
This work was supported by the Ministry of Education, Youth
and Sports of the Czech Republic through the e-INFRA CZ
(ID:90254). This project has received funding from the European
Unions Horizon Europe research and innovation programme
under grant agreement No 101071008.}

afft: a C++17 Wrapper Library for FFT-like
Computations on Various Targets

David Bayer1 and Jiri Jaros1

1Faculty of Information Technology, Brno University of Technology,
Centre of Excellence IT4Innovations, CZ

1 Introduction and Motivation
Fast Fourier Transformation (FFT) and other related transformations are very demanding and time-consuming computations. There are
many C/C++ libraries focusing on providing an efficient FFT implementation on a specific hardware such as CPUs, GPUs and others.
However, their tight specialization implies low portability. If an application is supposed to be multiplatform, either a several versions of
the program or a wrapper around the FFT must be written. The afft library is a modern C++17 wrapper library addressing this problem,
allowing to use most of features offered by the backend libraries while providing extra layer of safety checks and other features.

2 Five Steps to Execution
A lot of libraries split the computation into two separate phases. During the first one a plan object describing the transformation is
created. This operation can be very expensive because the library often chooses the best of the implemented algorithms via
measurements and allocates temporary workspace. The second phase consists of repetitively executing the plan with no more
initialization penalties. The afft library copies this concept and splits the first phase into four.

4 Current and Future Work
Next steps in the development are to
• finalize the implementation including unit and module

testing,
• deploy the library to real world applications, e. g. k-Wave

project,
• create bindings for Python and MATLAB.

3 Conclusions
The afft library is an easy-to-use C++17 library for computing
FFT-like transformations on CPUs and GPUs. It unifies the
interface to already existing libraries, simplifies the portability
of applications to various platforms and introduces new
features. It is a versatile platform designed to be easily
extended by other mathematical transformations, new targets
and backend libraries.

Defining the Transformation
This phase consists of defining the mathematical properties of the transformation,
independently on the target architecture. The user is required to specify:
• the direction of the transformation,
• the precision of the memory and execution datatypes,
• the shape of the data and
• the placement of the transformation.
The user may also select the axes along which the transformation shall be computed,
and the normalization type applied to the results. Each transformation type may have
its own parameters, e. g. DCT and DST types for DTT.

Specifying the Target
The library distinguishes two types of targets - CPU and GPU. The
computation can be performed on one or more targets on a single or
multiple nodes (via MPI). The target parameters consist of:
• complex numbers format,
• prevent source buffer destruction flag,
• workspace policy parameter and
• memory layout according to a specified distribution.
Furthermore, each target has its own parameters such as memory
alignment and thread limit for CPUs and device specification for GPUs.
For MPI applications also the communicator must set.

2b

2a
afft::dft::Parameters dftParameters
{
.direction = afft::Direction::forward,
.precision = afft::makePrecision<PrecT>(),
.shape = {{500, 250, 1020}},
.axes = {{1, 2}},
.normalization = afft::Normalization::orthogonal,
.placement = afft::Placement::outOfPlace,
.type = afft::dft::Type::complexToComplex,

};

afft::cpu::Parameters cpuParameters
{
.complexFormat = afft::ComplexFormat::interleaved,
.preserveSource = true;
.workspacePolicy = afft::WorkspacePolicy::performance,
.memoryLayout = {.srcStrides = afft::makeStrides(

{{500, 250, 1024}}),
.dstStrides = afft::makeTransposedStrides(
{{500, 1020, 256}}, {{0, 2, 1}})},

.alignment = afft::getAlignment(src, dst),

.threadLimit = 8;
};

afft::InitParameters initParameters
{
.backendMask = (afft::Backend::fftw3 | afft::Backend::mkl),
.backendInitOrder = {{afft::Backend::mkl, afft::Backend::fftw3}},
.selectStrategy = afft::SelectStrategy::best,
.initEffort = afft::InitEffort::high,

};

Configuring the Backend Belection
The last part before baking the plan is specifying the plan initialization
parameters which allow to influence the transformation backend
selection. It allows the user to:
• constraint the considered backends,
• set the order in which the backends are evaluated,
• specify the backend selection strategy and
• plan initialization effort.

2c

afft::Plan plan = afft::makePlan(dftParameters,
cpuParameters,
initParameters);

2d Baking the Plan
When all the information are gathered, the transformation plan may be
created. It is done using the makePlan factory function. First, an
internal description of the transformation is created and validated. Then
a transformation backend is selected according to the passed strategy:
• first - selects the first backend which supports the given configuration

or
• best - creates plans of all chosen backends and selects the fastest.

2e The Execution
The transformation can be executed using the plan‘s execute or
executeUnsafe methods. Before the execution begins, several safety
checks are performed to prevent an unwanted behaviour such as buffer
validity and placement. On top of that the safe execution variant also checks
the datatype of the buffers to match the expected values. Additional target
parameters may be passed to the function. This way can be specified e. g.
GPU‘s stream or workspace.

std::complex<PrecT>* src = ...;
std::complex<PrecT>* dst = ...;

plan.execute(src, dst, afft::cpu::ExecutionParameters{});

	Snímek 1

