
Z3-Noodler 1.3:
Shepherding Decision Procedures
for Strings with Model Generation

1, Vojtěch Havlena 1, Lukáš Holı́k ,
Jan Hranička 1, Ondřej Lengál 1, and Juraj Sı́č 1

1 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

2 The Technical Faculty of IT and Design, Aalborg University, Aalborg, Denmark

Abstract. Z3-Noodler is a fork of the Z3 SMT solver replacing its string theory
implementation with a portfolio of decision procedures and a selection mechanism
for choosing among them based on the features of the input formula. In this paper,
we give an overview of the used decision procedures, including a novel length-
based procedure, and their integration into a robust solver with a good overall
performance, as witnessed by Z3-Noodler winning the string division of SMT-
COMP’24 by a large margin. We also extended the solver with a support for model
generation, which is essential for the use of the solver in practice.

1 Introduction

In recent years, research in string solving gained a significant traction, motivated by
problems such as finding security vulnerabilities in web applications [45,55,37,9] or
analyzing user policies controlling access to cloud resources [31,5,44].

Currently, there is a lot of string solvers utilizing various string solving approaches,
usually integrated in general SMT solvers, such as cvc5 [6,32,33,8,34,43,40,42] and
Z3 [38,14,49,50,51,48,57,11,13,56,12,10], or more standalone string solvers, such as
OSTRICH [36,20,23,21,22]. In order to achieve a high performance on various real-
world problems, one specific decision procedure applied to all formulae is usually not
sufficient enough. In practice, there often occur formulae with different characteristics
that are usually not coverable by a single procedure. One way to overcome this problem
lies in using a combination of dedicated procedures tailored for a particular fragment of
string constraints. For example, given a formula containing only quadratic word equa-
tions, the Nielsen transformation [39] usually performs better than any other approach.

One of the currently best string solvers is Z3-Noodler3 [25,24,29], a winner of
the string division of SMT-COMP’24 [47]. In [24], version 1.0 of Z3-Noodler was
introduced, which implements the stabilization-based procedure described in previous
papers [15,25,29]. Here we introduce version 1.3, implementing a framework for se-
lecting and running decision procedures and two novel decision procedures: (i) one
implementing multiple heuristics for handling pure regular constraints, based on finite
automata library Mata [26] and (ii) a procedure based on transforming equational block

3 https://github.com/VeriFIT/z3-noodler

© The Author(s) 2025
A. Gurfinkel and M. Heule (Eds.): TACAS 2025, LNCS 15697, pp. 23–44, 2025.
https://doi.org/10.1007/978-3-031-90653-4 2

(B) 1,2

ichocholaty@fit.vut.cz

David Chocholatý

https://etaps.org/about/artifact-badges/
https://etaps.org/about/artifact-badges/
http://orcid.org/0009-0006-5614-1592
http://orcid.org/0000-0003-4375-7954
http://orcid.org/0000-0001-6957-1651
http://orcid.org/0009-0007-5496-0057
http://orcid.org/0000-0002-3038-5875
http://orcid.org/0000-0001-7454-3751
https://github.com/VeriFIT/z3-noodler
https://doi.org/10.1007/978-3-031-90653-4_2
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-90653-4_2&domain=pdf

24 D. Chocholatý et al.

string constraints into linear-integer arithmetic (LIA) constraints based on the lengths
and alignments of string literals, which are then solved by the internal Z3 LIA solver.
Furthermore, we show how Z3-Noodler implements and optimizes the Nielsen trans-
formation, whose preliminary implementation was already present in version 1.0. On top
of that, version 1.3 extends Z3-Noodler by model generation. In particular, we explain
how a model can be constructed not only for each of the aforementioned procedures, but
also for the stabilization-based procedure, for which model generation was also missing.

We evaluate the impact of the decision procedures and the model generation, and
compare Z3-Noodler with other string solvers on standard SMT-LIB benchmarks. The
results show that the implemented decision procedures have large impact on the number
of solved instances and the solving time, while the model generation has just a minimal
impact. The comparison with other tools exposes that Z3-Noodler outperforms other
state-of-the-art tools on the SMT-LIB benchmarks.

2 Preliminaries
Sets, functions, and graphs. We useN to denote the set of natural numbers (including 0),
Z to denote the set of integers, B = {⊤,⊥} to denote the Boolean values, and B3 =

B ∪ {undef} to denote B extended with an undefined value. We use ⊎ to denote the
disjoin union. For a function 𝑓 : 𝑋 → 𝑌 , we use 𝑓 ◁{𝑥 ↦→ 𝑦} to denote the function
(𝑓 \ ({𝑥} × 𝑌)) ∪ {𝑥 ↦→ 𝑦}. We use boldface 𝒙 to denote vectors and 𝒙𝑖 to denote the
𝑖-th item of 𝒙. A (directed) graph is a pair 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of nodes and
𝐸 ⊆ 𝑉 ×𝑉 is a set of (directed) edges.

Strings and languages. We fix a finite alphabet Σ of symbols for the rest of the paper
and we use letters from the start of the alphabet (𝑎, 𝑏, 𝑐, . . .) to denote symbols from Σ.
A string (or word) over Σ is a finite sequence 𝑢 = 𝑎1 · · · 𝑎𝑛 of symbols from Σ. We say
that |𝑢 | = 𝑛 is the length of 𝑢. The length of the empty string 𝜖 is |𝜖 | = 0. The set of all
strings over Σ is denoted by Σ∗. The concatenation of strings 𝑢 and 𝑣 is denoted 𝑢 · 𝑣
or 𝑢𝑣 for short (𝜖 is the neutral element). Moreover, iteration of a word 𝑤 is inductively
defined as 𝑤0 = 𝜖 and 𝑤𝑘+1 = 𝑤𝑘 · 𝑤 for 𝑘 ∈ N. A language is a subset of Σ∗.

Automata. A (nondeterministic) finite automaton (NFA) overΣ is a tuple 𝐴 = (𝑄, 𝛿, 𝐼, 𝐹)
where 𝑄 is a finite set of states, 𝛿 is a set of transitions of the form 𝑞−{𝑎}→𝑟 with 𝑞, 𝑟 ∈ 𝑄

and 𝑎 ∈ Σ, 𝐼 ⊆ 𝑄 is the set of initial states, and 𝐹 ⊆ 𝑄 is the set of final states. A run
of 𝐴 over a word 𝑤 = 𝑤1 . . . 𝑤𝑛 ∈ Σ∗ is a sequence of states 𝑞0 . . . 𝑞𝑛 ∈ 𝑄𝑛+1 such
that for all 1 ≤ 𝑖 ≤ 𝑛 it holds that 𝑞𝑖−{𝑤𝑖}→𝑞𝑖+1 ∈ 𝛿. The run is accepting if 𝑞0 ∈ 𝐼

and 𝑞𝑛 ∈ 𝐹, and the language 𝐿 (𝐴) of 𝐴 is the set of all words for which 𝐴 has an
accepting run. To intersect the languages of two automata, we construct their product
𝐴 ∩ 𝐴′ = (𝑄 ×𝑄′, 𝛿× , 𝐼 × 𝐼 ′, 𝐹 × 𝐹′) where (𝑞, 𝑞′)−{𝑎}→(𝑟, 𝑟 ′) ∈ 𝛿× iff 𝑞−{𝑎}→𝑟 ∈ 𝛿 and
𝑞′−{𝑎}→𝑟 ′ ∈ 𝛿′. The union of two NFAs, denoted 𝐴∪𝐴′, is given as the piece-wise disjoint
union of their components. The complement of 𝐴 is given as 𝐴∁ = (2𝑄, 𝛿𝐷 , {𝐼}, 𝐹𝐷)
where 𝛿𝐷 (𝑆, 𝑎) = ⋃

𝑞∈𝑆 𝛿(𝑞, 𝑎) and 𝐹𝐷 = {𝑆 ⊆ 𝑄 | 𝑆 ∩ 𝐹 = ∅}.

Basic string constraints. In this paper, we consider basic string constraints over alpha-
bet Σ, string variables X, and integer variables I. The string variables range over Σ∗ and

Z3-Noodler 1.3: Shepherding Decision Procedures 25

integer variables over Z. In the paper, we use the letters 𝑥, 𝑦, 𝑧 to denote variables. The
syntax of a string constraint 𝜑 is given as follows:

𝜑 F 𝑡𝑖 ≤ 𝑡𝑖 | 𝑡𝑠 = 𝑡𝑠 | 𝑡𝑠 ∈ R | 𝜑 ∧ 𝜑 | ¬𝜑
𝑡𝑠 F 𝑥𝑠 | 𝑎 | 𝑡𝑠 · 𝑡𝑠
𝑡𝑖 F 𝑥𝑖 | 𝑘 | 𝑡𝑖 + 𝑡𝑖 | len(𝑡𝑠)

where 𝑡𝑠 is a string term, 𝑡𝑖 is linear-integer arithmetic (LIA) term, 𝑥𝑠 ∈ X, 𝑎 ∈ Σ, 𝑥𝑖 ∈ I,
𝑘 ∈ Z, and R is an (extended) regular expression (regex) as defined by the SMT-LIB
standard [7] (classical regular expressions extended with operations such as re.compl,
re.inter, . . .). The semantics and satisfiability of string constraints are defined in
the usual way (len(𝑡𝑠) represents the length of the string term 𝑡𝑠). A formula without
string terms is called a LIA formula and the set of all LIA formulae is denoted as ΦLIA.
We usually use the letters 𝑢, 𝑣, 𝑤 to denote concatenations of string terms, i.e., words
from (X ∪ Σ)∗. A string literal (or just literal) is a string term containing only symbols
from Σ. We use Var(𝜑) to denote the set of variables occurring in the string constraint 𝜑.

Other than the basic string constraints, Z3-Noodler can also handle extended string
constraints (e.g., prefixof, indexof, from int, . . .) with the semantics specified by
the SMT-LIB standard. We do not include these extended constraints in the definition as
their solving is not subject of this paper (we briefly discuss their handling in Section 3.2).

3 Shepherding Decision Procedures
Since handling string constraints is complex and there is no universal procedure efficient
on every possible constraint, Z3-Noodler implements several decision procedures, each
one suitable for a different class of constraints. In this section, we describe a framework
for handling the decision procedures and its position within Z3-Noodler’s architecture.

3.1 Integration to Z3
Z3-Noodler replaces the string theory plugin of the DPLL(T)-based SMT solver Z3 [38]
with the string theory handler that takes care of choosing, running, and processing the
results of decision procedures. From a high-level point of view, the main solver, using
the internal SAT solver, iteratively provides a conjunction of string atoms corresponding
to a SAT solution of the input Boolean skeleton. The core of the string theory handler
then works on a conjunction of string (dis)equations, regular constraints, and extended
string predicates/functions that could not be axiomatized in preprocessing. The string
theory plugin communicates with the main solver using theory lemmas, which steer
the generation of further satisfiable assignments of the Boolean skeleton. See [24] for
further details of Z3-Noodler’s architecture.

3.2 Handling of Extended Constraints
Handling of extended constraints is performed in Z3-Noodler using axiomatization.
Extended string functions and predicates (such as indexof, substr, contains, . . .)
are saturated with axioms consisting of string (dis)equations, and regular, and length
constraints. In some special cases, it is not possible (e.g., the general ¬contains pred-
icate or string-integer conversions). In such cases, we receive these complex constraints

26 D. Chocholatý et al.

as a part of the input conjunction and they are handled by the given decision procedure
(if it supports the particular extended constraint). See [24] for more details.

3.3 Handling of Decision Procedures

General interface. In order to maintain extensibility of Z3-Noodler, we propose a plu-
gin architecture for string decision procedures, which all need to implement the following
simple interface:

– isSuitable(𝜓) → B
– init(𝜓)
– preprocess()

– nextSolution() → B3
– getLIA() → ΦLIA × {precise, underapprox}
– getModel(𝜃, 𝑥) → Σ∗

where 𝜓 is a string constraint, 𝜃 is a LIA model, an assignment of integers to LIA terms
(especially the lengths of string terms), and 𝑥 is a string variable. The meaning of each
part of this interface is explained in the rest of this section.

Procedure selection. The handler of decision procedures in Z3-Noodler selects a proper
procedure by using the suitability check isSuitable(𝜓). This check takes a string con-
straint 𝜓 and decides whether a given decision procedure is suitable for it. The first
suitable procedure is chosen, ordered from the most specific to the most general ones,
starting with the procedure for pure regular constraints (Section 4), followed by the
Nielsen transformation (Section 5) and length-based procedure (Section 6). If none of
these procedures are suitable, then the stabilization-based procedure (Section 7) is cho-
sen. Therefore, this procedure must always returns ⊤ in isSuitable. Furthermore, some
of the decision procedures can be incomplete, i.e., they may lead to an inconclusive
state. If this happens, the handler invokes the next suitable procedure.

Algorithm 1: Decision procedure handler
Input: String constraint 𝜓, decision procedure D
Output: Satisfiability of 𝜓 and a LIA formula 𝜑

describing relevant solutions of 𝜓
1 𝜑 := ⊥; D .init(𝜓); D .preprocess();
2 while 𝑟 := D .nextSolution(); 𝑟 = ⊤ do
3 (𝛽, 𝑝) := D .getLIA();
4 if 𝑝 = underapprox then
5 solver.precision := underapprox;
6 if 𝛽 is SAT then return (sat, 𝛽) ;
7 𝜑 := 𝜑 ∨ 𝛽;
8 if 𝑟 = undef then return (unknown,⊥) ;
9 if 𝑟 = ⊥ then return (unsat, 𝜑) ;

Procedure execution. A simplified
schema for an execution of the
selected decision procedure D on
a string constraint 𝜓 is shown in
Algorithm 1. It starts with initializ-
ing the decision procedure with the
string constraint using init(𝜓) fol-
lowed by the application of prepro-
cessing steps tailored for given deci-
sion procedure in preprocess, which
may (significantly) simplify the for-
mula and make the solving easier.
Note that preprocessing of input for-
mulae is performed at two levels: (i) simplifications during formula rewriting done in
the core Z3 solver, and (ii) preprocessing of conjunctions of atomic string constraints
done here in preprocess. For the latter case, the preprocessing rules are independent of
Z3 ’s rules, as they are tightly integrated to the string theory decision procedure.

The algorithm then iteratively computes solutions using nextSolution, which moves
the internal state of the decision procedure to the point before the next LIA check. It is
the point where the decision procedure found a possible satisfiable solution, a solution

Z3-Noodler 1.3: Shepherding Decision Procedures 27

of the non-LIA part of the input formula, and we need to check if it is compatible with
the LIA part of the formula. The return value of nextSolution represents whether the
generation of possible solution is finished, and if it is finished, whether it was exhaustive.

The value ⊤ means that the generation is not finished, and we can continue with a
LIA satisfiability check. This check is accomplished using getLIA, which returns the
LIA formula 𝛽 describing the LIA part of the currently found solution with the indication
𝑝 of its precision. We check the satisfiability of 𝛽 using the Z3’s LIA solver (which also
contains the input LIA formula, and formulae generated during the solver run) and if it is
satisfiable, the string theory handler returns sat to the main solver with the theory lemma
𝛽. The LIA formula 𝛽 can sometimes be underapproximating (𝑝 = underapprox), which
is useful for the stabilization and length-based procedures. If 𝛽 is underapproximating,
Z3-Noodler utilizes an approximation module interacting with decision procedures
via the solver variable solver.precision. At the very end, before the final result of Z3-
Noodler is given, the approximation module checks if the value of solver.precision is
compatible with the final answer. More precisely, if we ever underapproximated any LIA
formula from getLIA, then a final unsat becomes unknown instead.

On the other hand, the return values ⊥ and undef of nextSolution represent that the
the generation of possible solutions is finished. For 𝑟 = ⊥, the generation was exhaustive,
therefore we return unsat with the length formula 𝜑 describing the LIA part of all string
solutions provided by nextSolution. The string theory handler then adds a new theory
lemma of the form 𝜓 → 𝜑, which is used to force the internal SAT solver to find another
satisfiable assignment. For 𝑟 = undef, the generation was not exhaustive, which means
the decision procedure D is not complete, and the string theory handler repeats this
step with the next suitable deicision procedure. Note that for the stabilization-based
procedure, nextSolution never returns undef, as it is the last procedure.

Model generation. After a decision procedure D returns (sat, 𝜑), the string theory
handler pushes the LIA formula 𝜑 as a new theory lemma, which forces Z3 to generate
the correct LIA model 𝜃 which maps LIA terms into integers (especially integer variables
and length and string-integer conversion terms). Following this, Z3 iteratively asks
the string theory handler for a model of some string term, which is translated into
its corresponding string variable 𝑥 (based on axiomatization). The handler then calls
D .getModel(𝜃, 𝑥) and returns the computed model for 𝑥 based on the LIA model 𝜃.

4 Efficient Handling of Regular Constraints

In this section, we propose a procedure for handling pure regular constraints, i.e., regular
constraints without (dis-)equations or length-constraints. Solving these constraints can
be done just by basic automata/regex-based reasoning. Here, the most difficult operation
is automata complementation, corresponding to negation in the constraint, since it may
cause a state blow-up during determinization of the automaton (this happens especially
for automata obtained from regexes containing loop bounds). Therefore, our procedure
tries to avoid explicit complementation and handle such constraints in a different way.

Automata construction. For a regular expression R we use a procedure aut for an induc-
tive construction of (nondeterministic) automaton corresponding to R. The procedure

28 D. Chocholatý et al.

aut uses eager simulation-based reduction [19], which is applied after each inductive
step. In the case that some sub-expression requires future complementation (because
it is under the re.compl regex operator), we eagerly determinize and minimize the
automaton for the sub-expression (using Brzozowski-based minimization [18]). We use
the automata library Mata [26] to handle finite automata and operations over them.

4.1 General Regular Constraint ∧
1≤𝑖≤𝑛

𝑥 ∈ S𝑖 ∧
∧

1≤𝑖≤𝑚
𝑥 ∉ R𝑖

We want to decide the satisfiability of the string con-
straint on the right. To do this, we first construct the
product 𝑃 =

⋂
1≤𝑖≤𝑛 aut(S𝑖) of automata on the left

side (if 𝑛 = 0 we set 𝑃 to be the universal automaton having the language Σ∗). We do
this iteratively, with regexes S𝑖 sorted according to an estimated size of the correspond-
ing NFA (with the smallest being the first one). The estimation is based particularly
on regex loop bounds as they affect the resulting size the most. It is possible that the
product 𝑃 becomes empty during this construction and then we can immediately decide
unsatisfiability, without having to construct the product for larger regexes. For the right
side, we would need to compute the product of complemented automata, which we want
to avoid as it might be expensive. Instead, we construct the union 𝑈 =

⋃
1≤𝑖≤𝑚 aut(R𝑖)

(if 𝑚 = 0 we set 𝑈 to be empty automaton with the language ∅). We then want to
check if the difference of 𝑃 and 𝑈 (i.e., 𝑃 ∩ 𝑈∁) is non-empty, which is the same as
checking if the inclusion 𝐿 (𝑃) ⊆ 𝐿 (𝑈) does not hold. This can be accomplished by
using antichain-based algorithms [54,4], which perform well on real-world instances.

Model generation. A model of 𝑥 is any word 𝑤 belonging to the language of 𝑃 ∩𝑈∁.
We construct the product 𝑃 ∩ 𝑈∁ (including the complement 𝑈∁) lazily, until some
word (the returned model) belonging to the language is found. This seems to work
reasonably well, as the found models are usually quite short. Note that if there are no
negated regular constraints, the model is any word from 𝑃, which can be easily found
by applying depth-first search algorithm until some final state is reached.

4.2 Single Regular Constraint
For a single regular constraint, either in the positive (𝑥 ∈ R) or the negative (𝑥 ∉ R) form,
we try to postpone the automaton construction and instead gather information about the
regex based on its structure. In particular, we propagate triples (𝑒, 𝑢, ℓ) where 𝑒 ∈ B3 is
a flag denoting whether the regex includes the empty word, 𝑢 ∈ B3 is a flag denoting
whether the regex is universal, and ℓ ∈ N ∪ {undef} denotes the minimum length of
a word recognized by the regex. The value undef represents that it is not possible to
compute the value of the flag or the length from the given information. We then use the
flag 𝑒 for the positive constraint (or 𝑢 for the negative one) to decide if it is satisfiable,
completely avoiding automaton construction. If the flag is undefined, we continue as
with the general case.
Example 1. Consider the regex re.++(𝑅1, 𝑅2), where the propagated value for 𝑅1 is
(𝑒1, 𝑢1, ℓ1) and for 𝑅2 it is (𝑒2, 𝑢2, ℓ2). The resulting propagated value corresponding to
the concatenation is given as (𝑒1 ∧ 𝑒2, 𝑢, ℓ1 + ℓ2) where 𝑢 = ⊥ if ℓ1 + ℓ2 > 0, otherwise
𝑢 = undef. Note that undef behaves as an annihilating element in operations (i.e., if
undef occurs in the expression, the result is undef).

Z3-Noodler 1.3: Shepherding Decision Procedures 29

Model generation. If the regex is in the positive form and does not contain more
complex operations (intersection, complement, or difference), then we construct the
model directly from the regex. Otherwise, we need to construct the automaton from the
regex and get the model similarly as for the general case.

4.3 Implementation

The function isSuitable(𝜓) returns ⊤ if 𝜓 contains only regular constraints. There is no
preprocessing and because we do not work with LIA constraints, getLIA always returns
(⊤, precise). The functions nextSolution and getModel implement the procedure and
model generation as explained in this section (the LIA model 𝜃 is ignored in getModel).

5 Nielsen Transformation

Another decision procedure used in Z3-Noodler is the Nielsen transformation [39].
We use the Nielsen transformation for satisfiability checking of a conjunction of string
equations E that are not suitable for the stabilization-based procedure. After a brief
description of the Nielsen transformation, we propose an approach used for a (partial)
handling of length constraints within Nielsen transformation as it is currently used in Z3-
Noodler. We also discuss particular implementation details, including preprocessing
details, optimizations, and suitability conditions when Nielsen transformation is applied.

Let 𝑒 be an equation. By trim(𝑒) we denote the equation obtained by removing
the longest common prefix and suffix from both sides of 𝑒. For instance, the result of
trim(𝑎𝑏𝑥𝑧𝑤𝑏 = 𝑎𝑏𝑥𝑛𝑣𝑏) is the equation 𝑧𝑤 = 𝑛𝑣. We lift trim to a set of equations
as usual. In this section, we represent a conjunction of string equations by a set of
equations E. We say that a set of equations E is quadratic if each variable has at most
two occurrences in E.

Nielsen rules. The transformation uses two meta-rules, which are used to generate
a (Nielsen) graph. Nodes of the graph are sets of equations and the directed edges
capture the effects of the applied rules. The rules are based on the following observation:
if an equation 𝑥𝑢 = 𝑦𝑣 is satisfiable, then there is a couple of (not necessarily disjoint)
cases that may occur: (i) 𝑥 = 𝑦 meaning that 𝑢 = 𝑣, or (ii) the variable 𝑥 or 𝑦 is 𝜖 , or
(iii) len(𝑥) ≤ len(𝑦) (the other case is analogous); in that case we have that 𝑦 = 𝑥𝑦′

where 𝑦′ is a fresh variable and we can apply a substitution 𝑦/𝑥𝑦′ in the equation,
followed by the substitution 𝑦/𝑦′ to avoid generation of isomorphic equations. The
Nielsen rules then mimic the cases (ii) and (iii), combined with an implicit handling of
the case (i). Formally, the two rules are given as

(𝑥 ↩→ 𝛼𝑥) : E
′ ⊎ {𝑥𝑢 = 𝛼𝑣}

trim(E[𝑥/𝛼𝑥]) E = E′⊎{𝑥𝑢 = 𝛼𝑣}, (𝑥 ↩→ 𝜖) : E
′ ⊎ {𝑥𝑢 = 𝑣}

trim(E[𝑥/𝜖]) E = E′⊎{𝑥𝑢 = 𝑣}.

The rule (𝑥 ↩→ 𝛼𝑥), where 𝛼 ∈ Σ ∪ X, rewrites all occurrences of 𝑥 in E by 𝛼𝑥. Since
this rule is applied if the left-hand side of an equation starts with 𝑥 while the right-hand
side starts with 𝛼, after trimming, the first occurrence of 𝛼 from the right-hand side is
removed. The second rule 𝑥 ↩→ 𝜖 removes all occurrences of 𝑥 from the system.

30 D. Chocholatý et al.

Nielsen graph. Nielsen graph GE of a set of equations E is a (possibly infinite) graph
induced by Nielsen rules, meaning that vertices are sets of equations and edges are
labeled by particular Nielsen rules. The initial vertex is E. The system E is satisfiable
iff the vertex {𝜖 = 𝜖} is reachable in GE . If E is a quadratic system, GE is finite [39].

5.1 Preprocessing
The number of variables and literals of an equation directly affects the size of the
corresponding Nielsen graph. To reduce the size, we use the LenSplit rule to split an
equation into several ones according to prefixes with the same length.

LenSplit :
E ⊎ {𝑢1𝑢2 · · · 𝑢𝑘 = 𝑣1𝑣2 · · · 𝑣𝑘}

E ∪ {𝑢𝑖 = 𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑘}

𝑘∧
𝑖=0

len(𝑢𝑖) = len(𝑣𝑖)

This preprocessing rule allows not only to generate smaller Nielsen graphs, but if the
new equations do not share variables with the other ones, it is possible to divide E
into several independent sets (cf. Section 5.2). In Z3-Noodler, we approximate the
length-equality check len(𝑢) = len(𝑣) by comparing the number of occurrences of
each variable and comparing the total lengths of all literals occurring in 𝑢 and 𝑣.

5.2 Optimizations
As optimizations, we propose two rules pruning the generated state space of the Nielsen
graph, focusing on cutting off nodes that would not lead to the satisfiable node {𝜖 = 𝜖}:

SymUnsat :
E ⊎ {𝑎𝑢 = 𝑏𝑣}

∅ 𝑎 ≠ 𝑏, LenUnsat :
E ⊎ {𝑢 = 𝑣}

∅ len(𝑢) ≠ len(𝑣)

The rule SymUnsat skips vertices containing trivially unsatisfiable equations that differ
in the first symbol of each side, while LenUnsat is used to avoid vertices containing
length-unsatisfiable equations. The check len(𝑢) ≠ len(𝑣) is approximated in a similar
way as in the LenSplit rule.

In order to further reduce the state space, we split E into several sets that do not
share variables and we construct Nielsen graphs for them separately. For instance, we
split E = {𝑥 = 𝑦𝑦, 𝑧 = 𝑤𝑎} to E1 = {𝑥 = 𝑦𝑦}, E2 = {𝑧 = 𝑤𝑎} and then check the
satisfiability of E1 and E2 separately.

Example 2. Let {𝑥𝑎𝑏𝑦 = 𝑦𝑥𝑥𝑏𝑐𝑎} be a vertex of a Nielsen graph. Since len(𝑥𝑎𝑏𝑦) =
len(𝑥)+len(𝑦)+2 < 2·len(𝑥)+len(𝑦)+3 = len(𝑦𝑥𝑥𝑏𝑐𝑎), we can skip the generation
of successors of this vertex as it is length-unsatisfiable.

5.3 Length Constraints
If we have a length formula𝜓, we need to check if𝜓 is satisfiable for a string solution gen-
erated by a constructed satisfiable Nielsen graph GE . In order to fit into Z3-Noodler’s
decision procedure handling, we need to infer a LIA formula describing possible lengths
of string solutions induced by GE . In Z3-Noodler, we utilize the approach of [35], con-
verting the Nielsen graph into a counter abstraction. We then saturate the counter system
with self-loops and enumerate particular flat paths that can be directly converted to a LIA
formula. We consider the counter system to be an NFA with counter updates on edges
modifying the counter values during a run (we assume no guards).

Z3-Noodler 1.3: Shepherding Decision Procedures 31

𝑥𝑎𝑏𝑦 = 𝑦𝑎𝑏𝑥𝑥𝑎𝑏𝑦 = 𝑎𝑏𝑦𝑥𝜖 = 𝜖
𝑥 := 𝑦 + 𝑥𝑥 := 0

Fig. 1: A run of the counter system corresponding to Nielsen rules (𝑥 ↩→ 𝑦𝑥) and (𝑥 ↩→ 𝜖). The
counter values obtained during this run are 𝑥 = 0 and 𝑦 = 0. The sequence of corresponding
Nielsen rules, however, describes all string solutions where 𝑥 = 𝑦.

Counter system construction. For the Nielsen graph GE we construct a counter system C
s.t. states of C are vertices of GE , transitions are reverted edges of GE where the update
transition action is obtained as (i) from 𝑥 ↩→ 𝑎𝑥 where 𝑎 ∈ Σ we get 𝑥 := 𝑥 + 1, (ii) from
𝑥 ↩→ 𝑦𝑥 we get 𝑥 := 𝑥 + 𝑦, and (iii) from 𝑥 ↩→ 𝜖 we get 𝑥 := 0. Note that contrary
to [35] where the counter system has the same direction of edges with the subtracting
semantics, we use C with reversed edges and additive semantics for a better fit to usual
counter system definition. The initial state of C is {𝜖 = 𝜖} and the accepting state is E.
Each run of C corresponds to a satisfiable length assignment. Counters of a run of C,
however, do not represent all string solutions, as shown in Fig. 1.

Generating a LIA formula. In order to check if there exists an accepting run in C that
satisfies the length formula 𝜓, we need to construct a LIA formula 𝜙C describing all
possible valuations of each counter on all accepting paths of C. In general, such a formula
cannot be constructed [35], therefore, we use an under-approximation enumerating
extended runs of C. An extended run is a sequence of states occurring on a run of C
empowered with the possibility of simple self-loops on states. Simple self-loops allow
only update actions of the form 𝑥 := 𝑥 + ℓ where ℓ ∈ N and 𝑥 is a counter. For
the extended runs, we are able to construct a LIA formula precisely describing the
counter values. In particular, for the LIA formula, we create a vector of fresh variables
𝒙 expressing counter values after each step of the extended run. Then, we connect the
variables using conjunction of formulae describing counter actions on each transition:
(i) for a non-self-loop transition with the counter update 𝑥 := 𝑥 + 𝑦, the corresponding
formula looks like 𝜙(𝒙′, 𝒙) ⇔ 𝒙′

𝑖
= 𝒙𝑖 + 𝒙 𝑗 ∧ id {𝑖, 𝑗 } (𝒙′, 𝒙) where 𝒙𝑖 = 𝑥 and 𝒙 𝑗 = 𝑦,

and id 𝐼 (𝒙′, 𝒙) ⇔ ∧
𝑖∉𝐼 𝒙𝑖 = 𝒙′

𝑖
(other updates are given analogously), and (ii) for

a simple self-loop transition with the counter update 𝑥 := 𝑥 + ℓ, the formula is given
as 𝜙(𝒙′, 𝒙) ⇔ id {𝑖} (𝒙′, 𝒙) ∧ 𝒙′

𝑖
= 𝒙𝑖 + 𝑘 · ℓ where 𝒙𝑖 = 𝑥 and 𝑘 is a fresh LIA

variable counting the number of times the self-loop was taken (we do not use existential
quantification as the value of 𝑘 is important for model generation).

Enumeration of extended runs. Since there might be infinitely many extended runs of C,
we use a heuristic enumeration algorithm preferring runs having self-loops as it means
that they describe more behaviour. We mark states containing simple self-loops and
enumerate extended runs that contain these states. For each such run, we construct the
corresponding LIA formula and check if it is satisfiable with the length constraint 𝜓.

Self-loop saturation. Since the extended runs with self-loops yield weaker LIA formulae,
we apply saturation of self-loops on the original counter system in order to generate new
simple self-loops. In particular, we select cycles starting and ending in a state 𝑞, having
counter updates of the same variable 𝑥 with the counter updates on the cycle of the form
𝑥 := 𝑥 + ℓ1, . . . , 𝑥 := 𝑥 + ℓ𝑛 where ℓ𝑖 ∈ N. For each such a cycle, we introduce a new
self-loop of 𝑞 labeled by the counter update 𝑥 := 𝑥 +∑𝑛

𝑖=1 ℓ𝑖 .

32 D. Chocholatý et al.

𝑥𝑎𝑏𝑦 = 𝑦𝑎𝑏𝑥

𝑥𝑎𝑏 = 𝑎𝑏𝑥

𝜖 = 𝜖

𝑦 := 0

𝑥 := 0
𝑥 := 𝑥 + 2

Example 3. Consider the string constraint 𝑥𝑎𝑏𝑦 = 𝑦𝑎𝑏𝑥 ∧
len(𝑥) ≥ 50. Example of an enumerated extended run in the
counter system is shown in the right. The red self-loop was
added during the self-loop saturation. The LIA formula corre-
sponding to this extended run obtained by the procedure above
is then given as follows:

𝜑(𝑥, 𝑦) ⇔ 𝑥0 = 0 ∧ 𝑦0 = 0 ∧ 𝑥1 = 0 ∧ 𝑦1 = 𝑦0 ∧ 𝑥2 = 𝑥1 + 2𝑘 ∧
𝑦2 = 𝑦1 ∧ 𝑦3 = 0 ∧ 𝑥3 = 𝑥2 ∧ 𝑥 = 𝑥3 ∧ 𝑦 = 𝑦3.

Since the formula 𝜑(len(𝑥), len(𝑦))∧len(𝑥) ≥ 50 is satisfiable, so is the string constraint.

5.4 Implementation

During the first call of nextSolution, the Nielsen graph together with the counter abstrac-
tion with saturated self-loops is constructed. Then, during each call of nextSolution,
another extended run containing self-loops is generated. If there are no more suitable ex-
tended runs left, nextSolution returns undef (the procedure is incomplete). The method
getLIA then returns the length constraint corresponding to the current extended run.
The preprocess function implements the rule LenSplit. Suitability checking function
isSuitable checks if there are only equations and length constraints in the system and the
system is quadratic. If there are no length constraints and the system is not chain-free [3]
we also use this procedure (the Nielsen graph is in such cases usually smaller that the
proof graph generated by the stabilization-based procedure).

5.5 Model Generation

The method getLIA generates the LIA formula describing values of counters of a current
extended run. For each transition of the extended run, we remember the Nielsen rule
corresponding to the counter updates. The rule for self-loops that were saturated by
the extended rule is of the form 𝑥 ↩→ 𝑤𝑥, where 𝑤 ∈ Σ+ (the rule was obtained
by concatenating the symbols from Nielsen rules that were used for the saturation).
Moreover, for each simple self-loop in the extended run, we also remember the fresh
LIA variable counting the number of times the self-loop was taken. For simplicity,
for a state 𝑞 of the extended graph, we define sl (𝑞) = 𝑞sl if 𝑞 has a self-loop and 𝑞

otherwise. The method getModel(𝜃, 𝑥) then builds during the first call the model for
all variables and then just returns the computed value for the particular variable 𝑥. The
model is constructed by following the current extended run starting from the initial
state 𝑞0 and the initial model 𝜈𝑞0

: {𝑥 ↦→ 𝜖 | 𝑥 ∈ X}. For a transition 𝑞 → 𝑞′, where
𝑞 ≠ 𝑞′, there are three possibilities for the label. If it is labeled by the counter update
𝑥 := 0, we construct the next model as 𝜈𝑞′ = 𝜈sl (𝑞) ◁{𝑥 ↦→ 𝜖}. For a transition labeled
by the counter update 𝑥 := 𝑥 + 𝑦, we construct the next model as 𝜈𝑞′ = 𝜈sl (𝑞) ◁{𝑥 ↦→
𝜈sl (𝑞) (𝑥) · 𝜈sl (𝑞) (𝑦)}. Finally, for the update 𝑥 := 𝑥 + 1, we construct the model as
𝜈𝑞′ = 𝜈sl (𝑞) ◁{𝑥 ↦→ 𝛼 · 𝜈sl (𝑞) (𝑥)}, where 𝑥 ↩→ 𝛼𝑥 is the Nielsen rule corresponding to
the transition. For a self-loop 𝑞 → 𝑞 that is labeled by the counter update 𝑥 := 𝑥 + ℓ, for
ℓ ∈ N, we construct the next model as 𝜈𝑞sl = 𝜈𝑞 ◁{𝑥 ↦→ 𝑤 𝜃 (𝑘) · 𝜈𝑞 (𝑥)} where 𝑘 is the
LIA variable of the self-loop and 𝑥 ↩→ 𝑤𝑥 is the corresponding extended rule.

Z3-Noodler 1.3: Shepherding Decision Procedures 33

6 Length-based Decision Procedure

Even though the stabilization-based procedure can be fast, it may suffer from an explosion
in the number of alignments, especially for large systems of equations with many
unrestricted variables and literals. To deal with such formulae, we propose a length-
based decision procedure, which can symbolically encode all possible alignments using
LIA formulae. Solving of the string formula is hence converted to the solving of a LIA
formula, which might be easier.

∧
1≤𝑖≤𝑛

𝑥 = 𝑅𝑖

Block-acyclic string constraints. An equational block (or just a block
for short) of a variable 𝑥 is a conjunction of string equations of the form
shown in the right, where for each 𝑖 ≠ 𝑗 , 𝑅𝑖 ∈ (X ∪ Σ)∗, each variable
of 𝑅𝑖 has at most one occurrence in 𝑅𝑖 , 𝑥 ∉ Var(𝑅𝑖) , and Var(𝑅𝑖) ∩ Var(𝑅 𝑗) = ∅.

𝑥 = 𝑎𝑏𝑦𝑐

𝑥 = 𝑧𝑤

𝑥 = 𝑢𝑑𝑑𝑐

𝑦 = 𝑣𝑎𝑑

𝑦 = 𝑎𝑠

Fig. 2: A block-
graph

A conjunction of equational blocks is called a block string con-
straint. We abuse the notation and treat E𝑥 as a set of atoms of the
conjunction. A directed graph 𝐺 = ({E𝑥 | 𝑥 ∈ X}, {(E𝑥 , E𝑦) | 𝑥 ≠

𝑦 ∧ (𝑦 ∈ Var(E𝑥) ∨ (Var(E𝑥) ∩ Var(E𝑦)) \ {𝑥, 𝑦} ≠ ∅)}) is called
the block-graph of the block string constraint. Block-graph connects
blocks s.t. the values of variables of the adjacent blocks affect the value
of the block variable of the predecessor. A string constraint is called
block-acyclic if the corresponding block-graph is acyclic. As an ex-
ample, Fig. 2 shows the block-graph for the block-acyclic constraint
𝑥 = 𝑎𝑏𝑦𝑐 ∧ 𝑥 = 𝑧𝑤 ∧ 𝑥 = 𝑢𝑑𝑑𝑐 ∧ 𝑦 = 𝑣𝑎𝑑 ∧ 𝑦 = 𝑎𝑠.

6.1 Decision Procedure for Block-acyclic Constraints

In this section, we propose a decision procedure for block-acyclic string constraints
extended with length constraints based on a translation of the string system to a LIA
formula. The LIA formula symbolically encodes alignments of literals occurring in the
system. Since block-acyclic constraints do not contain repetitions of variables (except
the block variables connecting the blocks), every compatible alignment of literals forms
a solution as the unrestricted variables adapt to the alignment of variables.

Let E𝑥 : 𝑥 = 𝑎𝑏𝑦𝑎𝑏 ∧ 𝑥 = 𝑧𝑎𝑏𝑢𝑐𝑑𝑤 be an equational block. We need to find
the positions of different occurrences of literals 𝑎𝑏, 𝑎𝑏, 𝑎𝑏, and 𝑐𝑑 within the word
represented by 𝑥, so that they do not clash with each other, nor with the words represented
by the variables 𝑦, 𝑧, 𝑢, and 𝑤 occurring in E𝑥 . To encode this, we use fresh integer
variables 𝐵𝑥

𝑎𝑏
, 𝐵𝑥

𝑎𝑏
, 𝐵𝑥

𝑦 , etc., that represent the starting position of literals/variables
within the word 𝑥. Then we just need to encode three things: (i) the literals/variables
follow each other in the equation (for example, 𝐵𝑥

𝑎𝑏
= 𝐵𝑥

𝑦+len(𝑦)), (ii) the literals are not
mismatched (for example, 𝐵𝑥

𝑎𝑏
= 5 and 𝐵𝑥

𝑐𝑑
= 4 is not valid, as this would force both 𝑎

and 𝑑 to be at the fifth position), and (iii) literals occurring inside variables 𝑦, 𝑧, 𝑢, and 𝑤

follow the same rules. For the last one, we need to also define starting positions of literals
that occur within those variables. For this reason, we use lit(E𝑥) to denote occurrences
of literals in the block E𝑥 (for our example it would be lit(E𝑥) = {𝑎𝑏, 𝑎𝑏, 𝑎𝑏, 𝑐𝑑}) and,
for a block graph 𝐺 = (𝑉, 𝐸), we define litall𝐺 (E𝑥) as the union of all lit(E𝑦) such that
there is a path from E𝑥 to E𝑦 in 𝐺.

34 D. Chocholatý et al.

Algorithm 2: Encoding alignments of E
Data: Block-graph 𝐺 = (𝑉 = {E𝑥 | 𝑥 ∈ X}, 𝐸)
Result: LIA formula 𝜑 encoding all models of E

1 𝜑 := ⊤;
2 for E𝑥 ∈ 𝑉 do
3 𝜓pos :=

∧
𝑥=𝑡1 · · ·𝑡𝑛∈E𝑥

len(𝑥) =
∑︁

1≤𝑖≤𝑛
len(𝑡𝑖) ∧ pos𝑥 (𝑡1 · · · 𝑡𝑛);

4 𝜓match :=
∧

ℓ1 ,ℓ2∈litall𝐺 (E𝑥) ,ℓ1≠ℓ2
comp𝑥 (ℓ1, ℓ2) ∨mis𝑥 (ℓ1, ℓ2);

5 𝜑 := 𝜑 ∧ 𝜓pos ∧ 𝜓match ;
6 for (E𝑥 , E𝑦) ∈ 𝐸 s.t. 𝑦 ∈ Var(E𝑥) do
7 𝜓beg :=

∧
ℓ∈litall𝐺 (E𝑦)

𝐵𝑥
ℓ
= 𝐵𝑥

𝑦 + 𝐵
𝑦

ℓ
;

8 𝜑 := 𝜑 ∧ 𝜓beg ;
9 return 𝜑;

The construction of
a LIA formula for a
block graph 𝐺 is given
in Algorithm 2. It de-
scribes the construc-
tion of the LIA for-
mula 𝜑 compactly en-
coding all alignments
of literals occurring in
the string constraint.
The formula 𝜓pos in-
troduces the equational
length constraint for
each equation of the
block E𝑥 and with the
subformula

pos𝑥 (𝑡1 · · · 𝑡𝑛) ⇔ 𝐵𝑥
𝑡1
= 0 ∧

∧
2≤𝑖≤𝑛

𝐵𝑥
𝑡𝑖
= 𝐵𝑥

𝑡𝑖−1 + len(𝑡𝑖−1)

it sets the beginnings of each literal/variable in the correct order for each equation.

ℓ1 𝑦 ℓ2

𝐵𝑥
ℓ1

= 0 𝐵𝑥
𝑦 = 𝐵𝑥

ℓ1
+ len(ℓ1) 𝐵𝑥

ℓ2
= 𝐵𝑥

𝑦 + len(𝑦)
𝐵𝑥
ℓ4

= 𝐵𝑥
𝑦 + 𝐵

𝑦

ℓ4

𝑧 𝑤

𝐵𝑥
𝑧 𝐵𝑥

𝑤

𝑢 ℓ3

𝐵𝑥
𝑢

𝐵𝑥
ℓ3

0 len(𝑥)

𝑥 =

𝑣 ℓ4

𝐵
𝑦

ℓ4𝐵
𝑦
𝑣

ℓ5 𝑠

𝐵
𝑦

ℓ5 𝐵
𝑦
𝑠

𝑦 =

0 len(𝑦)

Fig. 3: Schematic example of encoding between E𝑥 and E𝑦 .

If equations of E𝑥

contain a variable 𝑦 of
the block E𝑦 (hence
there is an edge (E𝑥 , E𝑦)
in 𝐸), it is necessary to
propagate literals of E𝑦

also to the block E𝑥 .
Therefore, literals occur-
ring in E𝑦 (meaning that
they occur in a possible model of 𝑦) transitively appear in a possible model of 𝑥 through
the equivalence. Since the literals of E𝑦 in a possible model may occur in the same
model of 𝑥 only on positions determined by the occurrence of 𝑦 in the block E𝑥 , we
generate the formula 𝜓beg expressing that literals occurring in 𝑦 are shifted by 𝐵𝑥

𝑦 . See
Fig. 3 for a schematic example.

The last subformula 𝜓match expresses that two literals ℓ1 and ℓ2 are completely
misaligned (mis𝑥), or they are aligned only in a compatible way (comp𝑥). Formally,
these predicates are defined as

mis𝑥 (ℓ1, 𝑠, 𝑒) ⇔ 𝐵𝑥
ℓ1

+ len(ℓ1) ≤ 𝑠 ∨ 𝐵𝑥
ℓ1

≥ 𝑒, comp𝑥 (ℓ1, ℓ2) ⇔
∨

𝑖∈align(ℓ1 ,ℓ2)
𝐵𝑥
ℓ1

+ 𝑖 = 𝐵𝑥
ℓ2
.

We abuse the notation and use mis𝑥 (ℓ1, ℓ2) to denote mis𝑥 (ℓ1, 𝐵𝑥
ℓ2
, 𝐵𝑥

ℓ2
+ len(ℓ2)).

The formula mis𝑥 (ℓ1, 𝑠, 𝑒) expresses that the literal ℓ1 is not intersecting the interval
(𝑠, 𝑒). The set align(ℓ1, ℓ2) contains matching shiftments of ℓ1 relative to ℓ2. Formally,
align(ℓ1, ℓ2) = {𝑖 | ∃𝑢 : ℓ2 = ℓ𝑖:1 𝑢}∪{−𝑖 | ∃𝑢 : ℓ1 = ℓ𝑖:2 𝑢}where for a literal ℓ = 𝑎0 · · · 𝑎𝑛,
we use ℓ𝑖: to denote the string 𝑎𝑖 · · · 𝑎𝑛.

Z3-Noodler 1.3: Shepherding Decision Procedures 35

ℓ1 𝑧 𝑢

𝐵𝑥
ℓ1

𝐵𝑥
𝑧 𝐵𝑥

𝑢

𝑤 ℓ2

𝐵𝑥
𝑤

𝐵𝑥
ℓ2

𝑥 =

ℓ3 𝑧

𝐵
𝑦

ℓ3
𝐵
𝑦
𝑧

ℓ5 𝑣

𝐵
𝑦

ℓ5
𝐵
𝑦
𝑣

𝑦 =

Fig. 4: A schematic example of a shared variable underapproximation of the string constraint
𝑥 = ℓ1𝑧𝑢 ∧ 𝑥 = 𝑤ℓ2 ∧ 𝑦 = ℓ3𝑧 ∧ 𝑦 = ℓ5𝑣. Positions of 𝑧 covered by parts of literals ℓ2 and ℓ5 are
marked by hatching. These positions are excluded for possible alignments of other literals.

Because satisfiability checking of quantifier-free LIA formulae (the occurrences of
len(𝑥) can be replaced with a pure integer variable) is in NP, it is easy to see that the
following lemma holds.

Lemma 1. Satisfiability checking of block-acyclic string constraints is in NP.

6.2 Underapproximation of a Shared Variable

In this section, we generalize the length-based decision procedure to a block string
fragment containing two blocks sharing a single variable that is different from block
variables. In particular, in the following text, we assume two blocks E𝑥 and E𝑦 s.t.
𝑦 ∈ Var(E𝑥) and Var(E𝑥) ∩ Var(𝑦) ⊇ {𝑧} meaning that 𝑧 is a variable that is shared
among the blocks E𝑥 and E𝑦 (the block-graph has a cycle between E𝑥 and E𝑦). We
further assume that 𝑧 does not have its own block (in general there might be more shared
variables but between two blocks only).

For instance, consider the string constraint 𝑥 = 𝑎𝑦𝑧∧ 𝑥 = 𝑎𝑏∧ 𝑦 = 𝑏𝑧with the shared
variable 𝑧. For this system, we underapproximate the solution by ensuring that literals
occurring inside a potential model of 𝑧 are all misaligned with all other possible literals
(since 𝑧 has the same value among occurrences, parts of literals placed inside 𝑧 are prop-
agated among different occurrences of 𝑧). This yields an underapproximation since some
of these completely excluded literals might be aligned with literals occurring inside 𝑧.
See Fig. 4 for a schematic example. Formally, for blocksE𝑥 andE𝑦 sharing the variable 𝑧,
the formula excluding alignments of literals inside occurrences of 𝑧 is given as

𝜓
𝑥,𝑦

excl
(𝑧) ⇔

∧
ℓ∈litall

𝐺
(E𝑦)

©«ℓ ∈𝑦 𝑧 →
∧

ℓ′∈litall
𝐺
(E𝑥) ,ℓ′≠ℓ

out
𝑦
𝑥 (ℓ′, 𝑧, ℓ)

ª®¬
where 𝐺 is the block graph obtained from 𝐺 by removing edges induced by the shared
variables, ℓ ∈𝑦 𝑧 ⇔ ¬mis𝑦 (ℓ, 𝐵𝑧

𝑦 , 𝐵
𝑧
𝑦 + len(𝑦)) and out

𝑦
𝑥 (ℓ′, 𝑧, ℓ) is the formula ex-

pressing that ℓ′ in the block 𝑥 is placed on a different position than the propagated
ℓ occurring inside 𝑧 in 𝑦. Formally, out𝑦𝑥 (ℓ′, 𝑧, ℓ) ⇔ mis𝑥

(
ℓ′, 𝐵𝑥

𝑧 + 𝑗 , 𝐵𝑥
𝑧 + 𝑘

)
, where

𝑗 = 𝐵𝑧
𝑦 − max(𝐵𝑧

𝑦 , 𝐵
ℓ
𝑦) and 𝑘 = 𝐵𝑧

𝑦 − min(𝐵𝑧
𝑦 + len(𝑧), 𝐵ℓ

𝑦 + len(ℓ)). The formula
𝜓
𝑥,𝑦

excl
(𝑧) is then conjoined with the formula obtained from Algorithm 2.

36 D. Chocholatý et al.

6.3 Implementation
Since the length-based procedure generates a LIA formula describing all models of the
input string constraint, the method nextSolution generates the formula together with the
precision, which are then returned by getLIA. The precision is set to underapprox if an
undeapproximation preprocessing rule was used, or the approach for a shared variable
was applied. Further calls of nextSolution then return ⊥. On top of that, during the first
call of nextSolution, it checks whether the formula obtained by preprocessing is block
acyclic (possibly with a shared variable). If not, nextSolution returns unknown (the
length-based procedure is skipped). The preprocess method utilizes the same prepro-
cessing rules as the preprocessing stabilization-based procedure does, except for rules
introducing complex regular constraints, which are avoided. The method isSuitable
checks whether the input constraints contain only equations and length constraints.

6.4 Model Generation
For the length-based procedure, the model of each variable (provided that the generated
LIA formula is satisfiable) is determined by positions of literals. For each variable 𝑥 we
allocate a string skeleton of length 𝜃 (len(𝑥)). Fields of the skeleton will be filled with
symbols from literals occurring of the corresponding positions in a block. Starting from
a possible shared variable 𝑧, we take blocks containing occurrences of 𝑧 and fill skeleton
fields corresponding to symbols of literals involving the value of 𝑧 (given by values of
the begin variables for literals of the block). Then, we iteratively process blocks that
do not contain block variables of still unprocessed blocks. For the block variable we
update the fields of the skeleton given by positions of literals in the block and already
filled skeletons of other variables. Then, we propagate the values of the block variable
to variables occurring inside the block. After each block is processed, we fill fields of
each variable that remained empty with the symbol a.

7 Stabilization-based procedure

The main and the most general decision procedure is the stabilization-based procedure
applicable for any constraint. It was first introduced in [15] for handling word equations
with regular constraints and then extended for handling length constraints [25] and string-
integer conversions [29]. The procedure follows the framework from Section 3.3, with
preprocessing rules described in [25], the nextSolution function follows the procedure
from [25], and getLIA is based on [25,29]. As the procedure is explained in these papers,
we do not give details here, instead, we focus on model generation, which was not done
before.

7.1 Model generation
The model generation is implemented recursively (i.e., the model of a variable might be
constructed from models of different variables) and a single top-level call of getModel
may result in computing models of more variables. In such a case, we memoize the
results and return their values directly if they are required.

After the stabilization-based procedure finds a solution it ends with: (i) the set of all
variables divided into three disjoint sets:X𝐼 are variables whose length or string-integer

Z3-Noodler 1.3: Shepherding Decision Procedures 37

conversion value is important,X𝑁 are variables for which these values are not important,
and a set of fresh variables X𝐹 , (ii) the set of inclusions 𝐼 = {𝑢1 ⊆ 𝑣1, . . . , 𝑢𝑛 ⊆ 𝑣𝑛}
that contain only variables from X𝑁 ∪ X𝐹 , (iii) the substitution map 𝜎 : X𝐼 → X∗

𝐹

that substitutes variables from X𝐼 with a concatenation of fresh variables, and (iv) the
language assignment Lang : (X𝑁∪X𝐹) → 2Σ

∗ such that the languages of fresh variables
are precise, i.e., for each combination of words from the languages of fresh variables,
there is a selection of words for variables fromX𝑁 such that each inclusion from 𝐼 holds.

At the start of the model generation, during the very first call of getModel, we restrict
the language assignments of fresh variables so that they follow the lengths/conversion
values given by the LIA model 𝜃. In particular, for 𝑦 ∈ X𝐹 , we restrict the language
Lang(𝑦) only to the words of the length of 𝜃 (len(𝑦)) and for conversion values, we
restrict it to the singleton language containing exactly the string converted to that value.

The method getModel(𝜃, 𝑥) used to get a model of 𝑥 then first checks whether 𝑥 ∈ X𝐼 .
If true, it recursively calls getModel(𝜃, 𝑥𝑖) on all fresh variables from 𝜎(𝑥) = 𝑥1 · · · 𝑥𝑛
and then constructs the model of 𝑥 by their concatenation. Because the values of fresh
variables are restricted by the LIA model 𝜃, this means that the value of 𝑥 will be
correctly restricted too. If 𝑥 ∉ X𝐼 , we check if the variable is not on the right-hand side
of any inclusion of 𝐼. In such case, we just return some word from Lang(𝑥).

In the last case, when 𝑥 is on the right-hand side of some inclusion 𝑦1 · · · 𝑦𝑛 ⊆
𝑣, we first recursively get models of all variables on the left-hand side (by calling
getModel(𝜃, 𝑦𝑖) for each 1 ≤ 𝑖 ≤ 𝑛). The concatenated models for the left-hand side
yield the word 𝑤 = getModel(𝜃, 𝑦1) · · · getModel(𝜃, 𝑦𝑛). Subsequently, we find models
of all variables on the right-hand side (including 𝑥) in a way that their concatenation
matches𝑤. This is implemented using a backtracking algorithm that reads the word𝑤 and
checks whether 𝑤 can be split into subwords (each subword corresponding to a variable
of the right-hand side) that belong to the languages of the particular variables. Note that
this algorithm works only if the variable 𝑥 occurs at most once on the right-hand side
of any inclusion and, furthermore, there is no cycle (e.g. for the inclusion 𝑥𝑦 ⊆ 𝑧𝑥, we
cannot get a model for 𝑥 as shown above). For such cases we would need to use the
algorithm from the proof of [16, Theorem 5], which is currently not implemented in
Z3-Noodler. However, as experiments show, this has almost no practical impact as the
stabilization-based procedure usually does not finish for such cases anyway.

8 Experiments
We implemented the presented decision procedures and model generation in version 1.3
of Z3-Noodler and evaluated them on all string benchmarks from SMT-LIB [7]. We
split the benchmarks into three categories: In Regex we gather the benchmark sets that
contain mostly regular and length constraints: AutomatArk [12], Denghang, Redos,
StringFuzz [17], and Sygus-qgen. The benchmark sets Kaluza [46,33], Kepler [30],
Norn [1,2], Omark, Slent [52], Slog [53], Webapp, and Woorpje [28], consisting of
mostly word equations and length constraints with some small number of more complex
constraints, are in the Equations category. The last category, Predicates, contains bench-
mark sets FullStrInt, LeetCode, PyEx [43], StrSmallRw [41], and Transducer+ [22],
which heavily feature more complex string constraints. The experiments were executed
on a workstation with an AMD Ryzen 5 5600G CPU @ 3.8 GHz with 100 GiB of RAM
running Ubuntu 22.04.4. The timeout was set to 120 s, memory limit was 8 GiB.

38 D. Chocholatý et al.

Table 1: The impact of decision procedures on solving for each benchmark set/category for solved
formulae. Second column shows the number of times a string solver was called within Z3’s
DPPL(T) procedure. Next columns show how many times (relative to the number of calls) was
each decision procedure called and how many of these calls were solved by the decision procedure.

number
of calls

Regex proc. Nielsen transf. Length-based Stabillization-based

called solved called solved called solved called solved

Sygus-qgen 747 100% 100% 0% 0% 0% 0% 0% 0%
Denghang 999 0.10% 0.10% 0% 0% 96.10% 96.10% 3.80% 3.80%
AutomatArk 20,062 99.97% 99.97% 0% 0% 0.02% 0.02% 0.01% 0.01%
StringFuzz 9,941 46.45% 46.45% 0% 0% 27.98% 27.96% 25.58% 25.58%
Redos 2,952 70.02% 70.02% 0% 0% 11.21% 11.21% 18.77% 18.77%

Full Regex 34,701 79.21% 79.21% 0% 0% 11.75% 11.74% 9.04% 9.04%

LeetCode 874 1.37% 1.37% 0% 0% 59.27% 16.70% 81.92% 81.92%
StrSmallRw 6,327 0% 0% 0% 0% 4.85% 3.75% 96.25% 96.25%
PyEx 26,045 0.10% 0.10% 0% 0% 0.08% 0.08% 99.82% 99.82%
FullStrInt 9,003 0.04% 0.04% 0% 0% 0.26% 0.26% 99.70% 99.70%
Transducer+ 0 - - - -

Full Predicates 42,249 0.10% 0.10% 0% 0% 2.06% 1.01% 98.89% 98.89%

Norn 918 11.76% 11.76% 0% 0% 6.86% 6.86% 81.37% 81.37%
Slog 1,565 25.37% 25.37% 0% 0% 0.13% 0.13% 74.50% 74.50%
Slent 1,489 0.40% 0.40% 0% 0% 35.19% 30.09% 69.51% 69.51%
Omark 9 0% 0% 11.11% 11.11% 11.11% 0% 88.89% 88.89%
Kepler 579 0% 0% 99.83% 99.83% 0% 0% 0% 0%
Woorpje 478 0.84% 0.84% 43.10% 42.47% 30.96% 27.20% 20.50% 20.50%
Webapp 381 0.52% 0.52% 0% 0% 2.36% 0.26% 99.21% 99.21%
Kaluza 11,222 35.31% 35.31% 0% 0% 63.45% 61.78% 2.91% 2.91%

Full Equations 16,641 26.92% 26.92% 4.72% 4.70% 47.27% 45.53% 22.59% 22.59%

All 93,591 34.20% 34.20% 0.84% 0.84% 13.69% 12.91% 52.01% 52.01%

Procedures comparison. Table 1 shows the impact of various decision procedures
within Z3-Noodler on solving string constraints. We compare the number of times a
particular procedure was used for solving. Note that the total number of calls might
be different to the number of formulae in the particular benchmark as some formulae
might have been solved directly by the theory rewriter or the initial phase (and therefore
no call of a decision procedure was used) while some formulae might have resulted
in multiple calls. The table shows that the decision procedure for regex constraints
is (unsurprisingly) strong on the Regex benchmark. Furthermore, the length-based
procedure is quite strong on Equations (and on regex-heavy benchmarks due to the
StringFuzz benchmark set as it contains parts with pure equations). Even though the
impact of the Nielsen transformation seems low, without it, Z3-Noodler cannot solve
most of the formulae the procedure solves. Note that for Equations, there are 44 calls
that were not solved by any presented procedure. Instead, they were solved by a simple
procedure that is used for benchmarks that contain equations with exactly one symbol and
length constraints. This procedure just asks if the lengths of both sides of each equation
are the same (as there is only one symbol, it is the same as asking if the equation holds).
All in all, Z3-Noodler with all procedures enabled takes 3,583 seconds less to solve
944 formulae more than Z3-Noodler with only stabilization-based procedure, which is
a significant improvement (see tables in the appendix for more detailed results). From

Z3-Noodler 1.3: Shepherding Decision Procedures 39

Table 2: Numbers of solved instances and the time (in seconds) needed to solve them for each tool
and benchmark category. The versions of tools with M were run with model generation turned
on. The total number of formulae for each benchmark category is given in parentheses.

Regex Equations Predicates All
(32,242) (25,727) (45,436) (103,405)

solved time solved time solved time solved time

Z3-Noodler 32,232 3,688 25,301 1,147 45,035 6,353 102,568 11,118
Z3-NoodlerM 32,228 4,010 25,299 1,456 45,035 7,321 102,562 12,787
cvc5 29,290 59,705 25,214 2,529 45,337 11,627 99,841 73,861
cvc5M 29,287 59,892 25,214 2,756 45,337 12,220 99,838 74,868
Z3 29,075 51,379 24,569 3,240 44,101 74,094 97,745 128,712
Z3M 29,064 51,830 24,571 4,013 44,096 74,708 97,731 130,551

Table 1 it is also evident that the values of called and solved are close to each other, i.e.,
the suitability check can precisely identify a suitable decision procedure.

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

cv
c5

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

Z3

Fig. 5: Comparison with cvc5 and Z3. Times are in seconds, axes
are logarithmic. Dashed lines are timeouts. Colours distinguish
groups: •Regex, •Equations, and •Predicates.

Comparison with other
tools. In Table 2 and
Fig. 5, we compare
Z3-Noodler with cvc5
(version 1.2.0) and Z3
(version 4.13.0). The ta-
ble also shows the im-
pact of model genera-
tion. From the results
we can see that Z3-
Noodler is significantly
better (in both the num-
ber of solved instances
and the time) than other
tools on Regex. Furthermore, it is better than other tools on Equations, while slightly
worse than cvc5 on Predicates. Comparing the impact of model generation, we can see
that for all three tools, it is not significant, there is usually some slight slowdown with
a few less solved instances. All in all, even with model generation, Z3-Noodler can
solve the most number of instances the fastest.
Data availability statement. An environment with the tools and data used for the
experimental evaluation in the current study is available at [27].

Acknowledgments
This work has been supported by the Czech Ministry of Education, Youth and Sports
ERC.CZ project LL1908, the Czech Science Foundation project 23-07565S, and the
FIT BUT internal project FIT-S-23-8151. The work of David Chocholatý, Brno
Ph.D. Talent Scholarship Holder, is Funded by the Brno City Municipality. This work
has been executed under the project VASSAL: “Verification and Analysis for Safety and
Security of Applications in Life” funded by the European Union under Horizon Europe
WIDERA Coordination and Support Action/Grant Agreement No. 101160022.

40 D. Chocholatý et al.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Holı́k, L., Rezine, A., Rümmer, P., Stenman, J.:
String constraints for verification. In: Biere, A., Bloem, R. (eds.) Computer Aided Veri-
fication - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8559, pp. 150–166. Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_10, https://doi.org/10.1007/978-3-319-08867-9_10

2. Abdulla, P.A., Atig, M.F., Chen, Y., Holı́k, L., Rezine, A., Rümmer, P., Stenman, J.: Norn: An
SMT solver for string constraints. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp. 462–469.
Springer (2015). https://doi.org/10.1007/978-3-319-21690-4_29, https://doi.
org/10.1007/978-3-319-21690-4_29

3. Abdulla, P.A., Atig, M.F., Diep, B.P., Holı́k, L., Janků, P.: Chain-free string constraints.
In: Chen, Y., Cheng, C., Esparza, J. (eds.) Automated Technology for Verification and
Analysis - 17th International Symposium, ATVA 2019, Taipei, Taiwan, October 28-31,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11781, pp. 277–293. Springer
(2019).https://doi.org/10.1007/978-3-030-31784-3_16,https://doi.org/10.
1007/978-3-030-31784-3_16

4. Abdulla, P.A., Chen, Y.F., Holı́k, L., Mayr, R., Vojnar, T.: When simulation meets antichains.
In: TACAS’10. LNCS, vol. 6015, pp. 158–174. Springer (2010)

5. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K., Rungta, N., Tkachuk,
O., Varming, C.: Semantic-based automated reasoning for aws access policies using smt.
In: 2018 Formal Methods in Computer Aided Design (FMCAD). pp. 1–9 (2018). https:
//doi.org/10.23919/FMCAD.2018.8602994

6. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mohamed, A.,
Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng, Y.,
Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-strength smt solver. In: Fisman, D.,
Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp.
415–442. Springer International Publishing, Cham (2022)

7. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2016)

8. Barrett, C.W., Tinelli, C., Deters, M., Liang, T., Reynolds, A., Tsiskaridze, N.: Efficient solving
of string constraints for security analysis. In: HotSoS’16. pp. 4–6. ACM Trans. Comput. Log.
(2016)

9. Bernardo, P., Veronese, L., Valle, V.D., Calzavara, S., Squarcina, M., Adão, P., Maf-
fei, M.: Web platform threats: Automated detection of web security issues with WPT.
In: 33rd USENIX Security Symposium (USENIX Security 24). pp. 757–774. USENIX
Association, Philadelphia, PA (Aug 2024), https://www.usenix.org/conference/
usenixsecurity24/presentation/bernardo

10. Berzish, M., Day, J.D., Ganesh, V., Kulczynski, M., Manea, F., Mora, F., Nowotka, D.: To-
wards more efficient methods for solving regular-expression heavy string constraints. Theor.
Comput. Sci. 943, 50–72 (2023). https://doi.org/10.1016/j.tcs.2022.12.009,
https://doi.org/10.1016/j.tcs.2022.12.009

11. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: A string solver with theory-aware heuristics.
In: 2017 Formal Methods in Computer Aided Design (FMCAD). pp. 55–59 (2017). https:
//doi.org/10.23919/FMCAD.2017.8102241

12. Berzish, M., Kulczynski, M., Mora, F., Manea, F., Day, J.D., Nowotka, D., Ganesh, V.:
An SMT solver for regular expressions and linear arithmetic over string length. In: Silva,

https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
www.SMT-LIB.org
https://www.usenix.org/conference/usenixsecurity24/presentation/bernardo
https://www.usenix.org/conference/usenixsecurity24/presentation/bernardo
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.23919/FMCAD.2017.8102241

Z3-Noodler 1.3: Shepherding Decision Procedures 41

A., Leino, K.R.M. (eds.) Computer Aided Verification - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 12760, pp. 289–312. Springer (2021). https://doi.org/10.1007/
978-3-030-81688-9_14, https://doi.org/10.1007/978-3-030-81688-9_14

13. Berzish, Murphy: Z3str4: A Solver for Theories over Strings. Ph.D. thesis (2021), http:
//hdl.handle.net/10012/17102

14. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-manipulating
programs. In: TACAS’09. LNCS, vol. 5505, pp. 307–321. Springer (2009)

15. Blahoudek, F., Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Word
equations in synergy with regular constraints. In: Chechik, M., Katoen, J.P., Leucker, M.
(eds.) Formal Methods. pp. 403–423. Springer International Publishing, Cham (2023)

16. Blahoudek, F., Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Word
equations in synergy with regular constraints (technical report) (2022), an extended version
of the paper published at FM’23

17. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: StringFuzz: A fuzzer for
string solvers. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification. pp.
45–51. Springer International Publishing, Cham (2018)

18. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events.
In: Proc. of Symposium on Mathematical Theory of Automata (1962)

19. Bustan, D., Grumberg, O.: Simulation based minimization. In: Proceedings of CADE-17.
LNCS, vol. 1831, pp. 255–270. Springer (2000)

20. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string constraints
with the replaceall function. Proc. ACM Program. Lang. 2(POPL), 3:1–3:29 (2018). https:
//doi.org/10.1145/3158091, https://doi.org/10.1145/3158091

21. Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan, S., Lin, A.W., Rümmer,
P., Wu, Z.: Solving string constraints with regex-dependent functions through transducers
with priorities and variables. Proc. ACM Program. Lang. 6(POPL), 1–31 (2022). https:
//doi.org/10.1145/3498707, https://doi.org/10.1145/3498707

22. Chen, T., Hague, M., He, J., Hu, D., Lin, A.W., Rümmer, P., Wu, Z.: A decision procedure for
path feasibility of string manipulating programs with integer data type. In: Hung, D.V., Sokol-
sky, O. (eds.) Automated Technology for Verification and Analysis - 18th International Sym-
posium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings. Lecture Notes in
Computer Science, vol. 12302, pp. 325–342. Springer (2020).https://doi.org/10.1007/
978-3-030-59152-6_18, https://doi.org/10.1007/978-3-030-59152-6_18

23. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. Proc. ACM Pro-
gram. Lang. 3(POPL), 49:1–49:30 (2019). https://doi.org/10.1145/3290362, https:
//doi.org/10.1145/3290362

24. Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Z3-Noodler: An
automata-based string solver. In: Finkbeiner, B., Kovács, L. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 24–33. Springer Nature Switzerland, Cham
(2024)

25. Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Solving string con-
straints with lengths by stabilization. Proc. ACM Program. Lang. 7(OOPSLA2) (oct 2023).
https://doi.org/10.1145/3622872

26. Chocholatý, D., Fiedor, T., Havlena, V., Holı́k, L., Hruška, M., Lengál, O., Sı́č, J.: Mata:
A fast and simple finite automata library. In: Finkbeiner, B., Kovács, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 130–151. Springer Nature
Switzerland, Cham (2024)

https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-81688-9_14
http://hdl.handle.net/10012/17102
http://hdl.handle.net/10012/17102
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3498707
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1145/3290362
https://doi.org/10.1145/3290362
https://doi.org/10.1145/3290362
https://doi.org/10.1145/3290362
https://doi.org/10.1145/3622872
https://doi.org/10.1145/3622872

42 D. Chocholatý et al.

27. Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Z3-Noodler 1.3: Shepherding
decision procedures for strings with model generation (Oct 2024). https://doi.org/10.
5281/zenodo.13989789, https://doi.org/10.5281/zenodo.13989789

28. Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: On solving
word equations using SAT. In: Filiot, E., Jungers, R.M., Potapov, I. (eds.) Reachability
Problems - 13th International Conference, RP 2019, Brussels, Belgium, September 11-13,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11674, pp. 93–106. Springer
(2019). https://doi.org/10.1007/978-3-030-30806-3_8, https://doi.org/10.
1007/978-3-030-30806-3_8

29. Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Cooking String-Integer Conversions with Noo-
dles. In: Chakraborty, S., Jiang, J.H.R. (eds.) 27th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in In-
formatics (LIPIcs), vol. 305, pp. 14:1–14:19. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2024). https://doi.org/10.4230/LIPIcs.SAT.2024.14,
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.14

30. Le, Q.L., He, M.: A decision procedure for string logic with quadratic equations, regular
expressions and length constraints. In: Ryu, S. (ed.) Programming Languages and Systems.
pp. 350–372. Springer International Publishing, Cham (2018)

31. Liana Hadarean: String solving at Amazon. https://mosca19.github.io/program/
index.html (2019), presented at MOSCA’19

32. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory solver for a
theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.) Computer Aided
Verification. pp. 646–662. Springer International Publishing, Cham (2014)

33. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An efficient SMT
solver for string constraints. Formal Methods in System Design 48(3), 206–234 (2016)

34. Liang, T., Tsiskaridze, N., Reynolds, A., Tinelli, C., Barrett, C.: A decision procedure for
regular membership and length constraints over unbounded strings. In: FroCoS’15. LNCS,
vol. 9322, pp. 135–150. Springer (2015)

35. Lin, A.W., Majumdar, R.: Quadratic word equations with length constraints, counter
systems, and presburger arithmetic with divisibility. Log. Methods Comput. Sci.
17(4) (2021). https://doi.org/10.46298/lmcs-17(4:4)2021, https://doi.org/
10.46298/lmcs-17(4:4)2021

36. Lin, A.W., Barceló, P.: String solving with word equations and transducers: towards a
logic for analysing mutation XSS. In: Bodı́k, R., Majumdar, R. (eds.) Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 123–136. ACM
(2016). https://doi.org/10.1145/2837614.2837641, https://doi.org/10.1145/
2837614.2837641

37. Loring, B., Mitchell, D., Kinder, J.: Sound regular expression semantics for dynamic sym-
bolic execution of javascript. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. p. 425–438. PLDI 2019, Association
for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/
3314221.3314645, https://doi.org/10.1145/3314221.3314645

38. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS’08. LNCS, vol. 4963,
pp. 337–340. Springer (2008), https://doi.org/10.1007/978-3-540-78800-3_24

39. Nielsen, J.: Die isomorphismen der allgemeinen, unendlichen gruppe mit zwei erzeugenden.
Mathematische Annalen 78(1), 385–397 (1917)

40. Nötzli, A., Reynolds, A., Barbosa, H., Barrett, C., Tinelli, C.: Even faster conflicts and lazier
reductions for string solvers. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification.
pp. 205–226. Springer International Publishing, Cham (2022)

https://doi.org/10.5281/zenodo.13989789
https://doi.org/10.5281/zenodo.13989789
https://doi.org/10.5281/zenodo.13989789
https://doi.org/10.5281/zenodo.13989789
https://doi.org/10.5281/zenodo.13989789
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.4230/LIPIcs.SAT.2024.14
https://doi.org/10.4230/LIPIcs.SAT.2024.14
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.14
https://mosca19.github.io/program/index.html
https://mosca19.github.io/program/index.html
https://doi.org/10.46298/lmcs-17(4:4)2021
https://doi.org/10.46298/lmcs-17(4:4)2021
https://doi.org/10.46298/lmcs-17(4:4)2021
https://doi.org/10.46298/lmcs-17(4:4)2021
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1007/978-3-540-78800-3_24

Z3-Noodler 1.3: Shepherding Decision Procedures 43

41. Nötzli, A., Reynolds, A., Barbosa, H., Niemetz, A., Preiner, M., Barrett, C., Tinelli, C.:
Syntax-guided rewrite rule enumeration for SMT solvers. In: Janota, M., Lynce, I. (eds.)
Theory and Applications of Satisfiability Testing – SAT 2019. pp. 279–297. Springer Inter-
national Publishing, Cham (2019)

42. Reynolds, A., Notzlit, A., Barrett, C., Tinelli, C.: Reductions for strings and regular expres-
sions revisited. In: 2020 Formal Methods in Computer Aided Design (FMCAD). pp. 225–235
(2020). https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30

43. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling up DPLL(T)
string solvers using context-dependent simplification. In: Majumdar, R., Kunčak, V. (eds.)
Computer Aided Verification. pp. 453–474. Springer International Publishing, Cham (2017)

44. Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham, S., Vizel, Y. (eds.)
Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel,
August 7-10, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13371, pp.
3–18. Springer (2022). https://doi.org/10.1007/978-3-031-13185-1_1, https://
doi.org/10.1007/978-3-031-13185-1_1

45. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic execution
framework for javascript. In: 2010 IEEE Symposium on Security and Privacy. pp. 513–528.
IEEE (2010)

46. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: Kaluza web site (2023),
https://webblaze.cs.berkeley.edu/2010/kaluza/

47. SMT-COMP’24: https://smt-comp.github.io/2024/ (2024)
48. Stanford, C., Veanes, M., Bjørner, N.: Symbolic boolean derivatives for efficiently solving

extended regular expression constraints. In: Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation. p. 620–635. PLDI
2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.
org/10.1145/3453483.3454066, https://doi.org/10.1145/3453483.3454066

49. Trinh, M., Chu, D., Jaffar, J.: S3: A symbolic string solver for vulnerability detection in web
applications. In: CCS. pp. 1232–1243. ACM Trans. Comput. Log. (2014)

50. Trinh, M., Chu, D., Jaffar, J.: progressive reasoning over recursively-defined strings. In:
CAV’16. LNCS, vol. 9779, pp. 218–240. Springer (2016)

51. Trinh, M.T., Chu, D.H., Jaffar, J.: Inter-theory dependency analysis for smt string solvers. Proc.
ACM Program. Lang. 4(OOPSLA) (Nov 2020). https://doi.org/10.1145/3428260,
https://doi.org/10.1145/3428260

52. Wang, H.E., Chen, S.Y., Yu, F., Jiang, J.H.R.: A symbolic model checking approach to the
analysis of string and length constraints. In: Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering. p. 623–633. ASE 2018, Association
for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/
3238147.3238189, https://doi.org/10.1145/3238147.3238189

53. Wang, H., Tsai, T., Lin, C., Yu, F., Jiang, J.R.: String analysis via automata manipulation with
logic circuit representation. In: CAV’16. LNCS, vol. 9779, pp. 241–260. Springer (2016)

54. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.: Antichains: A new algorithm for checking
universality of finite automata. In: CAV’06. LNCS, vol. 4144, pp. 17–30. Springer (2006)

55. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string analysis for
vulnerability detection. Formal Methods in System Design 44(1), 44–70 (2014)

56. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effective search-
space pruning for solvers of string equations, regular expressions and length constraints. In:
Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided Verification. pp. 235–254. Springer
International Publishing, Cham (2015)

57. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A Z3-based string solver for web application
analysis. In: ESEC/FSE’13. pp. 114–124. ACM Trans. Comput. Log. (2013)

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://webblaze.cs.berkeley.edu/2010/kaluza/
https://smt-comp.github.io/2024/
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/3428260
https://doi.org/10.1145/3428260
https://doi.org/10.1145/3428260
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1145/3238147.3238189

44 D. Chocholatý et al.

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Z3-Noodler 1.3: Shepherding Decision Procedures for Strings with Model Generation

