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Abstract. Wave propagation simulations are foundational tools across 
scientific and medical applications, yet their computational demands 
become significant for high-resolution simulations, particularly in med-
ical applications where precise representation of different tissue geome-
tries is crucial. This paper presents a novel approach to accelerate 
2D wave propagation simulations in the k-Wave toolbox. Our method 
focuses on optimising Fourier transform computations through spectrum 
pruning. The Acoustic Field Propagator along with a bisection pruning 
algorithm to estimate the position of the spectral coefficients is used. 
Through these optimisations, our approach achieves significant perfor-
mance gains, demonstrating speedups of up to 1.8x for large simula-
tion domains. Experimental evaluation on medical ultrasound simula-
tions demonstrates that the proposed method achieves focal point errors 
below 1% with minimal focus position shifts, while skipping up to 90% of 
spectral coefficients in large domains. This results in a significant simula-
tion time reduction by half over the large simulation domains. Although 
the proposed method primarily focuses on accelerating k-Wave toolbox 
wave propagation simulation, it could be generally applied to wave prop-
agation problems. 

Keywords: Pruned Fast Fourier Transform · Ultrasound Simulation · 
Wave propagation simulation · k-Wave · Pseudo-spectral methods 

1 Introduction 

Wave propagation simulations play a crucial role in various fields of science and 
engineering. However, the time required for these simulations to complete can 
vary considerably, from a few seconds to days or even longer, depending on 
the complexity of the model and the level of resolution required. This paper 
focuses on accelerating 2D wave propagation simulations implemented by the 
k-Wave toolbox [ 19], which utilises k-space pseudo-spectral methods based on 
the Fourier Transform. The goal is to accelerate these simulations by optimising 
the computation of the Fourier Transform, which represents a significant part 
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of the simulation. This optimisation is particularly crucial for simulations over 
high-resolution domains, where computational demands can be significant. 

The most common approach to performing the Fourier transform is the Fast 
Fourier Transform (FFT) algorithm [ 2]. Since some applications only require 
a specific subset of frequency components from the FFT algorithm’s output, 
computing the complete set of spectral coefficients may be unnecessary. In such 
cases, it may be beneficial to reduce the computational cost by implementing 
either a Sparse Fourier Transform (sparse FFT) [ 13] or Pruned Fourier Transform 
(pruned FFT) [ 7] algorithm. The sparse FFT is suitable for signals with few non-
zero/significant coefficients compared to the size of the input signal, where their 
position in the spectrum is unknown. Sparse FFT algorithms are usually specially 
designed using domain-specific knowledge. Conversely, pruned FFT algorithms 
are optimised to compute spectral coefficients within known patterns that occur 
in the spectral domain. This leads to bypassing unnecessary computations in the 
standard Fast Fourier Transform [ 14]. 

For wave propagation simulations, spectral coefficients typically cluster near 
low frequencies [ 10]. This characteristic makes the pruned FFT particularly suit-
able as a replacement for the standard FFT currently employed in the k-Wave 
toolbox. By implementing this change, we aim to accelerate wave propagation 
simulations through reduced computational time in the Fourier transform phase 
and subsequent operations in the spectral domain. 

Given that k-Wave is designed for time domain acoustic and ultrasound sim-
ulations in complex and tissue-realistic media, the evaluation of the proposed 
approach will focus on simulations used for non-invasive treatment pre-planning, 
such as the application of focused high-intensity ultrasound. This application 
exemplifies situations where precise representation of the media geometry can 
affect the accuracy of the simulation result [ 12, 21]. Our evaluation will examine 
the method’s impact on three critical aspects across various domain resolutions: 
simulation accuracy, focal point positioning and computational efficiency. 

2 Mathematical Background 

To compute the wave propagation, the k-Wave toolbox employs the pseudo-
spectral method using Fourier basis functions. This technique involves repre-
senting the solution of the differential equation as a sum of specific basis func-
tions. Unlike finite-difference time domain methods, which rely on local computa-
tions at neighbouring points, spectral methods use information from the entire 
domain, leading to higher accuracy [ 5]. The k-Wave toolbox runs simulations 
based on the following governing equations [ 19]: 

∂u 
∂t 

= − 1 
ρ0 

∇p 

∂ρ 
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Where u is the acoustic particle velocity, p is the acoustic pressure, ρ is the 
acoustic density, ρ0 is the ambient (equilibrium) density, c0 is the isentropic 
sound speed, d is the acoustic particle displacement, B/A is the nonlinearity 
parameter characterizing finite-amplitude effects, and Lρ is a loss operator that 
accounts for acoustic absorption and dispersion in the medium. Equation (1) 
can be written in a discrete form using the k -space pseudo-spectral method [ 16]. 
The following equations are part of the spatial gradient calculations based on 
the Fourier collocation spectral method: 

∂ 
∂ξ 
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For the Cartesian direction ξ = x, y in R2, F and F−1 denote the forward 
and inverse spatial Fourier transform, i is the imaginary unit, Δt is the time step, 
kξ represents the wave numbers in the ξ direction, and κ is the k-space operator 
defined as κ = sinc(cref kΔt/2), where  cref is a scalar reference sound speed. 
Equations (2) and  (4) are spatial gradient calculations based on the Fourier col-
location spectral method. Equations (5) and  (3) represent update steps utilising 
a k-space corrected first-order accurate forward difference. 

The Fast Fourier Transform algorithm is used to convert signals from the 
spatial domain to the spectral domain. Each simulation step of the 2D wave 
propagation simulation involves 11 FFTs. This computation consumes approx-
imately 60% of the total simulation time, making it a significant part of the 
overall simulation [ 6]. 

3 Transducer Position 

Since most simulations utilise narrow bandwidth sources, the spectral coefficients 
cluster around low frequencies, leading to sparsity in the spectral domain, partic-
ularly in high-resolution simulation domains [ 3]. Despite this apparent sparsity, 
sparse FFT approaches prove unsuitable as they discard small but crucial coef-
ficients that contribute to simulation accuracy, while also introducing additional 
computational complexity through filtering processes. The spectrum is also not 
sparse enough to benefit from the usage of sparse FFT. In contrast, pruned FFT 
offers a more efficient solution by precisely computing the specified region within 
the spectral domain, preserving all coefficients regardless of their magnitude and 
eliminating the need for additional computational steps. This makes pruned FFT
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a more reliable choice for processing simulation data compared to sparse FFT 
methods [ 10]. 

One key factor that significantly impacts the position of computed spectral 
coefficients is the direction in which the wave propagates through the media 
[ 4]. Thus, the position of the coefficients in the spectrum (among other factors) 
depends on the orientation of the transducer that determines the direction of 
wave propagation. Figure 1 shows the wave propagation in water with different 
positions of an arc transducer, demonstrating different directions of ultrasound 
wave propagation. The direction of wave propagation clearly impacts the position 
of the coefficients in the spectrum (the zero-frequency components are shifted 
to the centre of the domain). 

Fig. 1. Transducer position’s effect on wave propagation and spectral domain: (a) pres-
sure field distribution for Y-axis propagation in space domain, (b) frequency domain 
representation of Y-axis propagation showing spectral coefficient distribution, (c) pres-
sure field distribution for X-axis propagation in space domain, and (d) frequency 
domain representation of X-axis propagation showing spectral coefficient distribution. 

For the application of the pruned FFT in wave propagation simulation, the 
most suitable transducer positions are those aligned with one of the axes. This 
alignment enables reduction of the area computed by the pruned FFT algorithm 
[ 11]. If the transducer is not aligned with either axis, alignment can be achieved 
by rotating the domain around its centre. To obtain a suitable shape for the 
simulation domain, which is typically rectangular or square, the rotated domain 
can be filled with surrounding media. At the end of the simulation, if needed, 
the domain with the wave propagation result can be rotated back to its original 
position and cropped to its original size. This operation requires the ability to 
fill the domain with surrounding media and the presence of an absorbing layer, 
such as Perfect Match Layer (PML) [ 19] adjacent to the rotated domain. This 
layer absorbs the propagated wave around the simulation domain and prevents 
possible reflections that might affect the result of the original simulation. In our 
proof-of-concept implementation of the two-dimensional pruned FFT algorithm, 
the computation reduction is made only in the second dimension (columns - X). 
This means that over the first dimension (rows - Y), the full FFT is computed 
over each row. In the second dimension, only a given number of columns is 
computed. For our implementation, the position of the transducer aligned with
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the X-axis is the most suitable variant. However, the transducer can also be 
aligned with the Y-axis. In this case, the suitable reduced dimension would be Y 
(rows). This scenario is in actual implementation solved by rotating the domain 
by 90◦ to align the transducer with the X-axis. 

4 Estimation of the Coefficient Area 

An integral part of the pruned FFT algorithm is localising the area containing 
coefficients crucial for computing the wave propagation simulation. Most of these 
coefficients represent low frequencies, thus they are present at the corners of 
the spectral domain. Since the symmetry of the real-to-complex FFT in the Y 
dimension is used, only the first m columns of the X domain will be computed. 
To estimate the value of m, the Acoustic Field Propagator (AFP) [ 17] together 
with a bisection pruning algorithm is used. 

The AFP enables the calculation of the wave field at all spatial positions 
at a given time in a single step. The advantage of AFP is its computational 
speed compared to a full wave propagation simulation. However, this method 
can only be used in homogeneous media with a single-frequency transducer and 
cannot compute the reflections and absorption of the propagated wave. Thus, 
it cannot replace a full ultrasound wave propagation simulation. When complex 
tissue interfaces create significant reflections or scattering, the AFP may fail to 
capture high-frequency components generated at these boundaries. Despite these 
limitations, it provides an acceptable estimation of spectral coefficient positions. 
The AFP is executed with the same transducer and homogeneous media, with a 
sound speed equal to the minimum value present in the original simulation. The 
lower the sound speed, the higher the frequencies that may occur in the spectral 
domain. The resulting spectrum of the propagated wave is used to estimate the 
position of spectral coefficients that will be computed by the pruned FFT in the 
wave propagation simulation. 

To determine the first m columns for the pruned FFT, a bisection pruned 
algorithm is employed. In this algorithm, the dimension X is considered as 
an interval [0, N/2], to find an optimal cutoff point. First, the AFP spec-
trum is shifted so that low frequencies are centred. Then, bisection is applied 
symmetrically to both halves along the X-axis. In each iteration, a midpoint 
m = (lower + upper)/2 is computed. Coefficients below m are temporarily set 
to zero, preserving only the spectral information in the interval [m, N/2], after  
which an inverse FFT is performed. Due to the symmetrical properties of the 
FFT, this cutoff has a corresponding effect on the right half of the full domain 
[N/2, N ], creating a mirror image of the preserved region. The resulting spatial 
domain is compared to the original. Based on a user-defined error threshold, the 
iteration repeat with upper half of the interval if the error is below the threshold 
or lower half interval if it is above. The algorithm terminates when the border 
position stabilizes. 

Three error thresholds were considered for the bisection pruning algorithm: 
Mean Absolute Percentage Error (MAPE), Root Mean Squared Percentage Error
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(RMSPE), and Normalised Percentage L∞ Error. However, RMSPE proved 
unsuitable due to its quadratic nature, which led to irregular error changes during 
the threshold search and limited spectral coefficient reduction. Table 1 compares 
the number of coefficients skipped by the pruned FFT algorithm using MAPE 
and Normalised Percentage L∞ Error in a simulation with an arc transducer 
in water aligned along the X-axis. Note that the L∞ error reflects the spatial 
domain error after applying the pruned FFT, excluding transducer-related dis-
crepancies. 

Table 1. Comparison of error and skipped rows/columns under different levels of 
Mean Absolute Percentage Error (MAPE) and Normalised Percentage L∞ error in 
homogeneous domain with edge size of 1024. 

MAPE Norm. Perc. L∞ 

10% 20% 30% 40% 50% 1% 2% 3% 4% 5% 
Rows skip 1 1 614 800 866 670 810 856 886 906 

Rows skip [%] 0.10 0.10 59.96 78.12 84.57 65.43 79.10 83.59 86.52 88.48 
L∞ error [%] 0.003 0.003 0.005 0.054 0.312 0.005 0.072 0.240 0.498 0.768 

The MAPE appears to yield better accuracy in the simulation results by 
computing significantly more coefficients than the Normalised Percentage L∞ 
Error. However, the MAPE was found inadequate as it fails to accommodate zero 
values that may be encountered in spatial analysis. In contrast, the L∞ Error 
provides a more reliable measurement by focusing on the maximum difference, 
without being influenced by the distribution of smaller errors. Additionally, this 
error metric is more intuitive for potential users, as it represents the maximum 
error occurring at a single grid point in the entire domain, making it easier 
to adjust based on specific needs. Thus, the Normalised Percentage L∞ Error is 
more suitable for area estimation and will be used in all subsequent experiments. 

The second method considered for area estimation involved computing the 
norm over each column of the spectrum and skipping the columns where the 
norm is below a given threshold. However, this approach has two main disad-
vantages compared to the bisection method. First, the resulting area of spectral 
coefficients may not be continuous. In contrast, when the estimated area is con-
tinuous, the pruned FFT result can be stored in a reduced-size matrix (with one 
dimension equal to the original size), which benefits element-wise operations 
and memory optimisation, especially for large domain simulations. Second, the 
preprocessing time is higher. The bisection pruning algorithm has a time com-
plexity of O(log N), whereas the norm computation has a time complexity of 
O(N ) (with N representing half the number of columns, due to the spectral 
domain’s symmetry). Moreover, when considering the computation of forward 
and backward FFTs to determine the threshold error for the AFP, the prepro-
cessing time becomes significant. Figure 2 illustrates the experimental pipeline 
used to evaluate the proposed algorithm. The red dashed rectangle highlights the
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preprocessing stage, consisting of the AFP execution followed by the bisection 
pruning. 

Fig. 2. The pipeline with preprocessing operations to estimate area in the spectral 
domain and the comparison of the reference and modified simulation. 

5 Implementation 

All principles described in the previous section result in a proof-of-concept ver-
sion of the two-dimensional k-Wave wave propagation simulation. The original 
CUDA implementation of k-Wave was modified to incorporate the pruned FFT 
algorithm instead of the FFT. 

The pruned FFT was implemented using the cuFFT [ 9] and VkFFT [ 15] 
libraries. The computation is divided into two stages: first, a full real-to-complex 
FFT along the X-axis using cuFFT, and second, a Y-axis FFT using VkFFT. 
Although cuFFT could perform both, VkFFT offers better flexibility for complex 
memory layouts—beneficial for future 3D extensions. Because spectral elements 
with an X coordinate greater than m are zero, only first m Y-axis FFTs are 
executed. The inverse FFT reverses this process: starting with a Z-axis trans-
formation, then a Y-axis FFT for the first m X slices with VkFFT, followed 
by zeroing coefficients in the remaining X slices to eliminate artifacts from the 
initial transform, and finally an inverse X-axis transform with cuFFT. 

To evaluate performance and error, the standard FFTs in the k-Wave toolbox 
were replaced by our pruned FFT in the wave propagation simulation. This app-
roach accelerates computations for acoustic pressure, velocity gradients, and the 
absorption term during each simulation step. Additionally, by confining non-zero 
coefficients to a single spectral area, we can optimize element-wise matrix multi-
plications (highlighted in Eqs. 2 and 4), potentially further reducing simulation 
times, while leaving CUDA kernels for real domain operations unchanged. 

6 Evaluation of the Method over Real Data 

In this section, we evaluate the modified version of the k-Wave wave propagation 
algorithm that utilizes the pruned FFT. To simplify the experimental setup and 
focus on performance and computational error, all experiments align the wave
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Fig. 3. Ultrasound simulation setups and results: (a) human skull configuration, (b) 
human liver configuration, (c) skull acoustic pressure distribution, and (d) liver acous-
tic pressure distribution. Orange rectangle shows error measurement area; green arc 
indicates transducer position. (Color figure online) 

propagation direction with the X-axis, eliminating the need for domain rotation 
and additional preprocessing. 

These examples represent practical clinical scenarios where precise target-
ing of specific locations within the human body with focused ultrasound waves 
is essential. Such applications are particularly relevant in therapeutic proce-
dures that rely on ultrasound focusing techniques, allowing us to evaluate the 
algorithm’s performance and precision in contexts closely mirroring real-world 
treatments. 

In the search for the optimal focus position, multiple simulations may be 
required. To enhance computational efficiency, a two-stage approach is employed: 
initially, accelerated simulations with an acceptable error margin are performed 
to identify promising transducer positions. Once an approximate optimal posi-
tion is determined, a full simulation is executed using that position to ensure 
accuracy and reliability. This hybrid strategy significantly reduces the overall 
computational time during the transducer position search while maintaining the 
necessary precision for medical applications [ 12]. 

Furthermore, high simulation resolution is crucial not only in medical applica-
tions but also in accurately representing diverse material geometries, especially 
for structures with large differences in material properties. A higher domain 
resolution helps prevent stair-casing artifacts and phase shifts [ 12, 21]. Conse-

Table 2. Properties of the skull simulation across different domain resolutions. 

1x 2x 4x 8x 16x 32x 
Nx 288 576 1152 2304 4608 9216 
Ny 384 768 1536 3072 6144 12288 

dx/dy [m] 9.375e−4 4.6875e−4 2.34375e−4 1.17187e−4 5.85937e−5 2.92969e−5 

CLF 0.3 0.3 0.3 0.15 0.1 0.05 
PPW (water) 5.36 10.73 21.46 42.92 85.85 171.69 
Time steps 2798 5595 11189 44753 134258 537031
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quently, high-resolution simulations tend to contain many more zero or negligible 
spectral coefficients, making them particularly suitable for the proposed spec-
trum pruning. 

In all subsequent experiments, the domain properties—sound speed, den-
sity, and absorption coefficients—reflect those of real tissue. Figure 3a shows  the  
transducer’s position relative to the skull, while Fig. 3b illustrates its position 
relative to the liver. An additive transducer operating at 300 kHz with an ampli-
tude of 100 kPa was used [ 20]. The same figures indicate the area within which 
acoustic pressure error is evaluated. Although the pruned FFT removes high 
frequencies—resulting in significant error at the transducer itself—the primary 
concern in ultrasound applications is the error within the tissue. This approach 
for assessing the accuracy of nonlinear wave propagation in layered, absorbing 
fluid media  follows  the method used in [  8]. All experiments were executed on an 
NVIDIA RTX A5000. 

Table 3. The measurements in the human skull with different bisection threshold. 

1% Threshold 
1x 2x 4x 8x 16x 32x 

Skip [%] 22.92 43.40 63.02 77.78 87.41 93.51 
L∞ domain [%] 3.13 10.72 14.15 15.43 16.56 17.62 

L∞ focal point [%] 0.23 1.05 1.13 0.89 0.60 0.76 
Focal point shift [mm] 0 0.469 0 0 0.059 0 

Time original [s] 0.38 1.69 15.84 243.75 3636.13 54366.42 
Time modified [s] 0.37 1.53 12.21 169.62 1916.76 29333.16 

Step time original [ms] 0.136 0.296 1.386 5.325 26.48 98.97 
Step time modified [ms] 0.132 0.268 1.069 3.706 13.96 53.40 

AFP time [s] 0.23 0.74 2.62 9.10 32.34 42.34 
Speedup 1.03 1.10 1.30 1.44 1.90 1.85 

2% Threshold 
Skip [%] 39.58 61.11 77.43 87.59 93.27 96.44 

L∞ domain [%] 5.63 13.82 17.92 20.23 21.67 22.69 
L∞ focal point [%] 0.67 1.21 1.30 1.14 1.19 0.93 

Focal point shift [mm] 0 0.469 0 0 0.059 0 
Time original [s] 0.38 1.68 15.87 243.67 3654.35 54374.44 
Time modified [s] 0.35 1.43 11.93 166.06 1847.03 28782.14 

Step time original [ms] 0.136 0.294 1.389 5.324 26.61 98.98 
Step time modified [ms] 0.125 0.250 1.044 3.628 13.45 52.39 

AFP time [s] 0.26 0.62 2.66 9.47 33.25 174.20 
Speedup 1.09 1.17 1.33 1.47 1.98 1.89
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To measure the impact of the optimisation on the differently sized simu-
lations, the resolution of the original simulation domains was upscaled using 
nearest neighbour approximation to maintain the domain in its segmented form. 
This ensures that no artificial material properties are introduced during the 
upscaling process. To show the impact of the bisection threshold on the simula-
tion result, the measurements were made for 1% and 2% Normalised Percentage 
L∞ bisection threshold. The simulation properties for both the skull and liver 
setup are presented in Tables 2 and 4 respectively. 

Table 4. Properties of the liver simulation across different domain resolutions. 

1x 2x 4x 8x 16x 
Nx 480 960 1920 3840 7680 
Ny 480 960 1920 3840 7680 

dx/dy [m] 3.33333e−4 1.66667e−4 8.33333e−5 4.16667e−5 2.08333e−5 

CLF 0.3 0.3 0.3 0.3 0.15 
PPW (water) 15.09 30.18 60.36 120.72 241.44 
Time steps 5524 11047 22094 44187 176746 

The original size of the simulation in skull was 288 × 384 with uniform grid 
spacing of 9.375 × 10−4m. This simulation was upsampled up to 32 times while 
keeping the physical size the same as the original simulation. The original size of 
the liver simulation was 480 × 480 with uniform grid spacing of 3.333 × 10−4m. 
This simulation was upsampled up to 16 times. Since absorption was present in 
all experiments, it was necessary to adjust the Courant-Friedrichs-Lewy (CFL) 
number to maintain simulation stability [ 18]. The CFL number affects the sim-
ulation time step, which can result in longer simulation times. The simulation 
time was chosen based on the time it takes the wave to travel from one corner 
of the grid to the geometrically opposite one. 

When we examine the results in Table 3 (skull simulation) and Table 5 (liver 
simulation), we observe that the number of skipped spectral coefficients increases 
with the simulation domain resolution, reaching up to approximately 90%. The 
Fig. 4a and  4b show the error distribution of the normalized L∞ error using a 1% 
bisection threshold and reveal that significant errors primarily occur at the tis-
sue boundaries where sound speed and density change dramatically. Throughout 
most of the simulated media, errors remain manageable at just a few percent-
age points. As expected, increasing to a 2% bisection threshold leads to higher 
computation errors across all simulations, but also results in a more significant 
reduction in computed coefficients due to the greater loss of spectral information. 

A crucial aspect for focused ultrasound procedures is the accuracy of the 
focal point and its position. With a 1% bisection threshold, the focal point error 
remains mostly below 1%. In skull simulations, the focal point shift is minimal, 
either zero or limited to a single grid point relative to the original domain size. 
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Table 5. The measurements in the human liver with different bisection threshold. 

1% Threshold 
1x 2x 4x 8x 16x 

Skip [%] 39.17 64.17 76.04 84.64 91.54 
L∞ domain [%] 10.84 20.49 25.25 29.78 33.53 

L∞ focal point [%] 0.47 0.99 0.86 0.05 2.07 
Focal point shift [mm] 0 0.236 0.755 0.750 0.750 

Time original [s] 1.03 6.75 72.35 537.40 9549.67 
Time modified [s] 0.95 5.56 41.38 339.19 5106.51 

Step time original [ms] 0.186 0.425 2.14 7.80 34.52 
Step time modified [ms] 0.172 0.350 1.22 4.93 18.46 

AFP time [s] 0.48 1.43 4.77 15.92 55.81 
Speedup 1.08 1.21 1.75 1.58 1.87 

2% Threshold 
Skip [%] 59.58 75.42 85.00 91.41 95.47 

L∞ domain [%] 18.14 25.24 29.31 33.03 35.12 
L∞ focal point [%] 2.60 0.33 1.48 2.02 2.37 

Focal point shift [mm] 0 0.850 0.755 0.750 0.750 
Time original [s] 1.03 6.77 72.06 539.87 9554.37 
Time modified [s] 0.92 5.40 40.13 323.92 4984.51 

Step time original [ms] 0.186 0.426 2.13 7.84 34.54 
Step time modified [ms] 0.167 0.340 1.19 4.70 18.02 

AFP time [s] 0.48 1.32 4.60 16.69 94.15 
Speedup 1.12 1.25 1.80 1.67 1.92 

Fig. 4. The distribution of the Normalised L∞ error over grid points of the final acous-
tic pressure distribution in (a) 16 times upscaled liver and (b) 32 times upscaled skull, 
grouped into 10 intervals. 
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In contrast, liver simulations can experience focal point shifts of several grid 
points due to the heterogeneous nature of bone tissue. Notably, simulation times 
improved significantly, especially for larger domains. With a 1% bisection error, a 
speed-up of up to 1.8 times was observed, reducing simulation time from roughly 
15 to 8 h—a substantial saving when multiple simulations are required. However, 
when including the AFP preprocessing time, the pruned FFT’s benefits diminish 
for small domain sizes due to overhead, while for large domains, AFP accounts 
for only a negligible portion of the total time saved. 

Profiling 

The profiling of the proof-of-concept pruned FFT implementation was performed 
on the same GPU used for the experiments, employing the identical input dataset 
utilized in the resolution evaluations described in Sect. 6. 

Figure 5a compares the overall time spent on FFT computations in both 
directions between the original and modified implementations. The results indi-
cate that acceleration was achieved for all simulation sizes, with larger simula-
tions exhibiting greater speedup. The only exception is the largest simulation, 
where a decrease in speedup may be due to less efficient FFT algorithm selec-
tion. This trend is easily explained by the decreasing percentage of coefficients 
processed in the Y dimension. As noted in Sect. 2, FFTs account for approxi-
mately 60% of the total simulation time. According to Amdahl’s law, with 60% 
of the computation optimisable, the maximum theoretical speedup is 2.5 times. 
Comparing this limit to the actual speedup shown in Fig. 5a highlights the high 
efficiency of the optimization. 

Fig. 5. Performance comparison between original and modified implementations: (a) 
FFT computation duration; (b) Time percentage breakdown of FFT and kernel com-
putations. 

Figure 5b illustrates the relative time usage of the original and modified 
implementations, divided into three segments: FFTs, real domain kernels, and 
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spectral domain kernels, with the overall duration normalized to that of the orig-
inal implementation. The significant reduction in computation time is observed 
in the FFT segment, which decreases in accordance with the domain scale. The 
time spent on spectral domain kernels is also greatly reduced; for the largest 
simulation, it drops from approximately 7% of the overall simulation time to 
less than 1%. As expected, no speedup was observed for the real domain kernels, 
since the optimizations were applied solely to the spectral part of the computa-
tion. 

7 Discussion 

Comparing our implementation with other acoustic pressure wave solvers [ 1], 
experiments at various resolutions show computation errors within acceptable 
cross-comparison ranges. For human head simulations similar to ours, relative 
L∞ error ranges from 10% to 100% compared to k-Wave. Focal point shifts 
(0–2mm) and acoustic pressure errors (10−2-101) also align with benchmarks. 
While direct comparison is challenging, the results achieved in the experiments 
presented here are promising and provide the first insight into the accuracy of 
this method over high-resolution simulations. 

A limitation of this approach that requires further investigation is its perfor-
mance in heterogeneous simulations where the difference between the properties 
of two media is so high that removing high frequencies from the spectrum pre-
vents the wave from propagating or reflecting correctly. This can lead to signifi-
cant errors at the boundaries of such media. Another limitation lies in the type 
of transducer used. For a piston transducer, the overall simulation error should 
be lower since most of the spectral coefficients representing this transducer are 
included in the computed part of the spectrum. However, if the piston transducer 
is unaligned, high computation errors may occur. In contrast, a point transducer 
is not suitable for this optimization, as accurately representing it requires the 
inclusion of high frequencies. The worst-case scenario represents the signals with 
widely distributed spectral content (sharp impulses or broadband noise). Simi-
larly, simulation involving point source rather than distributed transducers may 
retain significant energy in high frequencies, limiting coefficient reduction. 

There are several avenues for further improvement. Implementing the pruned 
FFT in the first dimension would reduce arithmetic operations and memory 
accesses. Applying the pruned FFT across all dimensions of the two-dimensional 
domain would allow storing the resulting spectral coefficients in reduced matri-
ces that correspond to the computed area, potentially enhancing memory per-
formance during simulation steps. Additionally, reducing the spectrum in both 
dimensions, rather than only along the X-axis, could be considered. However, this 
would likely increase computation error due to the additional removal of coeffi-
cients, and the performance gains may not justify losing the current advantage of 
maintaining a single continuous area of coefficients, which simplifies subsequent 
operations. 

Despite FFT-pruning being well-established and the impact of spatial reso-
lution on image quality being well understood, integrating these techniques for 
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spectral methods in wave propagation simulations is novel. This approach bridges 
computational efficiency with high-resolution accuracy in complex wave models, 
opening new research opportunities in ultrasound simulation and acoustics. 

8 Conclusion 

This paper presented an approach to accelerate k-Wave’s wave propagation sim-
ulation by replacing the standard FFT algorithm with a pruned FFT. The 
proposed method was demonstrated via a proof-of-concept implementation of 
the pruned FFT integrated into the k-Wave simulation framework. Experiments 
using simulation data from human skull and liver models showed significant 
improvements in computational time, particularly for high-resolution domains. 
Although transitions between media with significant differences in properties 
such as sound speed and density may lead to high computation errors at their 
boundaries, the overall impact on focal point accuracy was minimal, resulting in 
negligible focal shifts. 

This approach shows promising potential for focused ultrasound procedures, 
especially in scenarios where multiple simulations are required to determine the 
optimal transducer position for targeting specific tissue areas. The improved 
computational efficiency makes it particularly suitable for treatment planning, 
where rapid iteration through various transducer configurations is necessary 
while maintaining acceptable accuracy. Notably, despite the challenges associ-
ated with ultrasound penetration through bone, our method achieved up to a 
1.8x speedup in large simulation domains with a 1% bisection threshold, demon-
strating its robustness in demanding scenarios. 

Future research will focus on further improving the pruned FFT implementa-
tion and its integration into the k-Wave toolbox, including enhancements to the 
preprocessing phase, comprehensive evaluation and validation of the proposed 
approach, and potential extension to three-dimensional simulations. This work 
contributes to the ongoing effort to enhance the efficiency of spectral methods in 
wave propagation simulations, particularly for medical ultrasound applications. 
The promising results pave the way for more efficient high-resolution simulations, 
potentially enabling faster and more accurate treatment planning in clinical set-
tings. 
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