)

Check for
updates

Fuel in Markov Decision Processes
(FiMDP): A Practical Approach
to Consumption

Frantisek Blahoudek!, Murat Cubuktepe?, Petr Novotny?3, Melkior Ornik?#,
Pranay Thangeda*®™), and Ufuk Topcu®

! Brno University of Technology, Brno, Czech Republic
2 The University of Texas at Austin, Austin, USA
{mcubuktepe,utopcu}@utexas.edu
3 Masaryk University, Brno, Czech Republic
petr.novotny@fi.muni.cz
4 University of Illinois Urbana-Champaign, Urbana, USA
{mornik,pranayt2}@illinois.edu

Abstract. Consumption Markov Decision Processes (CMDPs) are
probabilistic decision-making models of resource-constrained systems.
We introduce FiMDP, a tool for controller synthesis in CMDPs with
LTL objectives expressible by deterministic Biichi automata. The tool
implements the recent algorithm for polynomial-time controller synthesis
in CMDPs, but extends it with many additional features. On the con-
ceptual level, the tool implements heuristics for improving the expected
reachability times of accepting states, and a support for multi-agent task
allocation. On the practical level, the tool offers (among other features)
a new strategy simulation framework, integration with the Storm model
checker, and FiIMDPEnv - a new set of CMDPs that model real-world
resource-constrained systems. We also present an evaluation of FiIMDP
on these real-world scenarios.

1 Introduction

Planning the motion of an agent operating in a stochastic environment described
by a discrete-time Markov decision process (MDP) is a classical problem of
stochastic control [3,20]. In each step, the agent selects an action to perform,
the outcome of which is given by a probability distribution over successor states
depending on the current state and the selected action. Such a framework finds
immediate use in planning for robots and autonomous vehicles operating on
complex terrain, as well as operations on a financial market [7,12,16].

This work was partially supported by NASA under Early Stage Innovations grant No.
80NSSC19K0209, and by DARPA under grant No. HR001120C0065. Petr Novotny
was supported by the Czech Science Foundation grant No. GJ19-15134Y and Frantisek
Blahoudek was supported by the Czech Ministry of Education, Youth and Sports ERC
CZ project LL1908.

© Springer Nature Switzerland AG 2021

M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 640-656, 2021.
https://doi.org/10.1007/978-3-030-90870-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_34&domain=pdf
https://doi.org/10.1007/978-3-030-90870-6_34

Fuel in Markov Decision Processes (FiMDP) 641

Constructing control strategies that enable the agent to reach a particular
target state with maximum probability has been the focus of substantial pre-
vious work on MDPs [4,14,22]. Moving forward from simple reachability tasks,
linear temporal logic (LTL) [19] serves as a convenient way to describe a wide
class of missions for such an agent [2,11]. LTL specifications can describe the
desired spatiotemporal features of the agent’s path like “visit area A before vis-
iting either area B or C, while never visiting area D”. The synthesis of optimal
control strategies for such specifications has also been studied previous work (e.g.
[2,22]); a standard method is to monitor the agent’s progress at its mission by a
deterministic automaton, thus posing mission success as producing an accepting
path in the synchronous product of the automaton and the MDP.

The motivation for this paper is to practically enable planning for resource-
constrained agents. Such agents maintain a limited amount of some critical
resource (e.g. energy needed to operate) at every time step. The resource is
consumed in each time step (with the amount depending on the current state
and action) and can be replenished at particular reload states. The agent’s speci-
fication is to satisfy its mission while retaining a positive amount of the resource
throughout its operation.

A naive planning approach for resource-constrained agents is (i) to append
the resource level as a part of the agent’s state and (ii) to enrich the mission
specification defined on the agent’s states by “always resource > 0”. This method
multiplies the size of the agent’s state space by the number of the possible
resource levels which significantly adds to the computational burden of planning.
(In particular, it leads to an exponential time complexity if the agent’s resource
capacity is specified in binary).

Our recent paper [5] introduces a formalism of consumption Markov decision
processes which avoids encoding the resource levels into states. Instead, the
consumption of the resource is defined as a special cost. It is then up to the agents
to monitor their own resource levels and choose actions also with respect to their
current remaining amount of the resource. This is exactly what counter strategies
introduced in the same paper do. They use counters to monitor the resource level
and action selectors to choose actions to play in a state depending on the resource
level. As a result, an agent can exhibit two or more behaviors in one state. For
instance, the agent may elect to go to a reload state when the resource level is
too low to complete the mission without reloading, while it may proceed with the
mission without reloading when it has a sufficient resource level. The decision
does not have to be specified for each resource level, but rather for intervals
of resource levels. Using this insight, [5] proves that counter strategies with
polynomial-sized representation are sufficient for guaranteeing mission success
with probability 1, and that the associated qualitative synthesis problem can
be solved in polynomial time. Hence, consumption MDPs and counter strategies
provably quicken the qualitative controller synthesis for resource-constrained
agents.

The algorithms presented in [5] were implemented in a prototype imple-
mentation. After more than a year of additional development, in this paper we

642 F. Blahoudek et al.

introduce FIMDP (Fuel in Markov Decision Processes): a tool for design and
analysis of consumption MDPs, and for synthesis of resource-aware control
strategies for them. We designed FIMDP with two goals in mind: practicality
and education.

The practical purpose of the tool is to provide high-quality results for inter-
esting planning problems in reasonable time. Therefore, we have extended the
previous work by (i) constructing novel heuristics that produce strategies that
not only satisfy the mission almost surely, but also attempt to complete the mis-
sion in a short time, (ii) enabling support of missions specified by deterministic
Biichi automata or by the corresponding fragment of linear temporal logic, (iii)
enabling an interface with well-established modeling languages like PRISM [17]
and JANTI [8], and (iv) given a set of targets and homogeneous agents, providing
a polynomial-time algorithm that computes a target allocation and assignment
to minimize the resource capacity of each agent. We also show that the tool
translates the theoretical gains of the new formalism to practice: FIMDP pro-
vides the ability to synthesize resource-aware strategies for significantly larger
state spaces than the state-of-the-art model checker STORM [15].

To be educational, the tool makes the framework of consumption MDPs
accessible by (i) having a simple user interface, (ii) possessing an ability to read
models in existing modeling languages, (iii) constructing visual representations
of the models and results, and (iv) supporting simulations of the synthesized
strategies. These components help the users to understand the key concepts of
the novel formalism without being exposed to the entire technical machinery
behind the framework.

FIMDP comes bundled with FIMDPENV: a set of environments inspired by
real world that are built on top of consumption MDPs. FIMDPENV interfaces
with FIMDP for strategy synthesis, and simulates the strategies in a visually
vivid manner. This feature allows the user to easily modify the high-level param-
eters of the mission at hand, such as the mission specification, as necessary.

FIMDP is available at https://github.com/FiMDP/FiMDP. FIMDPENV
is available at https://github.com/FiMDP/FiIMDPEnv. We created a series
of tutorials available at https://github.com/FiIMDP /tutorials to get started
with the tool. These tutorials, presented in interactive Jupyter notebooks, are
designed to provide the user with an in-depth understanding of the key features
offered by the tool.

The next section defines consumption MDPs and the necessary notation.
Section 3 summarizes the features of FIMDP and explains the novel functionality
not available before. More details about FIMDP follow in Sect.4 and Sect.b
presents FIMDPENV. Finally, Sect.6 empirically compares strategy synthesis
for consumption MDPs in FIMDP and STORM, and also shows the effect of the
novel heuristics on the quality of the synthesized control strategies.

2 Consumption Markov Decision Processes

Notation. The set of all non-negative integers is denoted by N. If X’ is a set,
the set of all infinite sequences of elements in X is denoted by X“. The set of

https://github.com/FiMDP/FiMDP
https://github.com/FiMDP/FiMDPEnv
https://github.com/FiMDP/tutorials

Fuel in Markov Decision Processes (FiMDP) 643

all subsets of X is denoted by 2%. Notation P(X) denotes the probability of an
event X in an appropriate event space.

Throughout this section, we follow the framework introduced in [5]. In order
to model the agent’s resource consumption and capacity, we first amend the
definition of a standard Markov decision process [20] by defining a consumption
Markov decision process.

Definition 1 (CMDP). A consumption Markov decision process (CMDP) is
a tuple M = (S, A, P,C, R, cap) where:

- S is a finite set of states,

— A is a finite set of actions,

- P:S8xAxS — [0,1] is a transition probability function which satisfies
Yoses P(s,a,8") =1 forallse€ S, ac A,

- (C:59%xA— N is a consumption function,

- R C S is a set of reload states, and

— cap € N is a resource capacity.

The CMDP M evolves in discrete time steps. In each time step t € N, the
agent’s state is denoted by s; and its resource level by r;. The agent chooses an
action a; with consumption not higher than r;. Based on a;, the agent transitions
to state sy;y1 that is chosen randomly using the transition probability function
P: state sy;11 is a random variable such that P(s;1 = §'|st,ar) = P(st, a4, 8).
The dynamics of the resource level are given by the following equation.

T B if s;11 € R 1)
o ry — C(s4,a;) otherwise

In other words, when an agent reaches a reload state, its resource is reloaded to
the full capacity cap. Otherwise, the resource level is reduced by C(s;,a;). This
means that r; is uniquely defined at every time ¢ by the initial resource level rg
and the history of states and actions.

We introduce the notion of a path as a finite or infinite state-action sequence

b= S000S1A1S2a283 + - € (S X A)w U <U (S . A)n> x S.

neN

The length of a path @ is co if & € (S x A)¥, and n if & € (S x A)™ x S. We
call an infinite path a run, and a finite path a history.

A strategy for an agent operating on M is a function o : H(M) — A, where
H(M) is the set of all histories on M. In other words, an agent can decide its
next action based on all previous states and actions, and thus, by (1), possibly
also based on its resource level. Positional strategies (or memoryless strategies)
known from regular MDPs base their decision solely on the current state. Counter
strategies extend positional strategies by taking also the current resource level
into consideration. A counter strategy consists of a counter that keeps track of

644 F. Blahoudek et al.

the resource level r;, and an action selector that maps the current state and
resource level into the action to play.

An action selector is a function sel: S x {0,1,..., cap} — A which we effec-
tively represent using intervals. In particular, for every state s we define values
0=pi <p5 <...<pp <cap+1=p; ., and actions af,...,a; € A. Then

for given state s and resource level 7 the value sel(s,r) is aj if pf <r <pjiq.
A CMDP is decreasing if and only if each cycle either contains a reload state

or has non-zero consumption. This means that the agent is forced to visit reload

states in a decreasing CMDP. From now on, we only consider decreasing CMDPs.

Labeled Consumption Markov Decision Processes. In [5], we have only
considered reachability or Bilichi objectives defined explicitly using a set F' of
accepting or target states. To extend the range of possible mission specifications,
we introduce a labeling function L : S — 24T which assigns to each state a set
of atomic propositions. Atomic propositions are features relevant to the agent’s
objective. For instance, we can encode the set of accepting states F' from above
by setting L(s) = {F} if s € F and define L(s) = {) otherwise.

Each path @ naturally induces a sequence of labels L(sg)L(s1)L(s2) These
sequences can be evaluated against specifications describing the agent’s objective
given as an automaton or as a formula of Linear temporal logic (LTL) [19]. We
refer the reader to [2] for precise definitions. In this paper, we consider properties
that can be expressed via deterministic Biichi automata (DBA) or via formulas
from the recurrence fragment of the Manna-Pnueli hierarchy for LTL [18]. This
fragment is strong enough to express many useful properties like “keep visiting
states labeled by F while never seeing label exit before label landed”, and each
recurrence formula can be translated into an equivalent DBA.

3 Features of FiMDP

In this section, we first briefly review the theoretical foundations of FIMDP,
as introduced in [5]. We then present FIMDP’s main features, focusing on the
novel features that distinguish it from the prototype artifact of [5].

3.1 Theoretical Foundations

FIMDP is a tool for qualitative analysis and controller synthesis in CMDPs. As
such, it builds on the polynomial-time synthesis algorithm for CMDPs presented
in [5]. We are given a CMDP M = (S, A, P,C, R, cap) and a set of accepting
states F' C S. The task is to compute a strategy o which is safe (i.e., ensures
that the resource level never drops below zero) and almost surely satisfies the
Biichi objective given by F. More precisely, for every initial state s, the algorithm
computes the minimal initial resource level min-lev(s) € {0, ..., cap}U{oo} such
that there exists a strategy o ensuring the following properties:

a) forallt € N, P7(ry < 0| sg = s,ro = min-lev(s)) = 0; and
b) P7(s; € F for infinitely many t | sop = 8,9 = min-lev(s)) = 1;

Fuel in Markov Decision Processes (FiMDP) 645

where P? is the probability measure induced by o over the runs in M. If
min-lev(s) = oo, the objective is unachievable from s; we say that s is a los-
ing state and the algorithm reports all such states. We call all the other states
winning. The rationale behind the minimal resource levels is that due to the
monotonicity inherent to the resource constraints, a strategy that satisfies a)
and b) satisfies the same conditions for any initial resource level rq > min-lev(s).
In [5], it was also proved that there exists a polynomial-sized counter strategy
o that satisfies both a) and b) in every winning state. The algorithm presented
in [5] also computes such a strategy.

The computation of both the minimal resource levels and the corresponding
strategy o proceeds in two phases. In the first phase, the algorithm solves the
positive reachability problem. The problem consists of computing the minimal
resource levels min-pos-reach(s) € {0, ..., cap} U {oo} and a strategy = which,
given the initial resource level min-pos-reach(s), reaches an accepting state with
a positive probability while preventing resource exhaustion:

a’) forallt € N, P™(ry < 0| sp = 5,79 = min-pos-reach(s)) = 0; and
b’) there exists t € N s.t. P™(s; € F | s9 = 8,79 = min-pos-reach(s)) > 0.

The corresponding algorithm iterates a suitable Bellman functional in a pro-
cess analogous to value iteration. Note that the agent using = might eventually
run in a situation where r; < min-pos-reach(s).

The values min-pos-reach are the key for building the desired strategy o out
of 7. Imagine a strategy that behaves like 7 and at the same time it keeps the
resource level high enough so that r; never drops below min-pos-reach(s;). If that
is possible, we have always a positive probability of reaching F' (the property
b’)) and thus the agent will eventually reach F. And since even when reaching
F at time tp we have that ry, > min-pos-reach(st,), it will be reached again,
and so on ad infinitum. Thus, the Biichi property b) is satisfied.

There is a small caveat in this approach: unlike 7, the strategy ¢ needs to
avoid states that are losing for the positive reachability problem at all costs.
Thus it might differ from 7 and as such it might lose property b’). To solve
this, we remove the losing states from the given CMDP, compute a new 7 and
min-pos-reach in this reduced CMDP and repeat this until all states of the
reduced CMDP are winning. In such case, m actually satisfies both b’) and b)
and we have our o for the Biichi objective.

3.2 New Features

The algorithm that rests at the heart of FIMDP has polynomial complexity and
its prototype scaled well in the somewhat lightweight experiments of [5]. FIMDP
extends this algorithmic core with further heuristics and additional functionality
that greatly enhances its practical capabilities. We present these new features in
the remainder of this section.

Labeled CMDPs, Deterministic Biichi Automata and LTL. The algo-
rithm in [5] synthesizes a resource-constrained strategy for almost-sure satis-
faction of a Biichi objective, where the accepting states have to be explicitly

646 F. Blahoudek et al.

specified as a part of the MDP. FIMDP now fully supports CMDPs with states
labeled by sets of atomic propositions. Given such a labeled CMDP M and a
deterministic Biichi automaton A over the same atomic propositions, FIMDP
can synthesize a resource-aware strategy that produces (for a suitable initial
level of resource) runs whose labeling is almost surely accepted by A. To achieve
this, FIMDP follows the classical approach of constructing and analyzing the
product M ® A via the standard synchronous parallel composition technique [2].

Obviously, the counter strategy synthesized for M ® A operates correctly
only on this product, which might be impractical. For the convenience of users,
FIMDP provides a capability to synthesize a counter strategy that stores A
in its memory. This means, the strategy tracks in memory both the resource
level (using a counter) and the progress in A, and makes decisions based on the
current state, the current resource level, and the current state of the automaton.
As a result, the users can run these strategies on their original model. Another
advantage of these strategies is that the potentially large object for M ® A can
be discarded from memory right after the analysis.

The product-based approach extends naturally to the recurrence fragment of
linear temporal logic. Given a formula ¢ of this fragment and a labeled CMDP
M, FIMDP can compute the values min-lev, and synthesize a strategy o, which
operates on M and which has the following properties:

a) for allt € N, P7(ry < 0| sg = s,ro = min-levy,(s)) = 0; and
b) P7(¢p is satisfied by the sample run | so = 5,79 = min-lev,(s)) = 1.

This capability is justified by the fact that each formula of the recurrence
fragment can be translated to an equivalent DBA [18]. FIMDP uses the SpoT
library [10] for this translation and then employs the product approach described
above. The user requires just one line of code with FIMDP to run this pipeline
and get a strategy without ever being exposed to the product construction.

Strategies and Simulations Framework. The core algorithm for strategy
synthesis does not compute the strategies (objects with memory) directly. It
produces action selectors, the integral parts of counter strategies. The strategy
simply asks the selector, what should be the next action given its current state of
memory. As we saw in the labeled framework, altering the type of the strategy’s
memory (and of the selector) might result in more useful strategy represen-
tations. FIMDP provides an interface for objects representing strategies that
completely hides the implementation details of the strategy from the users. A
built-in strategy simulator uses the interface to create sample paths created by
given strategies. Moreover, following this interface, users can define their own
types of strategies and test them using the infrastructure of FIMDP.

Integration with Storm. FIMDP is now integrated with the state-of-the-art
probabilistic model checker STORM [15] through its Python interface STORMPY.
The integration works in two ways. First, we can translate a CMDP from FIMDP
into STORM’s data structures as an equivalent MDP that has the energy con-
straints encoded in states and actions. Second, we define CMDPs as a special

Fuel in Markov Decision Processes (FiMDP) 647

case of MDPs with cost (for consumption) and labels (for reload states) and
FIMDP can read all such MDPs from STORM into its own data structure as
CMDPs. STORM’s ability to read PRISM and JANI models extends thereby
allowing us to read CMDPs expressed in the two languages into FIMDP. We
implemented a direct support for reading PRISM files, including a convenient
interface for parametric models, e.g., models with undefined constants.

Heuristics for Expected Reachability Time. The basic synthesis algorithm
of [5] ensures that an accepting state is eventually reached with probability 1 (and
then again and again, ad infinitum). However, it is purely qualitative and ignores
the precise transition probabilities during strategy synthesis. Further, it does
not take into account the expected number of steps to reach an accepting state,
hereinafter referred to as the expected reachability time (ERT), a parameter
of significant practical importance: e.g. from a patrolling unmanned vehicle we
expect that it visits all the checkpoints in a reasonable amount of time. In
order to tackle this issue, FIMDP employs two heuristics proposed in [6]: the
goal-leaning heuristic and its extension, the threshold heuristic with a threshold
0 < ¢ < 1 parameter. Both heuristics modify only the way in which the strategy
7 and the values min-pos-reach are computed.

Optimal Allocation in Multi-agent Scenarios. In many scenarios, we can
use multiple agents to reach a set of accepting states instead of a single agent.
Utilizing multiple agents instead of a single agent may significantly reduce the
expected number of steps to reach all targets and the required energy capac-
ity of each agent. Given a consumption MDP, a set of target states, and a set
of homogeneous agents with fixed initial states, we compute a target alloca-
tion and an assignment of targets to agents. The objective is to minimize the
resource capacity of the agents while ensuring that each target state is infinitely
often visited by an agent with probability 1. We utilize a reduction to a new
combinatorial optimization problem called minimal-cost SCC matching defined
on graphs with edges denoting the minimal capacity needed to reach one tar-
get from another [9]. We first compute a decomposition of this graph into its
strongly connected components (SCCs) using a binary search over the values for
the resource capacity. We then assign each SCC to an agent to minimize the
resource capacity of each agent. Our recent work [9] showed that this problem
belongs to P, and our algorithm can solve this problem in polynomial time.

4 FIMDP: What Is Under the Hood and How to Drive It

FIMDP is written in Python 3 as a library with an interface suitable for the
interactive environment of Jupyter notebooks. The basic functionality is accessi-
ble without any dependencies, and three third-party libraries are used for more
involved features: Spot [10] with its Python bindings is needed for using the
Biichi-automata-based and LTL specifications, STORM [15] with STORMPY is
needed to read models described in PRISM or JANI languages, and finally
GraphViz [13] is used to render visualizations in Jupyter notebooks.

648 F. Blahoudek et al.

Fig. 1. Example CMDP. The doubly circled states r and ¢ are reload states, s is the

initial state, the green-shaded state t is an accepting state. We have two actions, a and

b. The only probabilistic effect arises when playing b in s, where P(s,b,r) = % and

P(s,b,v) = 1—10. We specify the consumption as C(v,a) = C(v,b) = 0 while C(g,c) =1
for all states ¢ # v and all actions ¢ € {a,b} (not shown in the figure). (Color figure
online)

Threshold Example

import fimdp
fimdp.setup()

mdp = fimdp.ConsMDP()

mdp.new_states(5, names=["r", "s", "u", "v", "t"])

mdp.set reload([0, 4])

action: src state, dst distribution, label, consumption
mdp.add_action(®, {1:1}, "a,b", 1); mdp.add action(1, {2:1}, "a", 1)
mdp.add action(1, {3:.1, 0:.9},"b",1); mdp.add action(2, {4:1}, "a,b", 1)
mdp.add_action(3, {4:1}, "a,b", 0); mdp.add action(4, {4:1}, "a,b", 1);

[2]: |targets = [mdp.state with name("t")]; capacity = 3

solver = fimdp.energy solvers.GoallLeaningES(mdp, capacity, targets, threshold=0.2)
solver.get_min_levels(fimdp.objectives.BUCHI)

solver.show()

s = mdp.state with _name("s")
print(solver.get selector(fimdp.objectives.BUCHI)[s])

{
1-1:b,
2+: a

}

Fig. 2. FIMDP in a Jupyter notebook. The notebook demonstrates the analysis of the
threshold example. Reload states are doubly-circled and the accepting state t is green.
(Color figure online)

Figure 2 represents a simple use case in Jupyter notebook. In cell [1] we
build the CMDP from Fig.1 and in cell [2] we compute and visualize the vec-
tor min-lev for the Biichi objective on the state t; for each state p, the value
min-lev(p) is shown as the little green number next to the state’s name. Finally,

Fuel in Markov Decision Processes (FiMDP) 649

in cell [3] we show that the threshold heuristic indeed chooses action a for all
resource levels >2, and the action b for the resource level equal to 1.

The package is built in a modular fashion; we describe the most impor-
tant modules from the perspective of users. Figure 2 already uses three of them.
The data structures for CMDPs and counter strategies are implemented in
fimdp.core. To synthesize a strategy, the tool also uses one of the solvers
implemented in fimdp.energy_solvers for one of the objectives defined in
fimdp.objectives.

Labeled CMDPs, their product with DBAs, and strategies that keep track of
an automaton in their memory are implemented in the module fimdp.labeled.
Apart from the main symbolic algorithm sketched in Sect. 3, FIMDP allows to
encode the energy constraints of a given CMDP into states and actions of a
regular MDP that is equivalent to the CMDP via the fimdp.explicit module.
Finally, such an MDP can be translated to the data structures of STORMPY with
a function of the module responsible for the STORMPY integration: fimdp.io.

Solvers. Solvers are objects that do the main work. We need to supply a
CMDP M, the desired capacity!, and the set of target states in order to cre-
ate the solver. Additionally, solvers can accept specific parameters. For exam-
ple, the GoalLeaningES solver accepts the parameter threshold in cell [2]
of Fig.2. FIMDP currently offers three solver classes (the ES in the names
refers to energy solver). BasicES implements the algorithms as presented in [5].
GoalLeaningES implements both heuristics presented in Sect. 3; in fact, the goal-
leaning heuristic is now implemented as the special case of the threshold heuristic
with threshold=0. Finally, LeastFixpointES can solve the safety problem, e.g.
never deplete the energy, more efficiently than BasicES on certain classes of
CMDPs.

After we create a solver object, we can call the following three functions:
compute, get min_levels, and get_selector. All these functions take an objec-
tive (from fimdp.objectives) as a parameter and do what their names suggest.

Strategies and Simulators. After we call solver.get_selector, we can feed
the selector to the constructor of CounterStrategy. We also need to initialize the
initial memory of the strategy (init_energy in case of counter strategies) and
set the initial state of the history. Then, strategy.next_action() returns the
action picked by the strategy for the history it saw so far. The strategy then needs
to know how the outcome of this action is resolved, e.g. what is the next state of
the history. It accepts the information via the function strategy.update_state.
Finally, in order to run the strategy again from the same initial conditions, we
can call strategy.reset ().

Given an initialized strategy and a number of steps n, the class Simulator
from the fimdp.core module queries the strategy n times for an action to play
and resolves the outcomes of these actions based on the transition probability

! Unlike the definition of CMDP in this paper, the implementation keeps the capacity
outside of the CMDP object. That enables us to compare strategies built for different
capacities without modification of the CMDP object.

650 F. Blahoudek et al.

function. The generated history is accessible by simulator.state history and
simulator.action_history.

Storm, PRISM, and JANI Models. FIMDP can both read and create
CMDPs expressed in STORM’s data structures. In the first direction, function
fimdp.io.encode_to_stormpy takes a CMDP and capacity, builds a product
CMDP in which the energy constraints are also encoded in states and actions,
and converts this product to the SparseMdp object of STORM. Alternatively, we
can create an MDP with the same state-space as the input CMDP, with the
consumption expressed as an action-based reward called consumption, and with
the reload states labeled by reload.

In the other directions, we can read such MDPs with consumption reward
and reload label from STORM to FIMDP via the storm_sparsemdp_to_consmdp
function. We can read similarly encoded models expressed in the PRISM lan-
guage by fimdp.io.prism_to_cmdp. The function accepts a filename, and possi-
bly a dictionary constants in which we can set values to constants left undefined
in PRISM parametric models.

Data Structures. To follow the main design goals—simple user inter-
face and easy exploration of the CMDP formalism—FIMDP works with
explicitly encoded models. The class that represents CMDPs is called
fimdp.core.ConsMDP. The states of a CMDP are represented implicitly by inte-
gers, and the actions are stored as a list of ActionData objects. An additional
list maps each state s to the first action of s. Finally, all actions that start in s
are linked by a nested list (linked by an attribute of ActionData) that is used
for effective iterations over them. As seen in Fig.2, FIMDP offers a convenient
interface that hides this representation from the users.

The selected data structure enables interactive building of the CMDPs, sim-
ple modifications and processing of actions. It however incurs the price of higher
memory requirements in comparison to sparse-matrix based representations of
MDPs. As CMDPs can be substantially smaller than their equivalent MDP coun-
terparts, the higher memory consumption is not a considerable limitation. Using
the nested linked list enables the tool to quickly iterate the outgoing actions of
one state without the need for sorting or other limitations of sparse matrices.

5 FIMDPENV: Environments for FIMDP

This section presents FIMDPENV, an open-source Python package containing
environments that model real-world consumption Markov decision processes. In
particular, we detail two environments that model (i) the stochastic dynamics
of one or more unmanned underwater vehicles (UUVs) operating with limited
onboard energy storage capacity, and, (ii) the stochastic energy consumption
of an autonomous electric vehicle (AEV) operating in the busy streets of Man-
hattan, New York. All environments in FIMDPENV are based on real-world
data and are designed to show the utility and scalability of our tool. In addi-
tion to these two environments discussed in detail below, adding more relevant
environments is a part of our release roadmap.

Fuel in Markov Decision Processes (FiMDP) 651

5.1 UUV Environment

The UUV environment models the high-level dynamics of unmanned underwater
vehicles (UUVs) operating in environments with stochastic ocean currents. We
discretize the area of interest into two-dimensional grid-world environment where
the cells form the state space and the UUV is expected to take high-level con-
trol decisions in each cell. The action space is comprised of two different classes
of actions; the weak actions consume less energy but have stochastic outcomes
whereas the strong actions have deterministic outcomes with the downside of
significantly higher energy consumption. In the context of the UUV, the strong
actions can model an additional actuator that can be used to correct the UUV
course even in the presence of stronger currents. The environment offers up to
16 actions in total with weak and strong variants for each of the 8 directions:
East, North-East, North, North-West, West, South-West, South, and South-
East. While the ocean currents are stochastic, any data on mean flow velocity
and UUV heading velocity available to the user can be readily incorporated into
the environment [1]. Often, the UUVs with limited onboard energy storage capa-
bility, are expected to safely reload at predetermined locations while pursuing
their objective of exploring given targets of interest.

The environment can be accessed by creating instances of one of
the two classes in the UUVEnv module, SingleAgentEnv and Synchronous
MultiAgentEnv where the former models a single agent operating in the grid-
world whereas the latter models a user-specified number of agents acting syn-
chronously in the environment. We now discuss the required inputs and the
functionality provided for the single-agent environment with the understanding
that the discussion extends to the multi-agent environment where the vector
inputs provide information related to multiple agents. The user needs to specify
the desired grid size, the reload states, the target states, and the energy capacity
of the agents as required inputs. In addition, the users can also optionally specify
the initial state, the size of the action space, and the UUV velocity. To run sim-
ulations on an instance of the environment, the user needs to generate a counter
strategy using the create_counterstrategy(solver, objective) method by
specifying the solver and objective to use. The state of an instance can also be
updated using the step() method in one-step increments while the reset () can
be used to reset the internal state of the environment. We refer the reader to
the documentation for further details.

5.2 AEV Environment

The AEV environment, introduced in [5], models the routing problem of an
autonomous vehicle operating on a street network. For our study, we consider
the area in the middle of Manhattan, from 42nd to 116th Street. The user can
specify their own region of interest by providing appropriate data. Intersections
in the street network and directions of feasible movement form the state and
action spaces of the MDP. We use intersections in the proximity of real-world
fast charging stations [21] in the area of interest as the set of reload states.

652 F. Blahoudek et al.

After the AEV picks a direction, it reaches the next intersection in that
direction deterministically with a stochastic energy consumption. As described
in [5], we estimate the energy consumption distribution using the distribution
of velocity on different road segments and discretize it into three possible values
(c1,¢2,¢3) reached with corresponding probabilities (p1, p2,p3). We then model
the transition from one intersection to another using additional dummy states
creating a CMDP with 7378 states and 8473 actions.

The environment can be accessed by creating an instance of the AEVEnv class
in the AEVEnv module of FIMDPENV. The required inputs are similar to the
UUV environment with the exception of reload states which are already pro-
vided in the environment. The user needs to specify the starting and destination
states of the AEV along with its energy capacity. While we consider a simple
routing problem in this environment, a similar structure can also be used to
model a variety of resource allocation and navigation problems in stochastic
environments.

6 Evaluation

In this section, we first compare the time needed by FIMDP for strategy syn-
thesis for a given CMDP, to the time needed by Storm to solve the equivalent
problem with the energy constraints encoded in the state space of a regular MDP.
Then we demonstrate the effect of the goal-leaning and the threshold heuristics
on the expected reachability time.

6.1 Analyzing CMDPs in FIMDP and Storm

STORM is an open-source, state-of-the-art probabilistic model checker designed
to be efficient in terms of time and memory. This section reveals whether the
theory behind FIMDP can beat the efficient implementation of STORM.

We use the UUV environment described in Sect. 5 to generate CMDPs for
grid-worlds of varying sizes and capacities. We measure the time FIMDP needs
to analyze such CMDPs and to synthesize the corresponding strategy for the
given Biichi objective. We also transform the CMDP into the equivalent MDP
with the energy constraints encoded in states and actions. We then measure the
time that STORMPY needs to finish stormpy.model_checking(mdp, prop) for
this MDP and the qualitative Biichi property expressed in PCTL [2] as:
prop = ‘Pmax>=1 [G Pmax>=1 [F "target" & Pmax>=1 [F "reload"]]]’

The computation time for different test scenarios, averaged over multiple
runs, is presented in Fig. 3. The plots present the variation of average computa-
tion time with both capacity and size of the grid-world, both of which together
define the overall size of the model. We can observe that FIMDP outperforms
STORM in terms of computation time in all test cases with the exception of small
problems where STORM, owing to its efficient C++ implementation, is faster.
The advantage of FIMDP lies in the fact that the state-space of CMDPs (and
also the time needed for their analysis) does not grow with rising capacity.

(a) Grid size 10

Fuel in Markov Decision Processes (FiMDP)

(a) Grid size 20

(c) Grid size 50

—2 : = : : T = . .

- -10 e FiMDP x 0.6 e FiMDP x 15 {{ @ FiMDP *

% . 1072 [| x Storm | x Storm x Storm

o 0.4 - 10 L |

£ 2107 » 1 N]

o, . 0.2 - 7 5| N

g 107°Feed o o °s o ° S

3 " ® o®® © °
ok ! L 0" | ! ! = s ! [

50 100 50 100 150 200 200 400
capacity capacity capacity

653

Fig. 3. Mean computation times for solving the CMDP model of the UUV environment
with varying capacities proportional to the size of the grid-world. Each subplot in the
figure corresponds to a different size of the grid-world.

6.2 Goal-Leaning Solvers

This section investigates the novel heuristics from a practical, optimal decision-
making perspective. We utilize the UUV environment discussed in Sect. 5. The
test scenario contains a single reload state and a single target, where the objective
of the agent is to travel from its initial state to the target state and keep enough
energy to be able to come back to the reload state. We consider agents with
three different strategies generated by the solvers of FIMDP and measure the
expected reachability time (ERT) introduced in Sect. 3 using 10, 000 independent
runs with a simulation horizon of 10,000. The agent following a counter strategy
generated by the BasicES solver (no heuristic) never reached the target within
the simulation horizon, since the probability of reaching the target between two
visits to the reload state was too small. The agent with a strategy generated
by the GoalLeaningES solver with no threshold (goal-leaning heuristic) needed
about 124 time steps on average to reach the target. Finally, the agent following
a strategy generated by GoalLeaningES with threshold 0.1 needed 62 time steps
on average. Table 1 summarizes the ERT values for the discussed three solvers.
The goal-leaning solver ensures that the agent heads towards the target with
high probability; only at the one place in the middle between the goal and
the reload state, this agent picks a “wrong” action. The additional threshold
eliminates this drawback and thus ensures that the agent always proceeds in a
near-optimal fashion leading to a significant improvement in the ERT.

Table 1. Comparison of different energy solvers

Solver
BasicES -
GoalLeaningES with threshold 0 | 124
GoalLeaningES with threshold 0.1 | 62

Expected reachability time

654 F. Blahoudek et al.

Moo N]

N N N
t=0e =[15, 15, 15] t=15e =[8, 0, 15] t=33e=1[8,4,15]

Fig. 4. Demonstration of the multi-agent allocation algorithm with 3 agents (blue
cells), 7 targets (green cells) and 2 reload states (red cells). The images provide snap-
shots of the current and historical locations of the agents at different time instances.
We denote the trajectory of two different agents with black and gray cells. Note that
the agent at the bottom right of the grid is not allocated to any target and therefore
takes no action to transition into different cells in the grid. (Color figure online)

6.3 Multi-agent Allocation

In this section, we demonstrate the multi-agent allocation algorithm in the UUV
environment, as in the previous subsection. This test scenario consists of allocat-
ing seven targets to three agents to satisfy a Biichi objective and then return to
their initial location. As previously mentioned in Sect. 5, the allocation algorithm
from [9] computes a target allocation and assignment to an agent to minimize
the resource capacity of each agent, while satisfying the Biichi objective. Figure 4
shows a situation where the required capacity increases if all agents are required
to allocate some of the target locations. In Fig. 4 we illustrate the initial loca-
tions of the agents and targets (left), the time-step (indicated with ¢) where the
current energy level (the vector e) of one of the agents is minimal (middle), and
the final time-step where all targets are visited by some agent.

The capacity required with the assignment (and the corresponding strategy)
computed by the optimal allocation in this multi-agent scenario is 15. On the
other hand, if we require to allocate some of the target locations to each agent,
the minimal required capacity is 54, which is about four times larger compared
to the optimal allocation. Such an allocation may induce a shorter time to visit
all locations by using all agents. However, the difference in the required capacity
highlights the tradeoffs between computing an allocation and a strategy that
induces a trajectory with minimal time and energy capacity. We also estimate
the expected time to visit all target locations using the allocation by simulating
the strategies in the underlying consumption MDP. We run 10000 simulations
with this strategy. On average, the strategy synthesized by using GoalLeaningES
solver with threshold 0.3 needed 32.3 steps on average.

7

Fuel in Markov Decision Processes (FiMDP) 655

Conclusion

We introduced FIMDP, a tool for strategy synthesis in consumption MDPs
with deterministic Biichi LTL objectives. The tool provides a robust framework
for modeling, synthesis, simulation, and analysis of discrete resource-constrained
stochastic systems. Our experiments show that FIMDP can efficiently handle
models of real-world scenarios.

References

1.

10.

11.

12.

13.

14.

Al-Sabban, W.H., Gonzalez, L.F., Smith, R.N.: Extending persistent monitoring
by combining ocean models and Markov decision processes. In: 2012 Oceans, pp.

1-10 (2012)
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn, Vol. II.
Athena Scientific (2007). ISBN 1886529302

Bharadwaj, S., Le Roux, S., Pérez, G.A., Topcu, U.: Reduction techniques for
model checking and learning in MDPs. In: 26th International Joint Conferences on
Artificial Intelligence, pp. 4273-4279 (2017)

Blahoudek, F., Brazdil, T., Novotny, P., Ornik, M., Thangeda, P., Topcu, U.:
Qualitative controller synthesis for consumption Markov decision processes. In:
32nd International Conference on Computer-Aided Verification, vol. II, pp. 421—
447 (2020)

Blahoudek, F., Novotny, P., Ornik, M., Thangeda, P., Topcu, U.: Efficient strategy
synthesis for MDPs with resource constraints (2021)

Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic decision-making under uncer-
tainty for autonomous driving using continuous POMDPs. In: 17th International
IEEE Conference on Intelligent Transportation Systems, pp. 392-399 (2014)
Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151-168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

Cubuktepe, M., Blahoudek, F., Topcu, U.: Polynomial-time algorithms for multi-
agent minimal-capacity planning (2021)

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E.7 Xu, L.
Spot 2.0 — a framework for LTL and w-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122-129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for
mobile robots. In: IEEE International Conference on Robotics and Automation,
pp- 20202025 (2005)

Feinberg, E.A., Shwartz, A.: Handbook of Markov Decision Processes: Methods
and Applications. Springer, Cham (2012)

Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. Pract. Exp. 30(11), 1203-1233 (2000)
Hartmanns, A., Junges, S., Katoen, J.-P., Quatmann, T.: Multi-cost bounded
reachability in MDP. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol.
10806, pp. 320-339. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89963-3_19

https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-319-89963-3_19

656

15.

16.

17.

18.

19.

20.

21.

22.

F. Blahoudek et al.

Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transfer 1-22 (2021)

Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey.
Int. J. Robot. Res. 32(11), 1238-1274 (2013)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: 6th Annual ACM
Symposium on Principles of Distributed Computing, pp. 377-410 (1990)

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46-57 (1977)

Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (2014)

United States Department of Energy. Alternative fuels data center (2019). https://
afdc.energy.gov/stations

Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov decision
processes with temporal logic specifications. In: 51th IEEE Conference on Decision
and Control, pp. 3372-3379 (2012)

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://afdc.energy.gov/stations
https://afdc.energy.gov/stations

	Fuel in Markov Decision Processes (FiMDP): A Practical Approach to Consumption
	1 Introduction
	2 Consumption Markov Decision Processes
	3 Features of FiMDP
	3.1 Theoretical Foundations
	3.2 New Features

	4 FiMDP: What Is Under the Hood and How to Drive It
	5 FiMDPEnv: Environments for FiMDP
	5.1 UUV Environment
	5.2 AEV Environment

	6 Evaluation
	6.1 Analyzing CMDPs in FiMDP and Storm
	6.2 Goal-Leaning Solvers
	6.3 Multi-agent Allocation

	7 Conclusion
	References

