified MDBSCAN (Li et al., 2022) ad-
dresses DBSCAN’s tendency to form one large cluster when
clustering passwords by introducing a truncation metric.
MDBSCAN’s parameters are ϵ1, ϵ2, and MinPts, where ϵ1
and MinPts are equivalent to DBSCAN’s. An object is
only added to a cluster if its Jaro–Winkler distance (Win-
kler, 1990) to the initial point of the cluster is less than or
equal to ϵ2. The truncation allows a higher ϵ1 by break-
ing up the large cluster, reducing noise. We set ϵ1 to 2,
ϵ2 to 0.25, and MinPts to 3. Setting ϵ1 above 2 leads to
enormously large clusters. High ϵ2 leads to the creation of
too many useless single-password clusters, whereas higher
values produce too large clusters. MinPts configuration
has the same impact as with DBSCAN.

3.3. Choosing cluster representatives
Once the clusters are created, it is necessary to se-

lect a represenative for each cluster and search for possible
transformations to the remaining passwords in the cluster.

Levenshtein Method. Existing works that use clustering
for rule creation (Drdák, 2020; Li et al., 2022) always
choose a representative as a concrete password from the
cluster, concretely, the one with the lowest mean Leven-
shtein distance to others. Therefore, we call it this tech-
nique the “Levenshtein Method”. Nevertheless, this ap-
proach is rather limiting. Assume the password clusters in
Fig. 2. The blue candidates are representatives chosen by
this method. In the leftmost cluster, hello1 is selected as
a representative. Assuming the rule commands from Ta-
ble 1, possible transformations to hello2 and hello3 are
(1) deleting the last character and appending “2” or “3”,
(2) overwriting the 6th character with “2” or “3”, or (3)
replacing all occurrences of “1” with “2” or “3”. Obviously,

Algorithm 1 Rule identification
Global: Vector −→rp = [r1, r2, . . . , r19] of rule commands
in priority order, where r1 and r19 are commands with
the highest and lowest priority respectively
Input: Password P from a cluster ci, representative
Prep of a cluster ci

Output: Sequence of rule commands R generated by
transforming P to Prep

while P ̸= Prep do
rf = None ▷ Initialize rf value to check whether

▷ a suitable rule command was found.
for each rule command r ∈ −→rp do

Calculate the number of transformations n using
levenshtein_distance(P, Prep).
Create a password Pm by modifying password P
with rule command r.
Calculate the new number of transformations nm

using levenshtein_distance(Pm, Prep).
if nm < n then

▷ Suitable rule command rf found.
P = Pm

rf = r
break ▷ Stop looking for other commands.

if rf ̸= None then
R.append(rf )

else
break ▷ No other possible modification found.

return R ▷ Return the final command sequence.

such modifications are only usable in very specific cases.
What we want are rules that have general use.

P@ssw0rd!
P@55W0rD

Pa$$W0rd_123

P@$$w0rD2024

password

Qw3rTy%2024

QW3rty_!42

Qwerty$123!

Qw3Rty!@42

qwerty

Levenshtein method

Substring method

hello2
hello1

hello3

hello

Figure 2: A visual comparison of cluster representative
selection methods

Substring Method. To overcome the obstacles of the previ-
ous approach, we invented an alternative called the “Sub-
string Method”, which works as follows. Firstly, we trans-
form all characters of the substring to lowercase. This
way we obtain more general words to which capitalization
rules may easily be applied. Next, we undo all “leetspeak-
based” transformations like a → @ or s → $. As we have
observed, removing leetspeak often allows the extraction
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of original words and sentence fragments that inspired the
password creator. Finally, we calculate the longest com-
mon substring of all passwords in the cluster. The re-
sulting string is the cluster representative. Note that the
representative created by this method may not always be
an actual existing password from the cluster.

Combo Method. While the Substring Method allows the
creation of more generally usable rules, the sole method
is not extremely powerful. Therefore, we propose a third
option that combines the previous two methods, leading
to the best experimental results from all (See Section 4.).
This “Combo Method” works as follows:

1. For each cluster, choose a representative using the
Levenshtein Method and generate all possible rules
(See Section 3.4.).

2. For each cluster, choose a representative using the
Substring Method. Generate all possible rules to ex-
tend the previously created ruleset.

3. The top n most frequent rules create the final ruleset.

3.4. Rule Creation
The rule-generation process utilizes the Levenshtein

distance (Levenshtein, 1966) to determine the number of
editing operations required to transform a password within
a cluster to its representative. Measuring edit distance
helps find specific rule commands that, when used on pass-
words, make the edit distance smaller. A command that
decreases the edit distance is deemed appropriate and in-
corporated into the generated rule. Multiple commands
(such as sXY and oNX) may achieve identical modifica-
tions in certain instances. Therefore, RuleForge introduces
a rule-command priority system, specifying which com-
mands it prioritizes. The configuration can be specified in
a priority file, where one can determine which rule com-
mands RuleForge should utilize and in which priority. The
generator proposed by Li et al. (2022) supports 14 differ-
ent rule commands. With RuleForge, we expanded this
number to 19. The commands supported by RuleForge
are displayed in Table 1. Other Hashcat rule commands
that have not yet been implemented are considered for fu-
ture work. This approach of using rule-command priority
allows the exploration of different priority configurations,
leading to different password-cracking hit rates. The rule
generation process is illustrated in Algorithm 1.

3.5. Proof-of-Concept Implementation
To create a proof-of-concept implementation of Rule-

Forge, we chose a combination of two languages: Python
and C#. Python for its popularity, common knowledge
among researchers, extensive data-analysis support. And
C# chiefly because of our dependence on the SymSpell
library, which is written therein, but also due to its bet-
ter multithreading performance, which is useful in effec-
tively computing distance matrices. We used the Python

Scikit Learn2 library to perform HAC and AP clustering.
For DBSCAN and MDBSCAN, we made our own imple-
mentation in C# and made use of the SymSpell library.
MDBSCAN was implemented, to the best of our efforts,
according to the paper from Li et al. (2022). RuleForge is
accessible on GitHub3 under the MIT License.

4. Experimental Results
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Figure 3: Time (a) and peak memory (b) requirements for
generating rules from wordlists of different sizes

In this section, we analyze clustering and rule creation
with the discussed methods and evaluate them on real-
world datasets. Next, we compare the original (Li et al.,
2022) and RuleForge’s implementations of MDBSCAN, fo-
cusing also on different representative-selection methods.
Next, we compare the hit ratio of RuleForge with other
techniques and state-of-the-art tools. Finaly, we compare

2https://scikit-learn.org/
3https://github.com/nesfit/RuleForge/
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hit rates with popular rulesets. In the experiments, we use
various password dictionaries. Table A.5 describes each of
them. All are also available on our GitHub repository3.
Note, for some experiments, we use abbreviations (from
the “Ab.” column) instead of full names.

4.1. Benchmarking of Clustering and Rule Creation
Time and space complexities are critical deciding fac-

tors, and thus, we first analyzed the computing time and
memory requirements for clustering and rule creation with
the four examined methods. We ran a series of benchmarks
with dictionaries of different sizes on an AMD Ryzen 5
2600X workstation with 64 GB of RAM. The inputs were
pseudo-random subsamples with 1,000 to 100,000 pass-
words from the RockYou dictionary. We used RuleForge
in the “Combo” mode (See Section 3.) with AP, HAC, DB-
SCAN, and MDBSCAN. Fig. 3 shows the time and max-
imum resident set size (RSS) required to create clusters
and generate mangling rules for inputs of different sizes.
Dashed lines indicate extrapolated values for wordlist-size
values that could not be measured due to a lack of memory
in our workstation.

DBSCAN, MDBSCAN, and HAC demonstrate compa-
rable and decent performance, all processing dictionaries
with 100,000 passwords in under 5 minutes. In contrast,
AP exhibits significantly poorer performance, requiring
about 21 hours to handle the same workload.

In terms of memory requirements, DBSCAN and MDB-
SCAN show linear complexity, whereas AP and HAC dis-
play quadratic complexity, which is due to the necessity of
computing the full distance matrix, as mandated by the
Scikit Learn library. In concrete values, at 100,000 pass-
words, DBSCAN and MDSBCAN require about 200 MB
of memory, HAC requires 137 GB, and AP 247 GB. DB-
SCAN and MDBSCAN’s efficient linear memory usage is
achieved by leveraging the SymSpell library (Garbe, 2012)
for finding similar passwords.

The doubling of memory usage from HAC to AP is
caused by the fact that HAC can utilize a 1-byte integer
distance matrix, whereas AP requires at least a 2-byte float
distance matrix. Note that the memory requirements for
AP and HAC are much higher than just the size of their
distance matrices (for 100,000 passwords, this would be
10 GB and 20 GB for HAC and AP, respectively). This
is caused–as we observed–by some inefficiencies in Scikit
Learn’s handling of distance-matrix clustering.

DBSCAN and MDBSCAN are thus very well suited
for processing any-sized dictionaries. AP and HAC, on
the other hand, are barely usable for larger dictionaries
due to extensive memory requirements.

4.2. Cross-Checking Clustering Methods and Rule Creation
on Different Wordlists

Next, we compared the achievable hit ratios of rules
generated from the clusters produced by each of the four
clustering methods. For this purpose, we employed Rule-
Forge in the “Combo” mode, except for AP which selects

Table 2: Attacks on rockyou-75-m

Rules Hit ratio
ta Method pr tm en dp

tl

mdbscan 56.54% 51.56% 22.60% 2.60%
dbscan 47.46% 40.13% 16.48% 1.89%

hac 48.61% 42.40% 17.82% 1.95%
ap 53.49% 47.32% 20.43% 2.29%

r65

mdbscan 57.43% 53.23% 23.22% 2.66%
dbscan 47.28% 39.95% 16.52% 1.88%

hac 44.24% 37.49% 16.88% 1.89%
ap 57.14% 51.46% 23.31% 2.61%

ms

mdbscan 55.85% 50.15% 21.30% 2.43%
dbscan 48.48% 41.34% 16.90% 1.87%

hac 51.35% 46.40% 19.07% 2.10%
ap 49.72% 42.61% 17.37% 1.90%

dw

mdbscan 55.99% 52.05% 23.02% 2.72%
dbscan 47.62% 40.25% 17.13% 2.61%

hac 45.11% 38.53% 17.84% 1.84%
ap 55.09% 49.57% 22.34% 2.68%

a Training dictionary

cluster representatives natively. We experimented with
four training (t) dictionaries (tl, r65, ms, dw) for creating
rulesets. Each ruleset was gradually applied to words from
four attack dictionaries (pr, tm, en, dp) in a dictionary-
cracking session with Hashcat 6.2.6 in plaintext mode. The
target “hashlist” was RockYou-75 (See Table A.5.), for
which, we calculated the number of hits. To maintain fair
conditions for all methods, we used the best (i.e. first)
1,000 rules generated by each method.

Table 2 shows the hit ratios. On average, MDBSCAN
produced rules with the best hit ratios. The second best-
achiving method was AP which, for r65+en, it even out-
performed MDBSCAN. We believe this success of AP is
caused by its virtually optimal cluster representative se-
lection, but this is reclaimed by high computational and
memory costs, as shown in the previous experiment.

Table 3: MDBSCAN RF vs. Li, rockyou-75-m

Rules Hit ratio
ta Method pr tm en dp

tl

Li et al. 52.44% 46.04% 18.55% 2.19%
RF-leven 55.12% 51.45% 21.10% 2.53%
RF-substr 53.42% 48.22% 22.34% 2.36%
RF-combo 56.54% 51.56% 22.60% 2.60%

r65

Li et al. 55.14% 50.49% 19.41% 2.30%
RF-leven 55.83% 51.70% 21.44% 2.50%
RF-substr 53.65% 47.69% 23.76% 2.51%
RF-combo 57.43% 53.23% 23.22% 2.66%

ms

Li et al. 51.19% 43.96% 17.26% 2.10%
RF-leven 51.06% 44.41% 18.04% 2.06%
RF-substr 52.76% 48.08% 20.12% 2.26%
RF-combo 55.85% 50.15% 21.30% 2.43%

dw

Li et al. 52.49% 45.87% 18.42% 2.27%
RF-leven 54.01% 49.84% 20.91% 2.58%
RF-substr 50.99% 44.69% 20.48% 2.24%
RF-combo 55.99% 52.05% 23.02% 2.72%

a Training dictionary
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Table 4: MDBSCAN RF vs. Li, Xato-Net-100k

Rules Hit ratio
ta Method pr tm en dp

tl

Li et al. 39.16% 43.33% 18.80% 2.91%
RF-leven 40.84% 49.11% 20.27% 3.53%
RF-substr 37.11% 44.11% 21.16% 3.06%
RF-combo 40.91% 48.26% 21.17% 3.44%

r65

Li et al. 39.11% 44.57% 18.29% 2.92%
RF-leven 40.40% 48.76% 19.93% 3.80%
RF-substr 33.64% 40.27% 20.70% 2.85%
RF-combo 40.98% 49.32% 21.27% 3.67%

ms

Li et al. 37.00% 39.80% 17.51% 2.61%
RF-leven 37.93% 44.47% 18.41% 2.96%
RF-substr 35.03% 41.82% 17.74% 2.56%
RF-combo 39.62% 46.46% 19.75% 3.17%

dw

Li et al. 39.10% 42.55% 18.60% 3.00%
RF-leven 40.66% 48.71% 20.30% 3.74%
RF-substr 34.28% 39.53% 18.48% 2.66%
RF-combo 41.39% 49.77% 21.50% 3.84%

a Training dictionary

4.3. Comparison of MDBSCAN-Based Implementations
In this experiment, we focused on the best-performing

MDBSCAN method and compared its implementations.
As a baseline, we used the original version from Li et al.
(2022), which we compared with RuleForge in the Lev-
enshtein (RF-leven), Substring (RF-substr), and Combo
(RF-combo) modes. The dictionaries were the same as in
the previous experiment. Likewise, we used Hashcat 6.2.6
and the first 1,000 generated rules.

Table 3 describes the hit ratio of attacks on RockYou-
75 and Table 4 on Xato-net-100k. RF-combo produced the
highest average hit ratio and, in all cases, outperformed
the original version from Li et al. (2022), emphasizing
our contributions. Interestingly, in the r65+en attack on
RockYou-75, the Substring Method resulted in a higher hit
ratio than Combo. Note that this is the same combination
as where AP produced better results than MDBSCAN.
Similarly, in the tl+tm attack on Xato-Net-100k, the Lev-
enshtein Method also performed better than Combo. Such
anomalies are caused by the nature of passwords in the
chosen dictionaries and demonstrate that there is no opti-
mal method for all cases.

4.4. Comparison of Rule-Creation Methods
In this experiment, we compared hit rates of dictionary

attacks with rulesets generated by different methods. As
both the training dataset and the attack wordlist, we used
a pseudo-random subsample of 960,000 passwords from the
RockYou dataset, named “RockYou-960.” Using Hashcat
6.2.6, we conducted a series of cracking sessions with the
first n rules from the ruleset, where n = 100, . . . , 29000,
and measured the hit rate on Xato-net-100k and phpbb-m
dictionaries from Table A.5. We tested the original MDB-
SCAN, as proposed by Li et al. (2022), and RuleForge’s
implementation of MDBSCAN and DBSCAN in both Lev-
enshtein and Combo modes. AP and HAC were not used

in this experiment as they would require a minimum of
461 GB memory, which was beyond the capabilities of our
experimental machine.

To compare our attacks in a broader scope, we also
deployed several tools from related work (See Section 2.).
Concretely, we tested iphelix’s PACK/Rulegen (Kacher-
ginsky, 2013). Next, we used PCFG as originally pro-
posed by Weir et al. (2009), i.e., without enhancements like
Markov, etc. We also deployed the Ordered Markov ENu-
merator (OMEN), proposed by Düermuth et al. (2015),
and PassGAN by Hitaj et al. (2019). As the last three
methods do not produce mangling rules, equivalent num-
bers of password guesses were generated instead, using
RockYou-960 as the training dictionary for creating mod-
els. Finally, we used a random ruleset generated by Hash-
cat to serve as a baseline for other methods.

Experimental results are displayed in Fig. 4. Note
that the results from our RuleForge generator use short-
hands in the legend: (M)DBSCAN-RF-{leven,combo}. The
horizontal axis indicates the number of rules (top) and
corresponding guesses (bottom), calculated as the dictio-
nary size multiplied by the rule count. The vertical axis
displays the hit ratio.

The best average hit ratio was achieved by RuleForge’s
MDBSCAN in the Combo mode, which also showed the
best absolute hit ratio in most measurements. Anomalies
were observed at around 800 rules on Xato-net-100k, where
it was briefly exceeded by the classic Levenshtein method
of RuleForge, and around 1600 rules on phpbb-net, where
PACK performed better than MDBSCAN. Interestingly,
for lower guess counts on phpbb-m, all methods were sur-
passed by PCFG, which then degraded to one of the worst
methods in our scenario. RuleForge’s DBSCAN in both
modes also performed well and, in many measurements,
exceeded the original MDBSCAN from Li et al. (2022).

Our improvements are best illustrated by the difference
between MDBSCAN-RF-combo (the solid black line) and
MDBSCAN Li et al. (the solid red line). The biggest
change was a 6.68%pt. improvement at 6,400 rules on Xato
and a 11.67%pt. improvement at 18,000 rules on phpbb-m.
Those are marked by black-lined arrowed segments.

We also examined the strength of the passwords recov-
ered by the MDBSCAN-RF-Combo ruleset of 29k rules
using zxcvbn4, which calculates the strength as an esti-
mated number of guesses required to crack the password.

From Xato-net-100k, we recovered 93.63% of all pass-
words. For those with strength under e14, we recovered the
majority: 95.08%. From passwords with strength higher
or equal e14 and lower than e18, we cracked 65.70%. About
1% had strength over or equal to e18, where the success
rate was 21.83%.

From PhpBB, we recovered 62.14% of all passwords.
For strengths under e14, we cracked 85.16% of passwords.
For strengths higher or equal e14 and lower than e18, the

4https://github.com/dropbox/zxcvbn
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Figure 4: Hit rate comparison with other methods (Training: RockYou960, Attack: RockYou960)

success was 45.63%. About 19.89% had strength over or
equal to e18, where the success was 10.68%.

Contrary to the experiments of Li et al. (2022), PACK
surpassed the original version of MDBSCAN at higher
guess counts and even outperformed MDBSCAN-RF over
a specific short range on phpbb-m. OMEN performed
slightly worse than the previously mentioned rule-based
methods, but still followed closely. The nature of pass-
word guessing with Markovian chains created a curve with
a stairs-like shape. PCFG-based guessing generates pass-
words in a probability order, starting from the most proba-
ble candidate password. Interestingly, PCFG showed much
better performance on phpbb-m, where it had the highest
hit ratios on smaller amounts of guesses, than on Xato-
net-100k, where the increments in hit ratio were mini-
mal. PassGAN performed rather poorly, notably at lower
amounts of guesses. Execution times were also high, which
prevented us from conducting measurements for high num-
bers of guesses, as it would take weeks to generate the
passwords. Its success rate grew with increasing numbers
of guesses but never exceeded OMEN or the clustering-
based methods. As anticipated, the randomly generated
ruleset showed the lowest hit ratios.

4.5. Comparison with Popular Rulesets
Lastly, we compared MDBSCAN and DBSCAN against

widely used popular password cracking rulesets: d3ad0ne
and Insidepro-PasswordsPro from the Hashcat repository,
OneRuleToRuleThemStill5 from the stealthspolit reposi-
tory, and Unicorn30kGenerated6 from Unic0rn28. The set-

5https://github.com/stealthsploit/OneRuleToRuleThemStill
6https://github.com/Unic0rn28/hashcat-rules

tings are the same as in the previous experiment. Hashcat
random rules again serve as a baseline.

The resulting hit ratios in Fig. 5 show that RuleForge’s
MDBSCAN in the combo mode outperformed all except
OneRuleToRuleThemStill. This high-quality ruleset pro-
duced better results mainly between 800 and 3.2k rules.
For lower counts, RuleForge was slightly better. From 6.4k
rules, the two were comparable, with the ruleset having
less than 1%pt. more success. It is important to empha-
size that our objective was not to develop a universally
optimal ruleset. Instead, we aimed to create a tool for au-
tomated rule generation that can be tailored to meet the
specific requirements of individual investigations.

The first 1k rules of MDBSCAN-combo consisted ex-
clusively of single-rule commands like appending, prepend-
ing, overwriting and inserting a single character, but also
word truncation, and other commands. Case toggles were
present on 224 lines of the ruleset. Generally, compared
with the other rulesets, ours had significantly more inser-
tion and truncation commands. The genereated rulesets
are also available in the RuleForge repository.

5. Conclusion

Our research demonstrates the significant potential of
the clustering-based generation of password-mangling rules
in enhancing dictionary attacks, often outperforming state-
of-the-art guessing methods. AP produces high-quality
clusters, but has prohibitive time and space complexity,
which limits scalability. HAC improves time efficiency, but
still requires substantial memory. DBSCAN and MDB-
SCAN reduce memory demands when paired with Sym-
Spell. MDBSCAN, noted for splitting large password clus-
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Figure 5: Hit rate comparison with popular rulesets (Training: RockYou960, Attack: RockYou960)

ters into smaller, more effective ones, achieved the best
results among the tested methods.

The quality of the generated rules depends not only
on the clusters produced but also on the selection of their
representatives. As demonstrated by our experiments, the
traditional Levenshtein Method used by Li et al. (2022)
is not always optimal. Combining it with the substring-
based approach we propose generally yields superior re-
sults. Our Combo Method achieved significantly better
outcomes in most cases.

The rule generation strategy is also crucial. By in-
corporating commands for case toggling, word rotations,
reversals, and character overwrites, we achieved higher hit
ratios than Li et al. (2022), not only in MDBSCAN Combo
mode but also in the standard Levenshtein mode, and, un-
expectedly, even with classic DBSCAN in most measure-
ments. With MDBSCAN, we achieved up to an 11.67%pt.
improvement in hit ratio over the original method.

The attack’s success depends on the training and at-
tack wordlists. Using dictionaries similar to the nature
of the target is likely to yield the best results. In a digi-
tal forensic lab, the proposed method can be utilized to
generate context-specific rulesets tailored to the unique
characteristics of each investigation. Forensic analysts fre-
quently build profiles of suspects based on known pass-
words, nationalities, interests, and typical password modi-
fication patterns. Automated rule creation simplifies craft-
ing case-specific rulesets by training on relevant wordlists
and previously-used passwords. This dramatically reduces
the overhead of manual ruleset development, enhancing
investigative efficiency. This enables forensic practition-
ers to concentrate on higher-level analytical tasks without
sacrificing performance.

Last but not least, we released RuleForge, an open-

source clustering-based rule generator, as both a proof-
of-concept and a practical tool for password recovery re-
search. The release includes source code, documentation,
all referenced password datasets, and rulesets generated
for experiments in this paper.

Looking ahead, we would like to evaluate the behav-
ior of alternative distance metrics and other methods like
Spectral Clustering (Jia et al., 2014) and their potential
benefits to password-mangling rule creation. We also be-
lieve that AP and HAC could be optimized in terms of
memory requirements. The strength analysis of the cracked
passwords showed that a ruleset trained on RockYou-960
worked well with easy to advanced passwords, but had dif-
ficulties with very strong ones. In the future, we, therefore,
plan to train on stronger passwords to create more sophis-
ticated rules and examine their success. With the spread
of AI, we also intend to explore transformer-based models
for rule creation and evaluation. Additionally, we are cur-
rently developing a much faster, compiled, optimized and
GPU-accelerated version of RuleForge.
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Appendix A. Used Dictionaries

Table A.5 provides an overview of all password dictio-
naries used in our experiments, including their abbrevia-
tions, names, password counts, and descriptions.
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Table A.5: Password dictionaries for experimental evaluation

Ab. Name Passwords Description
tl tuscl-m 37,006 Tuscl leak (ASCII, ≤ 10 ch.)

r65 rockyou-65-m 29,596 RockYou subsample (ASCII, ≤ 10 ch.)
ms myspace-m 30,000 MySpace leak (ASCII, ≤ 10 ch.)
dw darkweb2017-top10k-m 9,999 Darkweb subsample (ASCII, ≤ 10 ch.)
tm 10-million-list-top-10000 9,999 9,999 Passwords from the 10-million list
pr probable-v2-top12000 12,645 A subsample from the probable dictionary
en english-6 15,542 English words up to 6 characters
dp default-passwords 1,315 Commonly used passwords
- RockYou-960 960,000 A 960k subsample of the RockYou leak
- rockyou-75-m 59,090 ASCII subsample of the RockYou leak
- Xato-net-100k 99,987 Top passwords from the Xato 10m dataset
- phpbb-m 184,344 ASCII passwords from phpBB leak
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