
Implementation of 3D FFTs Across Multiple GPUs in Shared Memory Environments

Nimalan Nandapalan, Jiri Jaros, and Alistair P Rendell

Research School of Computer Science
ANU College of Engineering and Computer Science

Australian National University, ACT 0200, AUSTRALIA
{Nimalan.Nandapalan, Jiri.Jaros, Alistair.Rendell}@anu.edu.au

Bradley Treeby

Research School of Engineering
ANU College of Engineering and Computer Science

Australian National University, ACT 0200, AUSTRALIA
Bradley.Treeby@anu.edu.au

Abstract—In this paper, a novel implementation of the
distributed 3D Fast Fourier Transform (FFT) on a multi-GPU
platform using CUDA is presented. The 3D FFT is the core of
many simulation methods, thus its fast calculation is critical.
The main bottleneck of the distributed 3D FFT is the global
data exchange which must be performed. The latest version of
CUDA introduces direct GPU-to-GPU transfers using a Unified
Virtual Address space (UVA) that provides new possibilities
for optimising the communication part of the FFT. Here, we
propose different implementations of the distributed 3D FFT,
investigate their behaviour, and compare their performance
with the single GPU CUFFT and CPU-based FFTW libraries.
In particular, we demonstrate the advantage of direct GPU-to-
GPU transfers over data exchanges via host main memory.
Our preliminary results show that running the distributed
3D FFT with four GPUs can bring a 12% speedup over the
single node (CUFFT) while also enabling the calculation of 3D
FFTs of larger datasets. Replacing the global data exchange via
shared memory with direct GPU-to-GPU transfers reduces the
execution time by up to 49%. This clearly shows that direct
GPU-to-GPU transfers are the key factor in obtaining good
performance on multi-GPU systems.

Keywords-GPU; UVA; unified-virtual-address; multi-GPU;
FFT; distributed; shared-memory;

I. INTRODUCTION

The use of graphics processing units (GPUs) as general-

purpose massively-parallel processors is now common place

in high performance computing systems. Initially this in-

volved augmenting each node of a distributed memory

system with a single GPU. Typical node hardware can,

however, support multiple GPUs and, as node CPUs become

increasingly multicore, the trend would suggest that each

node will become populated with multiple GPUs.

To date, relatively little work has been reported on op-

timising algorithms to run on multiple GPUs attached to a

single shared memory host. This paper considers this issue

within the context of the Fast Fourier Transform (FFT)

algorithm [1]. The FFT is a core component for many

computational techniques, including signal processing, fluid

dynamics, molecular dynamics, medical imaging, etc.

Our particular interest in the use of multiple GPU systems

is driven by the desire to perform large-scale ultrasound

simulations using the k-space pseudo-spectral method in

time-frames that are clinically meaningful [2]. The k-space

method makes extensive use of large 3D FFTs (dimensions

of 10243 or greater), which constitute over half of the total

computation time.

This paper is structured as follows. In section II we

consider the hardware and software environment in detail.

Section III outlines related work. Sections IV and V describe

our algorithm and the use of direct device-to-device transfers

respectively. Section VI presents our performance results,

while section VII contains conclusions and discussion.

II. MULTI-GPU HARDWARE AND SOFTWARE

The multi-GPU system used in this work is based on the

Tyan barebone TYAN FT72B7015 [3]. The motherboard

has two LGA 1366 sockets for Intel Core i7 processors

in a NUMA configuration (see schematic in Figure 1).

Each socket is populated with a six-core Intel Xeon X5650

processor giving a total of twelve physical cores. The server

is equipped with twelve 4 GB memory modules (48 GB

RAM) and has an aggregated memory bandwidth of 2× 25
GB/s. Communication between the CPUs is supported by

the Intel QuickPath Interconnection (QPI) with a theoretical

bandwidth of 12 GB/s.

The QPI also connects each CPU with an Intel IOH chip

that offers various I/O connections including a total of four

PCIe x16 links. Each PCIe link is branched by a PLX PEX

8647 switch to give a total of eight PCIe slots. As this

system is designed as a node in a cluster, one PCIe slot

is reserved for a high-bandwidth interconnect (Infiniband).

The remaining seven slots are populated with GPUs.

Each GPU is an NVIDIA GeForce GTX 580 with 512

CUDA cores and 1.5 GB of memory. Access to the CPU

by the GPUs or vice versa is provided by the PEX bridge

multiplexing the PCIe x16 links as required on demand. All

GPUs use NVIDIA CUDA 4.1 [4].

A typical CUDA workflow involves creating a task on

the host (CPU) side, allocating memory for task data on

the device (GPU), copying that data to the device, and then

executing the task “kernel” on the device. When the kernel

completes, data is retrieved from the device before the device

memory is freed.

When exploiting multiple devices, multiple tasks are exe-

cuted simultaneously. If the tasks are mutually independent,

2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-4879-1/12 $26.00 © 2012 Crown Copyright

DOI 10.1109/PDCAT.2012.79

167

�������
	
���

���
��
��

�
���
��������

�����������
���������
��� !�

"
��

�������
	
���

��#����$%�
��	��

��#����$%�
��	��

"
��
�����������

��#����$%�
��	��

��#����$%�
��	��

�"%�&�'�
()*+!,�-�./!0�

���
��
��

���
��
��

���
��
��

�
�	�
��������

�
�&�
��������

�
�1�
��������

�
�
�
��������

�
���
��������

�
���
��������

&�����2!�!3�����
��#4����	��
�!�

&�����2!�!3�����
��#4�����5������
��

"�6����&��

"�6����&��

"
��
�����������

7
��
&	�� !�

�.��

��� !� &�����2!�!3�����
��#4����	��
�!�

&�����2!�!3�����
��#4����	��
�!�

	��� !�

	��� !�

Figure 1. Schematic of the core components on the motherboard of a
multi-GPU shared-memory system.

no communication among devices is necessary – if depen-

dent, communication is required. Historically, inter-device

communication in CUDA was performed by the host. That

is, the host would collect pieces of data from each device

into its memory space, and then send the relevant data to

the relevant destination device memory.

The latest versions of CUDA introduce the Unified Virtual

Address space (UVA). This enables direct access to remote

device memory by CUDA kernels and CUDA memory copy

routines. However, on the platform used here CUDA device-

to-device communication is limited to devices that are under

the same Intel IOH bridge (e.g. GPU0, GPU1 and GPU2 in

Figure 1). This is due to Intel’s implementation of the PCIe

2.0 protocol in the 5520 chipset and its incompatibility with

the Intel QPI [5].

Recognizing the time required to transfer data to and from

the GPU devices, NVIDIA included in CUDA the concept

of streams. A CUDA stream represents a queue of GPU

operations (kernels, memory transfers) that get executed in a

specific order. Effectively the GPU devices can be thought of

as being made of two parts: a copy engine (the device DMA

controller); and a compute engine (the CUDA cores). With

multiple streams the copy engine can execute a memory

transfer from one stream while the CUDA cores are busy

processing a kernel from another stream.

III. RELATED WORK

The de facto standard for CPU FFT implementations is

FFTW [1], [6], now in version 3.3. It is available for shared

and distributed memory systems. For NVIDIA GPUs there

is CUFFT [7] (we use CUFFT version 4.1), however, this

provides no interface for utilizing multiple GPU devices.

P3DFFT is an open-source off-the-shelf framework for

distributing 3D FFT [8]. It does not compute the transform

itself, but handles all of the decomposition and communica-

tion tasks required for performing a distributed 3D FFT. It

makes use of a 2D (pencil) decomposition, using a localized

library, such as FFTW, for the component transform.

Csechowski et al. [9] extended P3DFFT to create DiG-

PUFFT for use on their GPU cluster. They observed sig-

nificant performance bottlenecks which they attribute to the

cost of communication over the PCIe bus between CPU and

GPU. This was estimated to represent approximately 27%

of the total time taken by the 3D FFT.

PKUFFT [10] is similar to DiGPUFFT in that it uses

a pencil data decomposition with GPUs to perform the

actual computation. Whereas P3DFFT appears to be lim-

ited to real-to-complex (R2C, forward) and complex-to-real

(C2R, backward) transforms, PKUFFT includes complex-to-

complex (C2C) transforms. It differs from P3DFFT in the

data manipulation it performs at the various stages, and the

factoring of architectural elements of GPU clusters into the

decomposition and underlying computations.

ULSFFT [11] look at a recursive composition, essentially

a restructuring of the butterfly graph to allow a scatter-

gather processing model. Gu et al. [12] propose a number

of techniques for performing large FFTs when the data is

maintained out of a single devices memory space.

None of the above explicitly consider the case of multiple

GPUs hosted by a single node; so direct communication

between devices was not considered. Also aspects of all

these systems are now obsolete, e.g. PKUFFT is presented

for version 2.3 of CUDA, and the PCIe controller versions

used in the various systems are not immediately apparent.

IV. 3D FFT IMPLEMENTATION

Our implementation for processing the 3D FFT on multiple

GPUs can be described in three phases as illustrated in

Figure 2. In the 3D domain we refer to X as the depth,

Y as the width, and Z as the height with the upper-left-

forward corner as the origin or zeroth element. Consecutive

elements in X are stored in consecutive memory locations

(i.e. the matrix is stored in row-major order).

The first phase begins by partitioning the matrix

in the Z dimension into #batches contiguous batches

(#batches= Z
batch size) where the dimension of each batch is:

batch size ×Y × X . Each batch is also divided in the Y
dimension to give batch size×batch size×X pencils, where

the number of pencils, #pencils= Y
batch size . This is shown as

Phase 1 in Figure 2, where the cubic matrix is divided into

three batches, each with three pencils (left panel, Phase 1,

Figure 2). These batches are distributed among the GPUs

(center panel, Phase 1, Figure 2), and batch size 2D FFTs

of size XY are performed (right panel, Phase 1, Figure 2)

168

�
�

�����

�����

���

�����
����

�����

�����

�
�

�
�

�
�

����
�����

�����

�����

�����

��

��������

	
��
�

��

��

��

�����
�������

Phase 1

Phase 2

Phase 3

����
���
����

�����

�
�

�
�

�����

�
�

�
�

Figure 2. Decomposition and Movements of Pencils: Phase 1) matrix dis-
tributed in batches, 2D FFTs performed; Phase 2) communication between
devices (D2D) with pencils and memory manipulations (transposes); Phase
3) 1D FFTs and transformed data returned in original format.

for each batch using the CUDA provided CUFFT library.

At the end of Phase 1 the device memory contains the XY
component of the result.

To complete the 3D FFT each Z component, which is

presently distributed across multiple devices, is rearranged

to be contiguous within a device. This is referred to as Phase

2 in Figure 2 and requires an all-to-all communication. This

communication is managed by traversing the upper-right

triangular set of pencils, calculating the destination buffer

for the pencil, and performing a data swap (left panel, Phase

2, Figure 2). The destination is uniquely identified by the ID

number of the device, a buffer identified by the ID of the

batch stored in it, and an offset into the buffer for the number

of pencils before it. These values are derived as follows:

• device ID =
pencilId

#pencils/#GPUs
(where pencilId is the

unique number of the pencil within the batch with range[
0–#pencils

)
).

• batch ID = pencilId (mod
#pencils
#GPUs

).

• pencil offset = batchId (the unique number of the batch

in the range
[
0–#batches

)
).

After the pencil movement in Phase 2, all Z data is

on the correct device for the final 1D FFT, although it

is not contiguous. This is addressed by performing a Y Z
transposition on each pencil (center panel, Phase 2, Figure

2), followed by an XY transposition on the entire batch

(right panel, Phase 2, Figure 2). The net effect of Phase 2

is a global Y Z transpose plus a global XY transpose. With

this complete the final stage consists of batch size×Y 1D

FFTs each of size Z (left panel, Phase 3, Figure 2).
The 3D FFT of the data now exists in the device memory

space, albeit in a slight permutation. Performing the inverse

of the memory operations/communications will place the

transformed data in the same orientation as the original data

back into main memory (right panel, Phase 3, Figure 2).

V. DEVICE-TO-DEVICE COMMUNICATION

The challenging phase of the distributed 3D FFT is the

distributed 3D matrix transposition in the second phase. All

the elements of the 3D matrix have to be rearranged and

redistributed which leads to at least #GPUs× (#GPUs− 1)
device-to-device (D2D) transfers and at most Z × (Z − 1).
These two cases occur as the number of transfers (#transfers)

and the size of each transfer (transfer size) is dependent

on the batch size. In a simplified analysis, #transfers =
Z

batch size − #batches
#GPUs and transfer size = batch size× Y ×X .

Poorer performance is expected in the second case, when the

batch size is small, as there is a greater number of smaller

transfers which are less likely to saturate the PCIe bus.
To understand the communication characteristics and

bottlenecks of the given server architecture, we designed

programs that perform data exchanges (swaps) between pairs

of GPUs under different scenarios. These programs take a

list of device IDs as pairs and swap the data, i.e. given a

list (1, 2, 3, 4), two swaps will be performed: GPU1 with

GPU2, and GPU3 with GPU4. Four different swap methods

were designed: 1) a swap via host memory; 2) a staged CPU

swap, where one transfer is performed via CPU and the other

by direct D2D copy; 3) a direct D2D memory copy; and 4)

a swap via kernel, where a GPU kernel uses registers to

carry out the swap. In order to compare the methods we

measured the effective bandwidth over the PCIe, defined as

the rate at which the net data movement is achieved (in this

case #GPUs × transfer size
time

GB
s

, where #GPUs is the number of

devices in the list).
In method 1 the communication is performed via the

host’s memory (main memory) in two steps. First the data

packages from the devices are gathered and stored in main

memory in an asynchronous manner. After synchronising,

the data packages are scattered to the particular devices.
Method 2 uses the CPU to stage part of the swap which

takes three steps. In the first step the data of the first device

169

Table I
EFFECTIVE BANDWIDTH FOR INTER-DEVICE DATA SWAP (GB/S)

Method
2 GPUS 4 GPUS 6 GPUS

Min. Max. Min. Max. Min. Max.

1) via CPU 2.95 5.38 3.83 7.55 4.54 5.71

2) staged CPU 2.82 4.71 2.83 9.41 4.18 9.88

3) ptr swap 2.91 8.11 2.97 16.20 4.39 24.29

4) kernel 5.94 8.24 5.96 16.46 - -

is copied to host main memory. In the second step, a D2D

memory transfer is used to move data from the second device

to the first one overriding memory freed in the previous

phase. Finally, the host transfers the first device’s data to

the second one from the temporary host buffer.

Method 3 achieves the communication using built-in

CUDA functions to perform two asynchronous D2D trans-

fers followed by pointer swapping. For this method, two

distinct buffers have to be allocated on each device (the

source and destination). One buffer acts as an input/output

buffer, while the other contains the current data. The pointer

swapping between the buffers marks the new transferred data

as current, and the old current buffer as reusable.

Method 4 uses a kernel to handle the communication in

place. The kernel is executed only on one device in the pair.

As the UVA enables direct accesses to the remote memory,

the kernel first loads the data on the executing device into

local registers. Then it accesses the remote memory to

perform the transfer from the other device to this. The swap

is finalised by storing the value in the local registers to the

remote memory.

VI. DISTRIBUTED 3D FFT PERFORMANCE RESULTS

The first set of results we present are for the effective

bandwidths of the four methods of swapping data between

devices. A range of bandwidths were recorded by varying

the device pairs used by the methods and are displayed

in Table I. Both bandwidths are important as an all-to-all

communication is required.

When any communication involving the CPU occurs

(methods 1 and 2), the observed effective bandwidth is

significantly limited. These methods have the smallest band-

width when devices on the same IOH chip or PEX switch

are used, which limits the bandwidth in and out of the CPU.

Conversely, methods 3 and 4 achieved their maximum band-

widths in these conditions due to the aggregated bandwidth

of the PEX switches. These two methods, not involving the

CPU, only move data when necessary. In contrast, method 1

has to move twice the minimum amount of data and method

2 one-and-a-half times the minimum amount over the PCIe

network which lowers the effective bandwidth. All methods

except method 4 require some amount of additional memory

Table II
PERFORMANCE FOR ASSORTED batch sizes AND SIMPLE DISTRIBUTED

10243 COMPLEX SINGLE-PRECISION FFT ACROSS 6 GPUS

batch size
Time (seconds)

Size of Pencils
1 Stream 2 Streams

1 8.96 8.72 8 KB

2 7.27 7.30 32 KB

4 6.35 6.42 128 KB

8 6.33 6.33 512 KB

16 6.17 6.15 2 MB

32 6.77 6.57 8 MB

on the host or device. However, method 4 is limited to using

devices on the same IOH chip. Although method 3 works

with devices on different IOH chips, it requires data to be

staged by the CPU, which is managed differently to method

1 as the effective bandwidths vary significantly depending

on device selection.

Considering these communication characteristics, we cre-

ated three implementations for the distributed 3D FFT.

The first implementation, simple, is a point of reference

differing to the details in Section IV only in that the matrix

is maintained in main memory, and batches and pencils

are transferred on demand via the CPU to the GPUs for

processing. The second implementation, D2D via ptr. swap

(pointer swap), and third implementation, D2D via kernel,

follow the technique in Section IV and perform the D2D

communication directly between devices managing them via

pointer swapping and a kernel respectively.

For all three of these implementations the batch size
is one parameter which can affect the performance in

two ways. Table II demonstrates the effect of varying the

batch size for the simple implementation of the distributed

3D FFT. The first way this impacts performance is because

this value directly changes the size of the largest contiguous

set of data that is accessed and transferred, i.e. the size

of the transfers on the PCIe. In order to saturate the PCIe

bus and operate at maximum bandwidth, sufficiently large

messages are required. This can be seen in the speed up as

the batch size increases, and the 25% improvement from a

size of 1 to 32.

The second way in which the batch size can affect per-

formance is in the application of streams. This factor defines

the size and consequently the time of the computations. A

shorter time results in a higher granularity of tasks (kernels,

or memory transfers) to be scheduled between the copy

and compute engines of the device. If the computational

component is significant, then the batch size should be

balanced according to the bandwidth to efficiently overlap

computation and communication. Table II suggests that this

component is insignificant, accounting for approximately 4%
of the total time. We also observe some loss of performance

170

(a) Simple Profile

(b) D2D via Pointer Swapping Profile

Figure 3. Timeline of GPU activity showing memory transfers (brown),
in-device transposes (green), and FFT kernels (blue).

for select batch sizes when streamed, which we attribute to

the dynamic nature of the device scheduler and the alignment

of data in intermediary caches.

In order to confirm this, the implementations were profiled

using the NVIDIA Visual Profiler [4]. Figure 3 provides a

timeline of GPU activity for the simple and D2D via kernel

implementations. This confirms that the computational com-

ponent is not significant, and is hidden by communication.

In Table III we present results for the three implemen-

tations on multiple GPUs alongside results for FFTW on 6

and 12 CPU cores and CUFFT (where applicable). Each FFT

was applied to complex 3D single-precision cubic matrices

with dimensions 5123, 7683, and 10243. The performance

was measured as the average of the times taken to perform

the FFT. Times were recorded for batch sizes 1, 2, 4, 8,

16, and 32, and for one and two streams per device. The

fastest average times were used. The results for the simple

implementation provides a baseline for the D2D versions.

The performance of this version is slower in all cases to the

reference CPU (FFTW) and GPU (CUFFT) versions.

The results for the D2D via ptr. swap implementation

are not available for 10243, and 7683 for two and four

GPUs, as the total device memory is not enough for the

swap method which requires 7 GB for 7683 and 16 GB for

10243. Similarly, for the D2D via kernel implementation

for 10243 and 7683 with two GPUS. When using six

GPUs, the D2D via ptr swap implementation stages some

communications through main memory, and the D2D via

kernel implementation can not be run due to the Intel IOH

chips preventing the UVA accessing more than four devices.

Table III
TIME (SECONDS) TO COMPUTE 3D COMPLEX FFT

Size

Implementation Cores/GPUs 5123 7683 10243

simple

1 1.74 6.32 14.05

2 1.21 4.26 9.81

4 0.81 2.78 6.52

6 0.77 2.64 6.16

D2D via ptr. swap

2 0.61 - -

4 0.50 - -

6 0.64 2.07 -

D2D via kernel
2 0.80 - -

4 0.74 2.46 -

CUFFT 1 0.56 - -

FFTW
6 0.61 2.01 5.64

12 0.30 1.07 2.82

- missing value, not enough memory on GPUs.

In all cases the implementations using direct D2D trans-

fers were faster than the simple version communicating via

host memory. The greatest speed up was observed with the

D2D via ptr. swap implementation on two GPUs over the

5123 matrix where the performance improved by 49%.

Despite the kernel swapping approach performing better

in the effective bandwidth tests, the performance of the D2D

via kernel implementation was in general worse than the

D2D via ptr. swap version. However, for smaller batch sizes
this method was faster. An explanation for this performance

for large batch sizes and matrices is the limit in the resource

configuration of kernels. Another, is that the kernel both

involves transfers and computation and consequently does

not schedule well. It should be noted that the D2D via

kernel implementation requires half the memory of the other

implementation which allows it to compute the 7683 matrix

with only four GPUs. Although using fewer GPUs, this was

slower than the pointer swapping method with six GPUs by

16%. This suggests that the slower transfers staged through

main memory with pointer swapping may have been masked

by the other D2D communications.

Compared to CUFFT and FFTW, all three implementa-

tions were generally slower. However, at 5123 the D2D

via ptr. swap implementation over four GPUs was found

to outperform CUFFT (a single GPU) by 12%, and FFTW

when six cores on a single CPU were used by 18%. FFTW

over 12 cores (both CPUs) was still faster in these conditions

by at least 40%.

VII. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to investigate the acceleration of

the 3D FFT using multiple GPUs within a shared memory

environment. There are two reasons to do this: to extend the

171

available memory beyond the limits of a single device, and

to reduce computation time. The distributed 3D FFT consists

of three phases. First, the data is distributed in batches,

and the 2D FFT on each slice is performed. Second, the

data is redistributed using pencils amongst the devices to

make it contiguous in the third dimension. Third, the 1D

FFTs are performed over the remaining dimension, and the

data gathered back to the host. The most time consuming

component is the data redistribution between devices. In

this work we propose several different methods for this,

including via host memory, and directly between devices.

The most efficient means of data exchange is by swapping

pointers between multiple buffers using asynchronous D2D

CUDA UVA memory copies. Compared to global data

exchange via shared memory, this reduces the execution

time of the 3D FFT by up to 49%. This clearly shows that

direct D2D are a key factor in obtaining high performance

on multi-GPU systems.

Even using the most efficient distributed 3D FFT imple-

mentation (D2D via ptr. swap), the performance is strongly

limited by the PCIe throughput. Compared to the bandwidth

between a single GPU’s compute cores and memory (200

GB/s), or the CPU cores and host memory (25 GB/s), the

limit of 8 GB/s using PCIe 2.0 is a significant bottleneck.

For example, using two GPUs to compute a 5123 3D FFT is

12% slower than using a single GPU. However, using four

GPUs allows access to a greater aggregate PCIe bandwidth

resulting in a 12% speedup. This has significant implications

for both the hardware and software development for multi-

GPU systems. It is possible that the hardware constraints

may be partially alleviated by the release of systems based

on PCIe 3.0 which doubles the throughput of PCIe 2.0. An

additional limitation is that the GTX 580 used in our multi-

GPU system has only a single copy engine (unlike the Tesla

series of NVIDIA hardware [13]), and thus can not exploit

the duplex capability of PCIe.

Compared to using FFTW on a modern twin CPU socket

setup, the performance of the distributed 3D FFT is worse,

even when using six GPUs. This is again due to the

bandwidth limitations imposed by PCIe. However, there are

several scenarios where using GPUs may be advantageous.

For example, if the data is already distributed in GPU

memory space (as part of a larger GPU based simulation),

or if the availability of data is bottlenecked by another factor

such as an external network (Infiniband).

Due to the hardware limitations of the Intel IOH chips, the

D2D implementations are limited to four GPUs. This places

a ceiling on the aggregate GPU memory (size of the UVA

space) and size of the largest FFT that can be performed. To

use more devices we are forced to stage data in host memory,

and transfer data on demand to GPUs for processing. This

is less efficient but allows for larger problem sizes.

A possible extension of our implementations would be

to incorporate some of the memory transfer operations into

a custom FFT kernel in each phase. The effect of this

would be to perform these operations as soon as possible,

within the same kernel launch, without the need for ad-

ditional synchronisations. This would improve the balance

between computational and communication tasks. Moreover,

the CUFFT library requires additional memory for every

batch of 2D and 1D FFTs processed. This could be avoided

by implementing a custom FFT kernel.

ACKNOWLEDGMENT

This work was supported in part by the Australian Research

Council/Microsoft Linkage Project LP100100588.

REFERENCES

[1] M. Frigo and S. Johnson, “FFTW: An adaptive software
architecture for the FFT,” in ASSP, vol. 3. IEEE, 1998,
pp. 1381–1384.

[2] B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Model-
ing nonlinear ultrasound propagation in heterogeneous media
with power law absorption using a k-space pseudospectral
method,” J. Acoust. Soc. Am., vol. 131, no. 6, pp. 4324–4336,
2012.

[3] MiTAC International Corporation. (2011, Sep.) Tyan
ft72b7015 server barebone.

[4] NVIDIA Corp., “NVIDIA CUDA Programming Guide Ver-
sion 4.1,” NVIDIA, Tech. Rep., Nov. 2011.

[5] P. Micikevicius. (2011, Nov.) M07: High performance
computing with cuda. SC11 Tutorial. [Online]. Available:
http://sc11.supercomputing.org

[6] M. Frigo and S. Johnson, “The Design and Implementation
of FFTW3,” Proc. IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[7] NVIDIA Corp., “CUDA Toolkit 4.1 CUFFT Library,”
NVIDIA, Tech. Rep., Jan. 2012.

[8] D. Pekurovsky and J. Goebbert, “P3dfft-highly scalable
parallel 3d fast fourier transforms library,” University of
California, Tech. Rep., Nov. 2011. [Online]. Available:
http://code.google.com/p/p3dfft/

[9] K. Czechowski, C. McClanahan, C. Battaglino, K. Iyer, P.-
K. Yeung, and R. Vuduc, “On the communication complexity
of 3D FFTs and its implications for exascale,” in ICS, San
Servolo Island, Venice, Italy, Jun. 2012.

[10] Y. Chen, X. Cui, and H. Mei, “Large-scale fft on gpu clusters,”
ICS, pp. 315–324, 2010.

[11] J. Glenn-Anderson, “Ultra large-scale fft processing on
graphics processor arrays,” enparallelcom, 2009. [Online].
Available: http://enparallel.com/ULSFFT.pdf

[12] L. Gu, J. Siegel, and X. Li, Using GPUs to Compute Large
Out-of-card FFTs, 2011, pp. 255–264.

[13] NVIDIA Corp. (2012, Jul.) Tesla. [Online]. Available: http://
www.nvidia.com/object/tesla-supercomputing-solutions.html

172

