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Abstract
End-to-end (E2E) keyword search (KWS) has emerged as an
alternative and complimentary approach to conventional key-
word search which depends on the output of automatic speech
recognition (ASR) systems. While E2E methods greatly sim-
plify the KWS pipeline, they generally have worse performance
than their ASR-based counterparts, which can benefit from pre-
training with untranscribed data. In this work, we propose a
method for pretraining E2E KWS systems with untranscribed
data, which involves using acoustic unit discovery (AUD) to
obtain discrete units for untranscribed data and then learning to
locate sequences of such units in the speech. We conduct exper-
iments across languages and AUD systems: we show that fine-
tuning such a model significantly outperforms a model trained
from scratch, and the performance improvements are generally
correlated with the quality of the AUD system used for pretrain-
ing.
Index Terms: keyword search, spoken term detection, acoustic
unit discovery

1. Introduction
Productive use of the internet relies heavily on the presence
and capacity of search engines to efficiently index and search
through large quantities of data. Since a significant propor-
tion of that data is in multimedia form, it is natural to develop
technologies to allow efficient search through non-textual docu-
ments. Keyword search (KWS), also known as spoken term de-
tection (STD), is one such technology: it aims to locate where
in an archive of spoken documents a user-specified query has
been uttered. A KWS system takes a written query and returns
a list of documents purported to contain the query, timestamps
in those documents where the query is located, and scores rep-
resenting the system’s confidence in its hypotheses.

KWS is traditionally done by conducting text-based re-
trieval on the output of an automatic speech recognition (ASR)
system. Outside settings with very-low recognition error rates
where one-best ASR outputs may be sufficient, it is more com-
mon to index richer structures like lattices or confusion net-
works [1–5], which improve recall by accounting for uncer-
tainty in ASR output.

More recently, ASR-free KWS methods have sought to es-
chew the ASR and its concomitant complexities [6–12]. Instead
of relying on the output of an ASR system1, a neural network is
trained in an end-to-end (E2E) fashion to locate written queries
in large spoken archives. We take [12] as a representative of

1This refers to indexing and search. Even ASR-free KWS systems
generally rely on simple ASR systems to get timing information re-
quired for training.

this approach, and use it as our baseline in this work. The KWS
model comprises a pair of encoders: a query encoder that takes
a query in the form of a sequence of letters and computes a vec-
tor representation thereof, and a document encoder for comput-
ing a compatible representation of the spoken document. The
two are combined via frame-wise inner-products and locations
in the document which have high inner-products with the query
embedding are returned as hits.

Although E2E KWS methods are able to streamline the in-
dexing and search, they generally trail ASR-based methods in
terms of search accuracy. Furthermore, ASR-based systems can
benefit from the rise in semi-supervised learning that improve
the underlying ASR model by using large amounts of untran-
scribed speech for pretraining. Our objective in this paper is,
therefore, to design a pretraining scheme for E2E KWS to be
able to leverage untranscribed speech. We note here that [12] al-
ready explored pretraining for E2E-KWS, but it only considered
pretraining with transcribed multilingual data, while we explore
pretraining with untranscribed data in the target language—with
the potential to expand to multilingual untranscribed data.

The input data for training E2E KWS comprises sets of
speech documents and the words (queries) they contain. Hence,
to pretrain E2E KWS on an untranscribed speech corpus with
the same training objective, the challenge is to get the list of
queries which we can pretrain the KWS model to locate. In
other words, we need sequences of discrete units correspond-
ing] to the spoken content.

Acoustic unit discovery (AUD) aims to solve this exact
problem—automatically discovering an inventory of phone-like
units for a language from completely unlabeled data. Several
works have tackled AUD, including Bayesian methods [13–16],
neural-network-based methods [17–19] or hybrids thereof [20,
21].

We employ the Hierarchical Subspace Hidden Markov
Model (H-SHMM) [22, 23], a non-parametric Bayesian model
for AUD. H-SHMM models follows the phone-loop AUD
paradigm [13,16,24], where each acoustic unit is modeled as an
HMM. In H-SHMM, the HMM parameters are constrained to a
phonetic subspace of the parameter space and the parameters
that define the subspace itself are allowed to vary per language
within a constrained “hyper”-subspace. We choose H-SHMM
as it has good performance not just on intrinsic AUD but also
unsupervised word segmentation [25], which makes it suitable
for our task of word localization. After training the H-SHMM,
we use it to label the untranscribed speech. Then we use se-
quences of acoustic unit labels as pseudo-queries for pretraining
the model. Finally, we finetune the model on a small amount of
transcribed data.

We conduct experiments on the English Libri-light [26] and
Turkish Broadcast News [27] corpora. Our experiments show
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Figure 1: E2E KWS system during pretraining and finetun-
ing. Grey boxes: non-trainable components, white boxes: com-
ponents which are trained from scratch, blue boxes: train-
able components whose parameters are transferred from a pre-
trained model.

that AUD-based pretraining significantly improves KWS per-
formance for AUD that uses MFCC features, with improve-
ments that are correlated with the AUD system’s phonetic corre-
spondence. Furthermore, when the AUD uses pretrained trans-
former features as input, we still get significant improvements
on Libri-light.

2. Methods
2.1. Background

2.1.1. End-to-end Keyword Search

Our work is based on the E2E KWS model of [12]. This model
ingests a textual query in the form of a sequence of L let-
ters, q = (q1, . . . , qL), and a spoken utterance of N frames,
X = (x1, . . . ,xN ) and predicts the sequence y(q,X) =
(y1, . . . , yN ), where each yn ∈ {0, 1} is a binary random vari-
able indicating the existence of the query in the nth frame of the
document, i.e:

yn =

{
1, if q is spoken in X in a time span including n

0, otherwise.
(1)

The model comprises a pair of encoders:
• The query encoder computes a fixed-length representation,
eq, of the query by passing it through a GRU, summing the
activations from the last layer of the GRU across the sequence
dimension, followed by an affine projection.

• The document encoder computes a down-sampled represen-
tation, of the document HX = (h1, . . . ,hN ) by passing it
through a BLSTM followed by an affine transform.

The sequence z(q,X) = (z1, . . . , zN ) of occurrence probabil-
ities, zn := P (yn = 1|q,X), is then obtained via a matrix-
vector product of HX and eq as:

zn = σ(h⊤
n eq), (2)

where σ(·) is the logistic sigmoid function.
The vector of probabilities from (2) is then post-processed

to obtain the timestamps in the document hypothesized to con-
tain the query, and the corresponding confidence scores by de-
tecting “islands” of probabilities above 0.5. The procedure is as
follows:

1. Probabilities zn < 0.5 are zeroed-out.
2. The resulting “islands” of non-zero elements are returned as

system hypotheses, and each hypothesis’ confidence score is
computed as the median probability in its time-span.

The model is trained with mini-batch gradient descent on a
transcribed speech dataset. At each training step, t, the follow-
ing objective is minimized:

Jt =

L∑
l=1

M∑
m=1

f
(
z
(
qt,l,Xt,l,m

)
,y

(
qt,l,Xt,l,m

))
, (3)

where {qt,1 . . .qt,L} is a mini-batch of L queries sampled ran-
domly from the set of unigrams, bigrams and trigrams of the
dataset; {Xt,l,1, . . . ,Xt,l,M} is a set of documents sampled
from the dataset such that {Xt,l,1} contains qt,l while the other
M−1 documents are sampled randomly; and f(·) is a modified
binary cross-entropy function defined as:

f(z, y) = −
N̂∑

n=1

(
1zn>1−ϕ · (1− yn) log(1− zn)

+ 1zn<ϕ · λ · yn log zn
)
, (4)

with ϕ controlling the tolerance of the objective to easily-
classified frames and λ controlling the relative weighting of
positive to negative frames. Following [12], we set λ = 5,
ϕ = 0.7 and M = 4 in all our experiments.

The word-level alignments required for training are ob-
tained by training an HMM-GMM ASR system on the training
data and using it for forced alignment.

2.1.2. Hierarchical Subspace Hidden Markov Model

Acoustic unit discovery entails learning a set of units from un-
transcribed data. For a language, l, this typically involves learn-
ing a set of parameters, Θl = {θl,u}Ul

u=1 for each unit u, which
then allows frames of an utterance X = (x1, . . . ,xn) in that
language to be labeled into discrete units v1, . . . , vN where
each vn ∈ {1, 2, . . . , Ul}.

We employ H-SHMM [22], a Dirichlet-process-based
Bayesian nonparametric model for AUD. In H-SHMM, each
acoustic unit is a 3-state, left-to-right HMM-GMM with 4 Gaus-
sians per state, and each θl,u is a super-vector formed by con-
catenating all the mean vectors, covariance matrix elements and
mixture weights of the HMM-GMM. The parameters of the
HMM-GMMs are constrained to dwell in a low-dimensional
subspace of the full parameter space:

θl,u = g
(
Wlηl,u + bl), (5)

where ηl,u is a low-dimensional2 embedding of the parameter,
Wl is a language-specific low-rank matrix which, along with
the bias vector bl, defines the subspace to which the parameters
are constrained, and g(·) is a non-linear function mapping vec-
tors from the column space of Wl to HMM parameters, ensur-
ing e.g. that the dimensions corresponding to each covariance
matrix constitute a positive-definite matrix and that the mixture
weights are non-negative and sum up to one. The subspace pa-
rameters are themselves further constrained to a K-dimensional

2We set the dimensionality of ηl,u to 100 in our experiments. Con-
trast this to the dimensionality of θl,u which is around 1000 for HMMs
with MFCC features and around 25000 for HMMs with XLS-R fea-
tures.
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“hyper”-subspace:

Wl = M0 +

K∑
k=1

αl
k +Mk

bl = m0 +

K∑
k=1

αl
k +mk, (6)

where αl is a language-specific low-dimensional embedding,
and {Mk} and {mk} define language-agnostic template ma-
trices and vectors whose linear combinations define the part of
the space Wl and bl are allowed to occupy. Thus, the sub-
space parameters are allowed to vary in a controlled manner
from one language to another. The H-SHMM defines a distribu-
tion with trainable parameters—{Mk}, {mk}, {αl}, {ηl,u}—
which are learned in two phases:

1. Supervised pretraining: The model is first trained on
phonetically-transcribed speech from multiple languages not
including the target language. This imbues the templates
{Mk} and {mk} with phone-like characteristics.

2. Acoustic unit discovery: The distributions {Mk} and {mk}
are kept fixed, and transferred to a target language, l∗, for
which αl∗ and {ηl∗,u} are learned.

Both phases involve optimizing a variational lower bound
on the log-likelihood of the data, which yields a Baum-Welch-
like training procedure. Having obtained the distributions of
the HMM parameters, the untranscribed speech can them be
labelled with a variational analog of Viterbi decoding. Inter-
ested readers are referred to [23] for a thorough coverage of
H-SMMM and its inference.

2.2. Pretraining KWS with AUD

In this paper, we propose using AUD to label an otherwise un-
transcribed speech corpus into acoustic units, and using these
pseudo-labels to pretrain the E2E KWS model in a setting where
we have a small transcribed corpus and a larger untranscribed
speech corpus in the same language.

We train an H-SHMM on a small subset of the unlabeled
speech and use it to transcribe the full corpus into sequences
of acoustic units. Since the KWS model expects word se-
quences as input, and the AUD only returns phone-like units,
we form pseudo-words from acoustic unit n-grams. Specifi-
cally, we take all sequences of 5 to 15 consecutive acoustic units
as pseudo-words, and use these pseudo-words as queries to the
KWS model, which we pretrain using (3) to locate them in the
corpus. Note that we have the pseudo-word time boundaries
for training since decoding with H-SHMM, as with any other
HMM, naturally yields frame-level decisions for acoustic units.

After pretraining is complete, we transfer the document en-
coder and discard the acoustic unit query encoder. We then
initialize a new query encoder for actual graphemes and train
it along with the transferred document encoder to locate real
queries as described in Section 2.1.1.

3. Experiments
3.1. Setup

3.1.1. Datasets

Keyword search: We test the performance on the Libri-
light [26] and Turkish Broadcast News (BNTR) [27] corpora.
For Libri-light, we use the 10 hour Libri-light training set as the

Table 1: OOV rates for the query lists used for each dev/test set.

Dataset LS-clean LS-other BNTR
Dev Test Dev Test Dev Test

OOV-Rate (%) 1.1 2.6 2.5 3.6 11.9 6.3

transcribed data and test on the standard Librispeech [28] sets
(dev-clean, test-clean, dev-other and dev-other). To match the
Libri-light training data size, we use a 10-hour subset of BNTR
from the VOA programs3 for training and select two 10-hour
subsets from the remaining BNTR data as dev and test sets.
Since neither dataset has official query lists, we randomly se-
lect 1500 queries composed of equal proportions of unigrams,
bigrams and trigrams for each of the dev and eval sets. Table 1
shows the proportion of out-of-vocabulary (OOV) queries.

For Libri-light pretraining, we use the 360-hour set of Lib-
rispeech as untranscribed data. In the case of BNTR, we use the
full 180-hour BNTR training set for pretraining.
Acoustic unit discovery: For the supervised phase of
H-SHMM training where we estimate the hyper-subspaces
({Mk}, and {mk} in Section 2.1.2), we use the models
from [23], trained on data from seven languages4: French, Ger-
man, Polish and Spanish from the Globalphone corpus [29],
and Amharic, Swahili and Wolof from the Alffa project [30].
A 1500-utterance subset of each language (totalling around 19
hours of speech) was used.

For actual acoustic unit discovery, where we learn the
acoustic units ({αl}, {ηl,u}) for each target language, we use
random 3000-utterance subsets from each respective language’s
untranscribed data, and use the learned HMMs to transcribe the
full corpus.

3.1.2. Acoustic features

The default acoustic inputs to our models (both AUD and
KWS) are 13-dimensional MFCC features. In addition, we con-
sider features from a pretrained 300 million parameter XLS-R
model [31]5, from which we use the output of the 15th layer,
shown in [23] to yield considerably better AUD performance.
Note that, due to computational constraints, we only use the
XLS-R model as a feature extractor and we do not finetune it.

3.1.3. Metrics

Term Weighted Value: In our experiments, we report the
term weighted values (TWV) [32, 33], which is a measure of
weighted recall and precision averaged across queries. The
TWV of a system on a set of queries, Q, at a threshold, ζ, is
defined as:

TWV = 100×
(
1− 1

Q
∑
q∈Q

(Pmiss(q, ζ) + βPFA(q, ζ))
)
,

(7)

where Pmiss(q, ζ) is the probability of misses, PFA(q, ζ) is
the probability of false alarms and β is a parameter control-
ling the relative importance of the two. Following prior NIST
evaluations [32], we set β = 999.9. The threshold ζ is tuned
on the dev sets. We report the maximum term weighted value

3https://catalog.ldc.upenn.edu/LDC2012S06
4https://github.com/beer-asr/beer/tree/master/recipes/hshmm
5https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2 300m.pt
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Table 2: Term weighted value comparison between the baseline and the proposed system. Dev set results are MTWVs, test set results
are triplets of lAh where A is the ATWV, and l and h are the 2.5th and 97.5th percentile ATWV estimate respectively.

Dataset LS-clean LS-other BNTR AUD-NMI
KWS Feature AUD Feature Dev Test Dev Test Dev Test LS BNTR

MFCC - 38.4 38.740.442.0 16.2 13.014.315.7 67.0 69.470.771.9 - -
MFCC MFCC 44.2 44.045.747.4 21.1 18.820.321.9 74.5 76.477.678.6 34.2 27.2
MFCC XLS-R 56.3 54.956.558.2 30.9 27.128.730.4 78.2 80.481.482.3 52.9 41.3

XLS-R - 73.2 71.072.774.4 62.2 61.663.365.0 84.8 85.386.186.9 - -
XLS-R XLS-R 75.8 74.776.277.6 65.5 64.966.467.9 84.0 84.785.586.2 52.9 41.3

(MTWV)—the TWV at the threshold which maximizes it—for
the dev sets, and the actual term weighted value (ATWV)—
computed by using the threshold tuned on the corresponding
dev set—for the test sets. We adopt keyword-specific threshold-
ing for across-query score normalization [34] in order to allow
various queries with different score distributions to be compared
with a single global threshold.
Normalized Mutual Information: We also report normalized
mutual information (NMI) for the AUD systems in order to see
how KWS performance correlates with the intrinsic quality of
the AUD system used for pretraining. NMI is computed by nor-
malizing the mutual information between discovered units U
and reference phones P by the sum of their entropies:

NMI(P,U) = 200× I(P;U)
H(P) +H(U)%. (8)

NMI takes values in [0, 100], with 0 denoting completely un-
correlated units and 100 denoting perfect match.

3.1.4. Model configuration and hyper-parameters

We base the architecture of our model on [12]6. The query
encoder is a network with a 32-dimensional embedding layer
for computing vector representations of each input grapheme,
followed by 2 bidirectional GRU layers with 256 output units
per direction per layer, and a 400-dimensional output projection
layer whose outputs are summed along the sequence dimension
to obtain the vectoral query representation.

The document encoder has 6 BLSTM layers with 512-
dimensional output per direction per layer, followed by a 400-
dimensional output layer. We apply dropout of 0.4 between suc-
cessive BLSTM layers, and down-sample by a factor of 2 after
the fourth BLSTM layer. This results in document encodings
with frame durations of 40ms for XLS-R features and 20ms for
MFCC.

The H-SHMM use 3-state HMM-GMMs with 4 diagonal-
covariance Gaussians per HMM state, Dirichlet process with
truncation parameter of 1, 100-dimensional unit embeddings
(ηl,u) and 5-dimensional language embeddings (αl).

3.1.5. Training details

The neural networks are trained with the Adam optimizer [35].
For pretraining, we use a cosine decay schedule with peak learn-
ing rate of 5e-4 and final learning rate of 1e-7, and train for 200k
steps using mini-batch size of 256, with 10k warmup steps. For
finetuning (and the baseline with no pretraining), we train with
the same step-based learning rate scheduling as [12] using mini-
batch size of 32. This starts with a learning rate of 0.002, halved

6Code available at: https://github.com/bolajiy/golden-retriever

whenever the validation loss (computed over 10% of the train-
ing queries) does not improve over 4 epochs. The training is
stopped when validation loss does not improve for 10 epochs.

3.2. Results

Table 2 shows the term weighted values of KWS with and with-
out the proposed pretraining scheme, as well as the intrinsic
AUD metrics.

When MFCC are used as input features to KWS, we find
that pretraining with AUD learned pseudo-queries leads to sig-
nificant improvements across all dev and test sets—with 5.3, 6.0
and 6.9 ATWV improvements respectively on the Librispeech-
clean, Librispeech-other and BNTR test sets. Furthermore,
using XLS-R features for AUD (improving the quality of the
learned acoustic units by a considerable margin) leads further
significant ATWV improvements when compared to pretrain-
ing with MFCC-based acoustic units.

Replacing the KWS input with XLS-R unsurprisingly re-
sults in a much better performance, even compared to the pre-
trained MFCC-based systems, especially on the acoustically
difficult Librispeech-other sets. Furthermore, when we pretrain
the XLS-R based KWS system with AUD labels, we observe
+3.5 and +3.1 ATWV respectively on the Librispeech test-clean
and test-other sets and no improvement on the BNTR.

4. Conclusions
In this paper, we have proposed a pretraining scheme for end-
to-end keyword search. Our approach uses acoustic unit dis-
covery to label untranscribed data and construct pseudo-queries
used to pretrain the KWS model, before finetuning on a small
trasncribed dataset. Our experiments show that pretraining can
significantly improve KWS performance.

We envision future work doing larger scale and multilingual
pretraining with acoustic unit targets in conjunction with or in
place of transcribed data. Another direction is to explore using
more sophisticated word segmentation methods instead of our
naive use of all n-grams of acoustic units.
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of spoken content,” IEEE Signal Processing Magazine, vol. 25,
no. 3, pp. 39–49, 2008.

[5] L. Mangu, B. Kingsbury, H. Soltau, H.-K. Kuo, and M. Picheny,
“Efficient spoken term detection using confusion networks,” in
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014 IEEE, 2014, pp. 7844–7848.

[6] K. Audhkhasi, A. Rosenberg, A. Sethy, B. Ramabhadran,
and B. Kingsbury, “End-to-end ASR-free keyword search from
speech,” IEEE Journal of Selected Topics in Signal Processing,
vol. 11, no. 8, pp. 1351–1359, 2017.
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