
Complementation of Emerson-Lei Automata

Abstract. We give new constructions for complementing subclasses of Emerson-
Lei automata using modifications of rank-based Büchi automata complementation.
In particular, we propose a specialized rank-based construction for a Boolean com-
bination of Inf acceptance conditions, which heavily relies on a novel way of a run
DAG labelling enhancing the ranking functions with models of the acceptance
condition. Moreover, we propose a technique for complementing generalized Ra-
bin automata, which are structurally as concise as general Emerson-Lei automata
(but can have a larger acceptance condition). The construction is modular in the
sense that it extends a given complementation algorithm for a condition 𝜑 in a way
that the resulting procedure handles conditions of the form Fin∧ 𝜑. The proposed
constructions give upper bounds that are exponentially better than the state of the
art for some of the classes.

1 Introduction
Complementation of 𝜔-automata is an important operation in formal verification with
various applications, for example in model checking wrt expressive temporal logics such
as QPTL [25] or HyperLTL [10]; testing language inclusion of 𝜔-automata, or in deci-
sion procedures of various logics [6,21]. For Büchi automata (BAs)—i.e., 𝜔-automata
with the simplest acceptance condition—complementation has been, from the theoreti-
cal point of view, thoroughly explored, starting with constructions having the 22O(𝑛) state
complexity [6] coming down to constructions asymptotically matching the lower bound
Ω((0.76𝑛)𝑛) (modulo a polynomial factor) [38,1]. Over the years, 𝜔-automata with
more complex acceptance conditions (such as generalized Büchi (GBAs), (generalized)
Rabin/Streett, parity) have found uses in practice. The most general acceptance condition
used is the so-called Emerson-Lei condition [11], which is an arbitrary Boolean formula
consisting of Fin and Inf atoms. Fin( 𝑐 ) denotes that all transitions labeled with 𝑐 must
occur only finitely often in an accepting run and Inf ( 𝑐 ) denotes that there must be a tran-
sition labeled with 𝑐 occurring infinitely often. There are two main reasons for using
more complex acceptance conditions: (i) more compact representation of automata and
(ii) the ability to determinize (deterministic BAs are strictly less expressive than BAs).

From the theoretical point of view, precise bounds on complementation of au-
tomata with more complex acceptance condition is much less researched, demonstrated
by the best upper bound for (transition-based) Emerson-Lei automata (TELAs) being
22
O(𝑛) [37] states. Here, the O in the exponent can hide a linear (or constant) factor,

which would have a doubly-exponential effect, giving little information about the actual
complexity. In this paper, we present complementation algorithms for several subclasses
of TELAs and thoroughly study their complexity, giving better upper bounds than the
currently-best known algorithms.
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Our contributions can be summarized as follows:

1. We propose a rank-based complementation algorithm for Inf-TELAs, i.e., TELAs
where the acceptance condition does not contain any Fin atom, with the state
complexity O(𝑛(0.76𝑛𝑘)𝑛) where 𝑛 is the number of states and 𝑘 is the number of
minimal models of the acceptance condition.

2. By instantiating the previously mentioned algorithm, we obtain a complementation
algorithm for generalized Büchi automata with 𝑘 colours constructing a BA with
the state complexity O(𝑛(0.76𝑛𝑘)𝑛), which is, to the best of our knowledge, better
than the best previously known algorithms.

3. We propose a modular procedure for complementing TELAs with the acceptance
condition Fin( 𝑐 )∧𝜑 given a compatible complementation procedure for formula 𝜑.

4. Next, we instantiate the modular procedure to handle Rabin pairs (Fin( 0 )∧Inf( 1 ))
and, in turn, obtain an algorithm for complementing Rabin automata with 𝑘 Rabin
pairs with the complexity O(𝑛𝑘 (0.76𝑛)𝑛𝑘), which is, again, better than any other
algorithm that we know of.

5. Finally, we instantiate the procedure also for generalized Rabin pairs (Fin( 0 ) ∧
Inf( 1 ) ∧ . . . ∧ Inf( ℓ )) and obtain complementation constructions for generalized
Rabin automata and TELAs with the upper bound O(𝑛2𝑘 (0.76𝑛𝑘)𝑛2𝑘 ), which is the
best upper bound for complementation of general TELAs that we are aware of.

An extended version of the paper with missing proofs can be found at [20].

2 Preliminaries
We fix a finite non-empty alphabet Σ and the first infinite ordinal 𝜔. For 𝑘 ∈ 𝜔, we
use ⌊⌊𝑘⌋⌋ to represent the largest even number less than or equal to 𝑘 , e.g., ⌊⌊43⌋⌋ = ⌊⌊42⌋⌋ =
42. An (infinite) word 𝑤 is a function 𝑤 : 𝜔→ Σ where the 𝑖-th symbol is denoted as 𝑤𝑖 .
Sometimes, we represent𝑤 as an infinite sequence𝑤 = 𝑤0𝑤1 . . . We denote the set of all
infinite words over Σ as Σ𝜔; an 𝜔-language is a subset of Σ𝜔 . We use · for ellipsis, e.g.,
if interested only in the second component of a triple, we may write the triple as (·, 𝑥, ·).

2.1 Emerson-Lei Acceptance Conditions

Given a set Γ = {0, . . . , 𝑘 − 1} of 𝑘 colours (often depicted as 0 , 1 , etc.), we define
the set of Emerson-Lei acceptance conditions EL(Γ) as the set of formulae constructed
according to the following grammar:

𝛼 ::= tt | ff | Inf (𝑐) | Fin(𝑐) | (𝛼 ∧ 𝛼) | (𝛼 ∨ 𝛼)

for 𝑐 ∈ Γ. The satisfaction relation |= for a set of colours 𝑀 ⊆ Γ and a condition 𝛼 is
defined inductively as follows (for 𝑐 ∈ Γ):

𝑀 |= tt , 𝑀 |= Fin(𝑐) iff 𝑐 ∉ 𝑀, 𝑀 |= 𝛼1 ∨ 𝛼2 iff 𝑀 |= 𝛼1 or 𝑀 |= 𝛼2,

𝑀 ̸ |= ff , 𝑀 |= Inf (𝑐) iff 𝑐 ∈ 𝑀, 𝑀 |= 𝛼1 ∧ 𝛼2 iff 𝑀 |= 𝛼1 and 𝑀 |= 𝛼2.

If 𝑀 |= 𝛼, we say that 𝑀 is a model of 𝛼 We denote by |𝛼 | the number of atomic
conditions contained in 𝛼, where multiple occurrences of the same atomic condition are
counted multiple times.
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2.2 Emerson-Lei Automata
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𝑠
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Inf( 0 ) ∧ Inf( 1 )

Fig. 1: Aex

A (nondeterministic) transition-based1 Emerson-Lei automaton
(TELA) over Σ is a tuple A = (Q, 𝛿, 𝐼, Γ, p,Acc), where Q is
a finite set of states (we often use 𝑛 to denote |Q|), 𝛿 ⊆ Q×Σ×Q is
a set of transitions2, 𝐼 ⊆ Q is the set of initial states, Γ is the set of
colours, p : 𝛿→ 2Γ is a colouring of transitions, and Acc ∈ EL(Γ).
We use 𝑝

𝑎→ 𝑞 to denote that (𝑝, 𝑎, 𝑞) ∈ 𝛿 and sometimes treat 𝛿
as a function 𝛿 : Q × Σ → 2Q . Moreover, we extend 𝛿 to sets of
states 𝑃 ⊆ Q as 𝛿(𝑃, 𝑎) = ⋃

𝑝∈𝑃 𝛿(𝑝, 𝑎). See Fig. 1 for an example
TELA Aex over Σ = {𝑎, 𝑏, 𝑐} with 3 colours Γ = { 0 , 1 , 2 } and
the acceptance condition Inf( 0 ) ∧ Inf( 1 ). We define |A| = |Q|.

A run of A from 𝑞 ∈ Q on an input word 𝑤 is an infinite sequence 𝜌 : 𝜔 → Q that
starts in 𝑞 and respects 𝛿, i.e., 𝜌(0) = 𝑞 and∀𝑖 ≥ 0: 𝜌(𝑖) 𝑤𝑖→ 𝜌(𝑖+1) ∈ 𝛿. Let inf (𝜌) ⊆ 𝛿

denote the set of transitions occurring in 𝜌 infinitely often and infΓ (𝜌) =
⋃{p(𝑥) | 𝑥 ∈

inf (𝜌)} be the set of infinitely often occurring colours. A run 𝜌 is accepting wrt an
acceptance condition 𝛼, written as 𝜌 |= 𝛼, iff infΓ (𝜌) |= 𝛼 and 𝜌 is accepting in A iff
𝜌 |= Acc. The language of A, denoted as L(A), is defined as the set of words 𝑤 ∈ Σ𝜔

for which there exists an accepting run in A starting with some state in 𝐼. Classical
acceptance conditions can be in this more general framework described as follows (we
only provide those used later in the paper and include their abbreviations):

– Büchi (BA): Acc = Inf( 0 ),
– co-Büchi (CBA): Acc = Fin( 0 ),
– Generalized Büchi (GBA): Acc =

∧
0≤ 𝑗<𝑘 Inf( 𝑗 ),

– Generalized co-Büchi (GCBA): Acc =
∨

0≤ 𝑗<𝑘 Fin( 𝑗 ),
– Rabin:

∨
0≤ 𝑗<𝑘 Fin(𝐵 𝑗 ) ∧ Inf(𝐺 𝑗 ),

– Generalized Rabin:
∨

0≤ 𝑗<𝑘 (Fin(𝐵 𝑗 ) ∧
∧

0≤ℓ<𝑚 𝑗
Inf(𝐺 𝑗 ,ℓ)), and

– Parity3: Fin( 0 ) ∧ (Inf( 1 ) ∨ (Fin( 2 ) ∧ (Inf( 3 ) ∨ (Fin( 4 ) ∧ . . .)))),
where 𝐵 𝑗 , 𝐺 𝑗 , 𝐺 𝑗 ,ℓ ∈ Γ for all 𝑗 , ℓ. Further, we use Inf-TELA to denote a TELA where
the acceptance condition contains no Fin atoms. We also use the syntactic sugar A =

(Q, 𝛿, 𝐼, 𝐹) to denote a (transition-based) BA that would be defined using the TELA
definition above as (Q, 𝛿, 𝐼, { 0 }, {𝑡 ↦→ ∅ | 𝑡 ∈ 𝛿 \ 𝐹} ∪ {𝑡 ↦→ { 0 } | 𝑡 ∈ 𝐹}, Inf ( 0 )).

2.3 Run DAGs
In this section, we recall the terminology from [19] (which is a minor modification of the
terminology from [26] and [38]) used heavily in the paper. Let A = (Q, 𝛿, 𝐼, Γ, p,Acc)
be a TELA. We fix the definition of the run DAG of A over a word 𝑤 to be a DAG
(directed acyclic graph) G𝑤 = (𝑉, 𝐸) of vertices 𝑉 and edges 𝐸 where

1 We only consider transition-based acceptance in order to avoid cluttering the paper by dealing
with accepting states and accepting transitions. Extending our approach to state/transition-
based (or just state-based) automata is straightforward.

2 Note that there is also a more general definition of TELAs with 𝛿 ⊆ Q × Σ × 2Γ × Q; in this
paper, we use the simpler one.

3 We consider the so-called parity min odd condition; any parity condition from the set
{min,max} × {even, odd} can be easily translated to it.
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– 𝑉 ⊆ Q × 𝜔 s.t. (𝑞, 𝑖) ∈ 𝑉 iff there is a run 𝜌 of A from 𝐼 over 𝑤 with 𝜌𝑖 = 𝑞,
– 𝐸 ⊆ 𝑉 ×𝑉 s.t. ((𝑞, 𝑖), (𝑞′, 𝑖′)) ∈ 𝐸 iff 𝑖′ = 𝑖 + 1 and 𝑞′ ∈ 𝛿(𝑞, 𝑤𝑖).

𝑞, 0

𝑞, 1 𝑟, 1

𝑞, 2 𝑡, 2 𝑠, 2

𝑞, 3 𝑠, 3
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𝑎

𝑐

𝑎

𝑏

𝑐
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rank 0rank 1
model: { 1 }

rank 2

Fig. 2: A labelled run DAG
of Aex over the word
𝑐𝑎𝑎(𝑐𝑎𝑏)𝜔 ∉ L(Aex )

See Fig. 2 for an example of a run DAG of Aex from
Fig. 1 over the word 𝑐𝑎𝑎(𝑐𝑎𝑏)𝜔 ∉ L(Aex ) (we will
return to the additional labels in the figure later). Given
a DAG G = (𝑉, 𝐸), we often identify G with 𝑉 , for
instance, we will write (𝑝, 𝑖) ∈ G to denote that (𝑝, 𝑖) ∈
𝑉 . For a vertex 𝑣 ∈ G, we denote the set of vertices of G
reachable from 𝑣 (including 𝑣 itself) as reachG (𝑣) or just
reach (𝑣) if G is clear from the context. A vertex 𝑣 ∈
G is finite iff reach (𝑣) is finite and infinite if it is not
finite. In Fig. 2, the vertices (𝑠, 2), (𝑠, 3), (𝑠, 5), . . . are
finite and all other vertices are infinite. Moreover, for
a colour 𝑐 ∈ Γ, an edge ((𝑞, 𝑖), (𝑞′, 𝑖 + 1)) ∈ 𝐸 is a 𝑐 -
edge if 𝑐 ∈ p(𝑞 𝑤𝑖→ 𝑞′) and a vertex 𝑣 ∈ 𝑉 is 𝑐 -
endangered iff it cannot reach any 𝑐 -edge. For a set of
colours 𝐶 ⊆ Γ, 𝑣 is 𝐶-endangered iff it is 𝑐 -endangered
for every 𝑐 ∈ 𝐶. For example, in Fig. 2, the vertices
(𝑞, 1) and (𝑡, 2) are { 1 }-endangered but they are not
{ 0 , 1 }-endangered. A pair of vertices 𝑣1, 𝑣2 ∈ 𝑉 is
converging iff reach (𝑣1) ∩ reach (𝑣2) ≠ ∅ (𝑣1 and 𝑣2
converge). A function 𝑟 : 𝑉 → 𝜔 is a run DAG ranking if for every 𝑣 ∈ 𝑉 it holds that
∀𝑢 ∈ reach (𝑣) : 𝑟 (𝑢) ≤ 𝑟 (𝑣). We use max(𝑟) to denote the rank of 𝑟 , i.e., the maximum
value from {𝑟 (𝑢) | 𝑢 ∈ 𝑉} if it exists and ∞ otherwise. A ranking 𝑟 of G is called tight
iff there exists a level 𝑖 such that (i) 𝑚 = max{𝑟 ((𝑞, 𝑖)) | 𝑞 ∈ Q} is odd and (ii) for all
levels 𝑗 ≥ 𝑖 it holds that {1, 3, . . . , 𝑚} ⊆ {𝑟 ((𝑞, 𝑗)) | 𝑞 ∈ Q}.

3 Complementation of Inf-TELAs

In this section, we describe a complement construction for Inf-TELAs. Our approach
is an extension of rank-based BA complementation algorithms [26,14,38,24,9,16,19],
which construct a BA whose runs simulate a run DAG ranking procedure. We start
with giving the run DAG ranking procedure (which extends the ranking procedure
from [26] with the introduction of models) and then proceed to the complementation
algorithm itself. One can see our algorithm also as an improvement of the algorithm for
complementing GBAs in [28] by (i) introducing model assignments, (ii) getting better
complexity through the use of tight rankings, and (iii) generalizing the construction from
GBAs to arbitrary Inf-TELAs.

3.1 Inf-TELA Run DAG Labelling

Let A = (Q, 𝛿, 𝐼, Γ, p,Acc) be an Inf-TELA. We use Acc to denote the proposi-
tional formula obtained from Acc by replacing conjunctions by disjunctions and vice
versa, and substituting atoms of the form Inf( 𝑗 ) by 𝑗 (this can be viewed as negat-
ing Acc, transforming it into the negation normal form, substituting ¬Inf( 𝑗 ) by
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Fin( 𝑗 ), and denoting each Fin( 𝑗 ) just by 𝑗 ). Let MAcc be the set of models of
Acc where the colours 𝑗 are interpreted as propositional variables. For example,
if Acc = Inf( 0 ) ∧ (Inf( 1 ) ∨ Inf( 2 )), then Acc = 0 ∨ ( 1 ∧ 2 ) and MAcc =

{{ 0 }, { 1 , 2 }, { 0 , 1 }, { 0 , 2 }, { 0 , 1 , 2 }} (MAcc can be interpreted as saying which
combinations of Inf-conditions need to be broken in order to break Acc; in the exam-
ple above, we can, e.g., break Inf( 0 ), we can break both Inf( 1 ) and Inf( 2 ), etc.).
Furthermore, we use Mmin

Acc
to denote the set of minimal models of Acc, i.e., Mmin

Acc

is the set where (i) for every model 𝑚 ∈ MAcc, there exists a model 𝑚′ ∈ Mmin

Acc

such that 𝑚′ ⊆ 𝑚, and (ii) there are no 𝑚, 𝑚′ ∈ Mmin

Acc
such that 𝑚 ⊂ 𝑚′. We note

thatMAcc can be obtained as the upward closure ofMmin

Acc
(andMmin

Acc
is an antichain).

For the example acceptance condition above,Mmin

Acc
= {{ 0 }, { 1 , 2 }}. Moreover, we

use lex-min(Acc) to denote the lexicographically smallest model fromMmin

Acc
(w.l.o.g.,

we assumeMAcc ≠ ∅). lex-min(Acc) is used to pinpoint one model when any model
can be used.

Let G = (𝑉, 𝐸) be a run DAG of A over 𝑤. For a set of vertices 𝑈 ⊆ 𝑉 , a mapping
𝜂 : 𝑈 →Mmin

Acc
is called endangered in G if

1. 𝑈 is finite and nonempty,
2. each 𝑣 ∈ 𝑈 is 𝜂(𝑣)-endangered in G, and
3. for each pair of vertices 𝑣1, 𝑣2 ∈ 𝑈 converging in G, we have 𝜂(𝑣1) = 𝜂(𝑣2).

A function 𝑚 with the signature 𝑚 : 𝑉 → Mmin

Acc
is called a model assignment. For

instance, for Aex in Fig. 1, we have Mmin

Acc
= {{ 0 }, { 1 }} since Aex is a GBA. In

addition, for the run DAG in Fig. 2 and a set {(𝑞, 1), (𝑡, 2)}, the mapping {(𝑞, 1) ↦→
{ 1 }, (𝑡, 2) ↦→ { 1 }} is endangered in G. On the other hand, there exists no endangered
mapping for the set {(𝑠, 2)} in G, as (𝑠, 2) can reach both a 0 -edge as well as a 1 -edge.

In Algorithm 1, we give a (nondeterministic) ranking procedure that assigns ranks
and minimal models of Acc to each vertex of G. Intuitively, the algorithm starts by
giving all initially finite vertices the rank 0 and assigning their model to lex-min(Acc)
(Line 4). Then, it proceeds in iterations, each starting with the DAG G𝑖 and consisting
of two steps:

1. First, the algorithm tries to find a model assignment 𝜂 : 𝑈 → Mmin

Acc
for a finite

nonempty set of vertices 𝑈 of G𝑖 s.t. for all 𝑢 ∈ 𝑈, if 𝜂(𝑢) = { 𝑐1 , . . . , 𝑐ℓ }, then
every path in G𝑖 starting in 𝑢 satisfies the condition

∧
1≤ 𝑗≤ℓ Fin( 𝑐 𝑗 ) (the path

breaks all the Inf( 𝑐 𝑗 ) conditions, i.e., 𝜂 is endangered). If such a model assignment
exists (the choice is nondeterministic), the algorithm assigns rank 𝑖+1 to all vertices
reachable from𝑈 and removes them from the DAG, creating DAG G𝑖+1 (Lines 7–9).

2. Second, the algorithm assigns rank 𝑖 + 2 to all vertices in G𝑖+1 that became finite
(after the previous step) and removes them from the DAG, creating DAG G𝑖+2

(Lines 10–12). The counter 𝑖 is incremented by two and the next iteration continues.

The iterations end when G𝑖 is empty or when no suitable model assignment 𝜂 is found
(which happens when 𝑤 is accepted byA). Note that due to the nondeterminism within
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Algorithm 1: Inf-TELA run DAG labelling
Input: A run DAG G𝑤 of A over 𝑤, acceptance condition Acc
Output: A run DAG ranking 𝑟 and a model assignment 𝑚 if 𝑤 ∉ L(A), else ⊥

1 𝑖 ← 0, 𝑟 ← ∅, 𝑚 ← ∅; // 𝑖 ∈ 𝜔, 𝑟 : 𝑉 ⇀ {0, . . . , 2|Q|}, 𝑚 : 𝑉 ⇀Mmin

Acc
2 G0 = (𝑉0, 𝐸0) ← G𝑤 without finite vertices;
3 foreach 𝑣 ∈ G𝑤 s.t. 𝑣 is finite do
4 𝑟 (𝑣) ← 0, 𝑚(𝑣) ← lex-min(Acc);
5 while G𝑖 ≠ ∅ do
6 if ∃(𝜂 : 𝑈 →Mmin

Acc
) s.t. 𝑈 ⊆ 𝑉 𝑖 and 𝜂 is endangered in G𝑖 then

7 foreach 𝑣 ∈ 𝑈 and 𝑢 ∈ reachG𝑖 (𝑣) do
8 𝑟 (𝑢) ← 𝑖 + 1, 𝑚(𝑢) ← 𝜂(𝑣);
9 G𝑖+1 ← G𝑖 without vertices with the rank 𝑖 + 1;

10 foreach 𝑣 ∈ G𝑖+1 s.t. 𝑣 is finite in G𝑖+1 do
11 𝑟 (𝑣) ← 𝑖 + 2, 𝑚(𝑣) ← lex-min(Acc);
12 G𝑖+2 ← G𝑖+1 without vertices with the rank 𝑖 + 2;
13 𝑖 ← 𝑖 + 2;
14 else
15 return ⊥;
16 return (𝑟, 𝑚);

the algorithm, it may be possible to obtain, in two different runs of the algorithm on the
same run DAG, two different pairs (𝑟1, 𝑚1) and (𝑟2, 𝑚2) with max(𝑟1) ≠ max(𝑟2).

Example 1. See Fig. 2 for a possible labelling of the run DAG of Aex over the word
𝑐𝑎𝑎(𝑐𝑎𝑏)𝜔 . The ranking procedure proceeds in the following steps:

1. (𝑖 = 0) First, all finite vertices, which are in this example vertices of the form (𝑠, 3),
(𝑠, 5), . . . , (𝑠, 3 𝑗 + 2) for all 1 ≤ 𝑗 , are assigned rank 0 and model lex-min(Acc),
and G0 is set to be G𝑤 without those vertices. (Lines 2–4)

2. Second, we set 𝜂1 to the mapping 𝜂1 = {(𝑞, 1) ↦→ { 1 }, (𝑡, 2) ↦→ { 1 }}. The
mapping 𝜂1 is endangered in G0 because the following conditions hold:
(a) 𝜂1 is finite and nonempty,
(b) neither (𝑞, 1) nor (𝑡, 2) can reach a 1 transition, and
(c) (𝑞, 1) and (𝑡, 2) converge (in (𝑞, 3)) and they are both assigned the same model

(𝜂1 ((𝑞, 1)) = 𝜂1 ((𝑡, 2)) = { 1 }).
In particular, 𝜂1 is the endangered mapping that gives the largest number of vertices
of G0 rank 1. (Line 6)

3. Third, we assign every vertex in G0 reachable from (𝑞, 1) or (𝑡, 2) the rank 1 and
model { 1 }. (Line 7)

4. Fourth, we obtain G1 from G0 by removing vertices with rank 1. (Line 9)
5. G1 contains three vertices ({(𝑞, 0), (𝑟, 1), (𝑠, 2)}), which all get rank 2 (Line 10)

and are removed in G2 (Line 12). The ranking procedure finishes. ⊓⊔

Lemma 2. If Algorithm 1 returns ⊥, then 𝑤 ∈ L(A).
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Proof. Let Acc′ be a formula in the disjunctive normal form (DNF) equivalent to Acc,
i.e., Acc′ =

∨ℓ
𝑗=1 𝜑 𝑗 where 𝜑 𝑗 = Inf(𝑐 𝑗

1) ∧ · · · ∧ Inf(𝑐 𝑗

𝑘 𝑗
) for some ℓ and 𝑘1, . . . , 𝑘ℓ .

Note thatMmin

Acc
=Mmin

Acc′
contains sets of colours 𝑀 ⊆ Γ, each of them with at least one

colour from 𝜑1, at least one colour from 𝜑2, etc. In order for Algorithm 1 to return ⊥,
it needs to hold that there is some 𝑖 ≥ 0 such that G𝑖 is nonempty and there does not
exist any mapping 𝜂 : 𝑈 → Mmin

Acc
, with 𝑈 ⊆ 𝑉 𝑖 , that would be endangered in G𝑖 .

In particular, such a (nonempty) mapping 𝜂 does not exist iff no vertex 𝑣 ∈ G𝑖 satisfies
point (2) of the definition of an endangered mapping (i.e., when we can find an accepting
path from all vertices remaining in G𝑖). Therefore, it follows that no vertex 𝑣 ∈ G𝑖 is
𝑀-endangered for any 𝑀 ∈ Mmin

Acc
, i.e., in other words,

for every vertex 𝑣 ∈ G𝑖 there is some clause 𝜑 𝑗 such that 𝑣 can in G𝑖

reach a 𝑐
𝑗
𝑝-edge for each 1 ≤ 𝑝 ≤ 𝑘 𝑗 .

(Reach)

𝑞, 0

𝑟, 1 𝑠, 1

𝑞, 2

𝑟, 3 𝑠, 3

...

0 1

0 1

𝑞 𝑠𝑟
10

We will now construct an accepting path 𝜋 in G𝑤 . Note that not all
paths in G𝑖 are necessarily accepting (consider the TELA over a unary
alphabet and the run DAG in the right, with the acceptance condition
Inf( 0 ) ∧ Inf( 1 ); there are many non-accepting paths from (𝑞, 0)—
e.g., a path that alternates between a 𝑞-vertex and an 𝑟-vertex and never
touches any 𝑠-vertex). While constructing 𝜋, for every clause 𝜑 𝑗 we
will be tracking the information about which atom of 𝜑 𝑗 we should
see next in order to satisfy 𝜑 𝑗 on the path. In particular, we will start
from a vertex 𝑣0 that is a root vertex of G𝑖 and we will use the tuple
𝑡0 = (𝑐11, . . . , 𝑐ℓ1) to keep track of the colours. Using (Reach), it follows
that there is a clause 𝜑 𝑗 s.t. 𝑣0 can reach a 𝑐

𝑗

1-edge 𝑒1. We will set
𝑡1 = (𝑐11, . . . , 𝑐

𝑗

2, . . . , 𝑐
ℓ
1) and continue in a similar way: from every

vertex we encounter, we use (Reach) to obtain an edge that is a 𝑐-edge
for some 𝑐 in 𝑡𝑖 . In the case we need to increment some component of 𝑡𝑖 from 𝑐

𝑗

𝑘 𝑗
, we

set the new value to 𝑐
𝑗

1. The path 𝜋 is then constructed as an infinite path that goes
through the infinite sequence 𝑣0, 𝑒1, 𝑒2, . . . Note that because the sequence 𝑣0, 𝑒1, 𝑒2 . . .
is infinite, due to the pigeonhole principle there will be a clause 𝜑 𝑗 s.t. the sequence
𝑡0, 𝑡1, . . . infinitely often increments the 𝑗-th component and so 𝜋 is accepting. From 𝜋,
we can now extract the accepting run of A on 𝑤. ⊓⊔

Lemma 3. Algorithm 1 always terminates with 𝑖 ≤ 2𝑛.

Proof. Consider a run DAG G𝑤 for a word 𝑤. First observe that at the end of the main
loop of Algorithm 1 (Line 13), G𝑖 has no finite vertices (all of them were removed).
Due to Line 2, G𝑖 at the beginning of the main loop (Line 6) also has no finite vertices.
Let G𝑖

𝑚 be the DAG (𝑉 𝑖
𝑚, 𝐸

𝑖 ∩ (𝑉 𝑖
𝑚 × 𝑉 𝑖

𝑚)) where 𝑉 𝑖
𝑚 = {(𝑞, 𝑗) ∈ 𝑉 𝑖 | 𝑗 ≥ 𝑚}, i.e., the

projection ofG𝑖 from level𝑚 down, andwidth (G𝑖
𝑚) be the maximum number of vertices

on any level of the run DAG below level 𝑚, formally, width (G𝑖
𝑚) = max{|{(𝑞, 𝑗) :

(𝑞, 𝑗) ∈ 𝑉 𝑖
𝑚}| : 𝑗 ≥ 𝑚}. From the definition of endangered mapping and the loop

on Line 7, we have that if the condition on Line 6 holds, there is some 𝑚 ∈ 𝜔 s.t.
width (G𝑖+1

𝑚 ) < width (G𝑖
𝑚). This holds because if the mapping 𝜂 is non-empty, then
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there is at least one infinite path in G𝑖 that is completely removed in the next step, i.e.,
from some level 𝑚, the width of all levels below get decreased by at least one. If the
condition on Line 6 does not hold, the algorithm terminates and we are done. From
the previous claim we have that in each successful iteration of the main loop, the width
of G𝑖+2 in the limit is at most the one of G𝑖 minus one. Since the maximum width of G𝑤
is 𝑛, then, if 𝑤 ∉ L(A), at latest G2𝑛−1

𝑚 is empty for some 𝑚 ∈ 𝜔, and hence G2𝑛 is
empty and the algorithm terminates. ⊓⊔

Lemma 4. If 𝑤 ∈ L(A), then Algorithm 1 terminates with ⊥.

Proof. Consider some 𝑤 ∈ L(A). Then, there is an accepting run 𝜌 on 𝑤 in A. We
have (𝜌 𝑗 , 𝑗) ∈ G𝑤 for all 𝑗 ∈ 𝜔; we show that (𝜌 𝑗 , 𝑗) is not 𝑀-endangered for every
𝑀 ∈ Mmin

Acc
. The fact that no 𝜌 𝑗 is finite follows from the fact that 𝜌 is infinite. Observe

that for each 𝑀 ∈ Mmin

Acc
, there is some 𝑐 ∈ 𝑀 s.t. 𝑐 ∈ Inf(𝜌) (otherwise, 𝑤 would not

be accepted byA). Therefore, (𝜌 𝑗 , 𝑗) is not 𝑀-endangered. Hence, in every iteration of
Algorithm 1, all vertices (𝜌 𝑗 , 𝑗) stay in G𝑖 . From Lemma 3 we have that Algorithm 1
always terminates, butG𝑖 ≠ ∅ for each 𝑖. Therefore, the algorithm terminates with⊥. ⊓⊔

Corollary 5. 𝑤 ∉ L(A) iff Algorithm 1 on G𝑤 terminates with (𝑟, 𝑚).

The following lemma about the ranking procedure will be useful later.

Lemma 6. If Algorithm 1 terminates with (𝑟, 𝑚), then max(𝑟) ≤ 2𝑛 and, moreover,
either max(𝑟) = 0 or 𝑟 is tight.

Proof. The first part (max(𝑟) ≤ 2𝑛) follows directly from Lemma 3. For the second
part, there are two options: either G𝑤 is finite (i.e., there is no infinite run of A on 𝑤),
in which case Algorithm 1 assigns all vertices in G𝑤 rank 0 and does not even enter the
loop at Line 5. In the other case (G is infinite), let 𝑘 = max(𝑟) if max(𝑟) is odd and
𝑘 = max(𝑟) − 1 otherwise (from the previous case, we know that 𝑘 ≥ 1). We know that
for every ℓ ∈ {1, 3, . . . , 𝑘}, there is a vertex 𝑣ℓ = (𝑞ℓ , 𝑖ℓ) ∈ G𝑤 with 𝑟 (𝑣ℓ) = ℓ (this is
because the mapping at Line 6 in the algorithm needs to be non-empty) and that such
a vertex is the beginning of an infinite path of vertices with rank ℓ. Therefore, there
needs to be a level 𝑖 containing vertices with all ranks {1, 3, . . . , 𝑘}. From the previous,
all levels 𝑗 > 𝑖 will also have all of the odd ranks up to 𝑘 . Choosing 𝑖 large enough will
prevent level 𝑖 having a vertex with an even rank higher than 𝑘 . Therefore, 𝑟 is tight. ⊓⊔

3.2 Inf-TELA Complement Construction

LetA = (Q, 𝛿, 𝐼, Γ, p,Acc) be an Inf-TELA and 𝑛 = |Q|. We define a (level) ranking to
be a function 𝑓 : Q → {0, . . . , 2𝑛}. The rank of 𝑓 is defined as 𝑓 = max{ 𝑓 (𝑞) | 𝑞 ∈ Q}.
We call a mapping 𝜇 : 𝑄 → Mmin

Acc
a level model. We say that 𝜇 is consistent wrt 𝑓

if 𝜇(𝑞) = lex-min(Acc) whenever 𝑓 (𝑞) is even. We denote the set of all level models
by LM. For a set of states 𝑆 ⊆ Q and a level model 𝜇, 𝑓 is (𝑆, 𝜇)-tight if

(i) it has an odd rank 𝑟, (ii) 𝑓 (𝑆) ⊇ {1, 3, . . . , 𝑟},
(iii) 𝑓 (Q \ 𝑆) = {0}, and (iv) 𝜇 is consistent wrt 𝑓 .
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A ranking is 𝜇-tight if it is (Q, 𝜇)-tight; we useT to denote the set of all 𝜇-tight rankings
for some level model 𝜇.

For two level rankings 𝑓 , 𝑓 ′ and two level models 𝜇, 𝜇′, we say that ( 𝑓 ′, 𝜇′) is
a consistent successor of ( 𝑓 , 𝜇) over 𝑎 ∈ Σ, denoted as ( 𝑓 , 𝜇) 𝑎

𝛿
( 𝑓 ′, 𝜇′), iff

(i) 𝜇 and 𝜇′ are consistent wrt 𝑓 and 𝑓 ′, respectively, and
(ii) for all 𝑞 ∈ Q and 𝑞′ ∈ 𝛿(𝑞, 𝑎) the following holds:

(a) 𝑓 ′ (𝑞′) ≤ 𝑓 (𝑞),
(b) (p(𝑞 𝑎→ 𝑞′) ∩ 𝜇(𝑞) ≠ ∅) ⇒ 𝑓 ′ (𝑞′) ≤ ⌊⌊ 𝑓 (𝑞)⌋⌋, and
(c) 𝜇′ (𝑞′) ≠ 𝜇(𝑞) ⇒ 𝑓 ′ (𝑞′) ≤ ⌊⌊ 𝑓 (𝑞)⌋⌋.

Intuitively, the rankings guess the ranks of states in the run DAG and the level models
guess the models assigned to states in the labelling procedure from Section 3.1. Consis-
tent successors respect the labelling procedure. On every path in a run DAG, the ranks
are nonincreasing. If some odd-ranked vertex 𝑣 has an outgoing 𝑐 -edge to 𝑣′ and 𝑐 is
in the model assigned to 𝑣, the vertex 𝑣′ has to have a lower rank than 𝑣, because when 𝑣

is removed from G𝑖
𝑤 , there is no reachable 𝑐 -edge in G𝑖

𝑤 . Moreover, if the model is
changed between 𝑣 and 𝑣′ and the rank is odd, then the rank also has to be decreased.

The complement of A is given as the BA CInfTela(A) = (Q′, 𝛿′, 𝐼 ′, 𝐹′) whose
components are defined as follows:

– Q′ = Q1 ∪ Q2 where
• Q1 = 2Q and
• Q2 = {(𝑆, 𝑂, 𝑓 , 𝑖, 𝜇) ∈ 2Q × 2Q × T × {0, 2, . . . , 2𝑛 − 2} × LM |

𝑓 is (𝑆, 𝜇)-tight, 𝑂 ⊆ 𝑆 ∩ 𝑓 −1 (𝑖)},
– 𝐼 ′ = {𝐼},
– 𝛿′ = 𝛿1 ∪ 𝛿2 ∪ 𝛿3 where
• 𝛿1 : Q1 × Σ→ 2Q1 such that 𝛿1 (𝑆, 𝑎) = {𝛿(𝑆, 𝑎)},
• 𝛿2 : Q1 × Σ→ 2Q2 s.t. 𝛿2 (𝑆, 𝑎) = {(𝑆′, ∅, 𝑓 , 0, 𝜇) | 𝑆′ = 𝛿(𝑆, 𝑎)}, and
• 𝛿3 : Q2 × Σ→ 2Q2 such that (𝑆′, 𝑂′, 𝑓 ′, 𝑖′, 𝜇′) ∈ 𝛿3 ((𝑆, 𝑂, 𝑓 , 𝑖, 𝜇), 𝑎) iff

∗ 𝑆′ = 𝛿(𝑆, 𝑎),
∗ ( 𝑓 , 𝜇) 𝑎

𝛿
( 𝑓 ′, 𝜇′),

∗ rank ( 𝑓 ) = rank ( 𝑓 ′),
∗ and

· 𝑖′ = (𝑖 + 2) mod (rank ( 𝑓 ′) + 1) and 𝑂′ = 𝑓 ′−1 (𝑖′) if 𝑂 = ∅ or
· 𝑖′ = 𝑖 and 𝑂′ = 𝛿(𝑂, 𝑎) ∩ 𝑓 ′−1 (𝑖) if 𝑂 ≠ ∅, and

– 𝐹′ = {∅ 𝑎→ ∅ ∈ 𝛿1 | 𝑎 ∈ Σ} ∪ {𝑀1
𝑎→ 𝑀2 ∈ 𝛿3 | 𝑀1 = (·, ∅, ·, ·, ·), 𝑎 ∈ Σ}

Intuitively, a run of CInfTela(A) on a word 𝑤 tries to construct the run DAG G𝑤
ofA on the same word, with rankings encoded within the states. The restrictions on 𝛿3
encode the rules from Algorithm 1. The partitioning of Q′ into Q1 and Q2 allows us
to consider only tight rankings, as in [14]. Moreover, the 𝑖-component of a macrostate
allows us to further decrease the number of states in the same way as in [38] (we know
that all states in 𝑂 have the same rank 𝑖).

Theorem 7. Let A be an Inf-TELA. Then, L(CInfTela(A)) = Σ𝜔 \ L(A).
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Proof. (⊆) We use Boolean laws and prove an equivalent statement L(A) ⊆ Σ𝜔 \
L(CInfTela(A)). Let 𝑤 ∈ L(A) be a word and 𝜌 be an accepting run of A on 𝑤.
First, let 𝜌′ be the run 𝜌′ = 𝑆0𝑆1 . . . with 𝑆0 = 𝐼 and 𝑆𝑖+1 = 𝛿1 (𝑆𝑖 , 𝑤(𝑖)) for all 𝑖 ∈ 𝜔

(i.e., 𝜌′ stays inQ1). The run 𝜌′ cannot be accepting in CInfTela(A), because 𝜌(𝑖) ∈ 𝑆𝑖
and so 𝑆𝑖 ≠ ∅ for any 𝑖 ∈ 𝜔 (in Q1, the only accepting transitions are those from state ∅
to state ∅). Second, let

𝜌′′ = 𝑆0𝑆1 . . . 𝑆𝑝 (𝑆𝑝+1, 𝑂 𝑝+1, 𝑓𝑝+1, 𝑖𝑝+1, 𝜇𝑝+1) (𝑆𝑝+2, 𝑂 𝑝+2, 𝑓𝑝+2, 𝑖𝑝+2, 𝜇𝑝+2) . . .
be a run of CInfTela(A) on 𝑤 (𝜌′′ jumps to Q2 at position 𝑝). From the construction, it
holds that ( 𝑓 𝑗 , 𝜇 𝑗 ) 𝑎

𝛿
( 𝑓 𝑗+1, 𝜇 𝑗+1) for all 𝑗 > 𝑝. Since 𝜌 is accepting inA, eventually

there will be a position 𝑘 > 𝑝 such that 𝑓𝑘 (𝜌(𝑘)), 𝑓𝑘+1 (𝜌(𝑘 +1)), 𝑓𝑘+2 (𝜌(𝑘 +2)), . . . are
all even (because there is no model satisfying 𝜌 inMmin

Acc
, so points (iib) and (iic) from

the definition of 𝑎
𝛿

will enforce this). For the sake of contradiction, assume that 𝜌′′
is accepting. Then for some position ℓ > 𝑘 , because the 𝑖-component of a macrostate
rotates over all even ranks, it holds that 𝑖ℓ = 𝑓ℓ (𝜌(ℓ)) and 𝜌(ℓ) ∈ 𝑂ℓ = 𝑓 −1

ℓ
(𝜌(ℓ)). We

can easily show by induction that for all 𝑗 ≥ ℓ, it holds that 𝜌( 𝑗) ∈ 𝑂 𝑗 ≠ ∅, which is in
contradiction with the assumption that 𝜌′′ is accepting.

(⊇) Consider any word 𝑤 ∉ L(A). From Corollary 5 and Lemma 6 it follows that
the run DAG G𝑤 has a bounded rank. If all vertices of G𝑤 are finite, then there is an
accepting run 𝜌′ on CInfTela(A) where 𝜌′ = 𝑆0𝑆1 . . .with 𝑆0 = 𝐼 and 𝑆𝑖+1 = 𝛿(𝑆𝑖 , 𝑤𝑖)
for all 𝑖 ∈ 𝜔. Otherwise, Algorithm 1 terminates with a tight ranking 𝑟 and a model 𝑚.
From the definition of 𝑎

𝛿
, there is a run

𝜌′′ = 𝑆0𝑆1 . . . 𝑆𝑝 (𝑆𝑝+1, 𝑂 𝑝+1, 𝑓𝑝+1, 𝑖𝑝+1, 𝜇𝑝+1) (𝑆𝑝+2, 𝑂 𝑝+2, 𝑓𝑝+2, 𝑖𝑝+2, 𝜇𝑝+2) . . .
such that 𝑓𝑘 (𝑞) = 𝑟 ((𝑞, 𝑘)) and 𝜇𝑘 (𝑞) = 𝑚((𝑞, 𝑘)) for all 𝑘 > 𝑝. In order to show that
𝜌′′ is acepting, we need to show that the 𝑂-component of the macrostates on the run is
empty infinitely often. Assume by contradiction that there is an index ℓ > 𝑝 such that𝑂 𝑗

is non-empty for all 𝑗 ≥ ℓ. Then, there is a vertex (𝑞, ℓ) ∈ G𝑤 s.t. 𝑟 ((𝑞, ℓ)) is even and
there are infinitely many vertices reachable from (𝑞, ℓ) with the same even rank, which
is a contradiction with the construction of 𝑟 in Algorithm 1, which would give some of
the vertices odd ranks. ⊓⊔

For the complexity analysis, we use tight (𝑛) to denote the number of 𝜇-tight level
rankings for an automaton with 𝑛 states (𝜇-tight rankings for Inf-TELAs correspond to
tight rankings for BAs). It holds that tight (𝑛) ≈ (0.76𝑛)𝑛 [14,38].

Theorem 8. The number of states of CInfTela(A) is in O(𝑘𝑛 · tight (𝑛 + 1)) =

O(𝑛(0.76𝑛𝑘)𝑛) for 𝑘 = |Mmin

Acc
|.

Proof. The set of macrostates Q1 is obtained by a simple subset construction, therefore
|Q1 | ∈ O(2𝑛). That is much smaller than O(𝑘𝑛 · tight (𝑛 + 1)), so it is sufficient to count
only the number of macrostates of the form (𝑆, 𝑂, 𝑓 , 𝑖, 𝜇). For this, we uniquely encode
each macrostate as a pair (ℎ, 𝑖) where ℎ : Q → {−2,−1, . . . , 2𝑛 − 1} ×Mmin

Acc
is defined

as follows:

ℎ(𝑞) =


(−1, 𝜇) if 𝑞 ∈ 𝑂,

(−2, 𝜇) if 𝑞 ∈ Q \ 𝑆,
( 𝑓 (𝑞), 𝜇) otherwise.

(1)
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We compute the number of encodings ℎ for a fixed 𝑖. We divide all encodings into four
groups according to the set img(ℎ)0 ∩ {−2,−1} where img(ℎ)0 denotes the set of first
elements of the pairs in img(ℎ). We show that we can obtain the bound O(𝑘𝑛 · tight (𝑛))
for each of the groups. The groups are denoted by 𝑔𝑀 with 𝑀 ⊆ {−2,−1}. For ℎ(𝑞) =
(𝑚, 𝜇), we use ℎ(𝑞)𝑚 and ℎ(𝑞)𝜇 to denote 𝑚 and 𝜇.

𝑔∅ : from the definition, 𝑓 is 𝜇-tight. The level model 𝜇 is of the form 𝜇 : Q → Mmin

Acc
,

so there are 𝑘 possible assignments for every state from Q. The number of level
models is therefore 𝑘𝑛 and |𝑔∅ | = O(𝑘𝑛 · tight (𝑛)).

𝑔{−1} : since there is at least one state 𝑞 with ℎ(𝑞)𝑚 = −1, this means that 𝑞 ∈ 𝑂 so 𝑞

has an even rank. As a consequence, at least one of the positive odd ranks of ℎ (up
to 2𝑛− 1) will not be taken, so we can infer that ℎ : Q → {−1, . . . , 2𝑛− 3} ×Mmin

Acc
.

We can therefore uniquely represent ℎ by a mapping ℎ′ by incrementing all ranks
of ℎ by two, so ℎ′ : Q → {0, . . . , 2𝑛 − 1} × Mmin

Acc
. But then ℎ′ ∈ T (𝑛) and the

number of all level models is 𝑘𝑛, so |𝑔{−1} | ∈ O(𝑘𝑛 · tight (𝑛)).
𝑔{−2,−1} : similarly as for 𝑔{−1} we get that |𝑔{−2,−1} | ∈ O(𝑘𝑛 · tight (𝑛)).
𝑔{−2} : the reasoning is similar to the one for 𝑔{−1} , with the exception that now, we

know that there is a state 𝑞 ∈ Q\𝑆, which is, according to the definition of a ranking,
assigned the rank 0. This means that one positive odd rank of ℎ is, again, not taken,
so we increment all non-negative ranks of ℎ by two and map all states in Q \ 𝑆 to 1,
obtaining a tight ranking ℎ′ ∈ T (𝑛). The number of level models is 𝑘𝑛, therefore,
|𝑔{−2} | ∈ O(𝑘𝑛 · tight (𝑛)).

Since the size of all groups is bounded by O(𝑘𝑛 · tight (𝑛)), for a fixed 𝑖, the total number
of these encodings is still O(𝑘𝑛 · tight (𝑛)). When we sum the encodings for all 𝑖’s, we
obtain that the number is bounded by O(𝑘𝑛 · tight (𝑛 + 1)), since O(𝑛 · tight (𝑛)) =
O(tight (𝑛 + 1)) [38]. The rest follows from the approximation of tight (𝑛). ⊓⊔

Corollary 9. Let A be an Inf-TELA with 𝑛 states and 𝑘 colours Γ. The number of
states of CInfTela(A) is in O(

( 𝑘
⌊𝑘/2⌋

)𝑛 · tight (𝑛 + 1)) = O(𝑛 · ( ( 𝑘
⌊𝑘/2⌋

)
· 0.76𝑛)𝑛) ⊆

O(𝑛(2𝑘 · 0.76𝑛)𝑛).

Proof. The proof of the more precise bound follows directly from Theorem 8 and the
fact that the size ofMmin

Acc
is bounded by the size of the largest antichain in 2Γ, which is

at most
( 𝑘
⌊𝑘/2⌋

)
by Sperner’s theorem. ⊓⊔

Corollary 10. Let A be a GBA with 𝑛 states and 𝑘 colours. Then the number of states
of CInfTela(A) is in O(𝑘𝑛 · tight (𝑛 + 1)) = O(𝑛(0.76𝑛𝑘)𝑛).

Proof. The proof follows directly from Theorem 8. For a GBA it holds that Acc =∨
0≤ 𝑗<𝑘 𝑗 . The formula is in DNF, henceMmin

Acc
= {{ 𝑗 } | 0 ≤ 𝑗 < 𝑘} and |Mmin

Acc
| = 𝑘 .

The number of all level models is 𝑘𝑛. ⊓⊔

We note that to the best of our knowledge, our bound on the complementation of
GBAs is better than other bounds in the literature. In particular, it is clearly better than
the bound O(𝑘𝑛 (2𝑛 + 1)𝑛) from [28], which is the best upper bound for complementing
GBAs that we are aware of. It is also better than an approach that would go through
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determinization by using the procedure in [39], which outputs a deterministic Rabin
automaton with the number states bounded by (1.47𝑛𝑘)𝑛 for large 𝑘 and 2𝑛−1 accepting
pairs, which can be complemented easily into a Streett automaton.

4 Modular Complementation of Fin( 𝒄 ) ∧ 𝝋 TELAs

In this section, we propose a modular algorithm FinCompl for complementation of
TELAs with the acceptance condition Fin( 𝑐 ) ∧ 𝜑 for any 𝜑, parameterized by an al-
gorithm for complementing TELAs with the condition 𝜑. In Section 5, we will then
instantiate the algorithm for some common acceptance conditions, eventually obtaining
an efficient complementation algorithm for general TELAs.

Let us fix a TELAA = (Q, 𝛿, 𝐼, Γ, p, Fin( 𝑐 ) ∧ 𝜑) and let Δ be 𝛿 without transitions
whose label contains 𝑐 . For a word 𝑤 ∈ Σ𝜔 , we define a relaxed run DAG (RRDAG)
over 𝑤, denoted by GΔ

𝑤 , as any sequence of states GΔ
𝑤 = (𝑆0, 𝑆1, . . . ) where 𝑆𝑖 ⊆ Q

and Δ(𝑆𝑖 , 𝑤𝑖) ⊆ 𝑆𝑖+1. Intuitively, an RRDAG over a word may contain more states on
each level than it is necessary from the reachability of Δ. Note that this definition of
RRDAGs is equivalent to having vertices of the form (𝑞, 𝑖), where 𝑞 ∈ 𝑆𝑖 with edges
given implicitly by Δ. We use these definitions interchangeably. Clearly, there may be
multiple RRDAGs over a single word, they are all, however, subgraphs of the (standard)
run DAG G𝑤 . We say that GΔ

𝑤 = (𝑆0, 𝑆1, . . . ) is accepting wrt 𝜑, written as GΔ
𝑤 |= 𝜑,

if there is a run 𝜌 = 𝑞𝑘𝑞𝑘+1 . . . for 𝑘 ≥ 0 in Δ such that for every 𝑖 ≥ 𝑘 it holds that
𝑞𝑖 ∈ 𝑆𝑖 and 𝑞𝑖+1 ∈ Δ(𝑞𝑖 , 𝑤𝑖), and, moreover, 𝜌 |= 𝜑 (i.e., the accepting run does not
need to start at the beginning of GΔ

𝑤). The reason for introducing RRDAGs is that the
algorithm for condition 𝜑 will construct a BA that runs over RRDAGs constructed using
the restricted transition relation Δ. The relaxation allows us to introduce new vertices
(not connected to the root of the RRDAG) at any level that represent runs that have seen
finitely many times a 𝑐 transition in 𝛿.

Our definition of the modular procedure FinCompl for Fin( 𝑐 ) ∧ 𝜑 is given wrt
a subprocedure for complementing a TELA with condition 𝜑. The subprocedure is
given as a tuple S𝜑

Δ
= (M,M0, SuccActΔ, SuccTrackΔ,EmptyBreak), where

(i) M is a set of macrostates,
(ii) M0 ⊆ M is a set of initial macrostates,
(iii) SuccActΔ : 2

Q × Σ ×M → 2M is an active transition function,
(iv) SuccTrackΔ : 2

Q × Σ ×M → 2M is a tracking transition function, and
(v) EmptyBreak ⊆ M is an empty-breakpoint predicate.

We use SuccΔ to denote SuccActΔ∪SuccTrackΔ (when treated as relations). Intuitively,
M is a set of macrostates given by the subprocedure for 𝜑.EmptyBreak is a condition that
has to hold for a macrostate to be accepting in S𝜑

Δ
. The transitions between macrostates

ofM are described using transition functions SuccActΔ and SuccTrackΔ. In particular,
M′ ∈ SuccΔ (𝑃′, 𝑎,M) is computed by taking the successor of the macrostate M over 𝑎,
but also while taking into account the set 𝑃′ of states (M corresponds to index 𝑖 of the
run while M′ and 𝑃′ correspond to index 𝑖 + 1) provided by FinCompl, which represent
breaking the Fin( 𝑐 ) condition. The reason for using two transition functions (SuccActΔ
and SuccTrackΔ) is that some subprocedures that we will introduce later will use two
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types of macrostates: active and tracking. For instance, if S𝜑
Δ

is a rank-based procedure
(cf. Section 5.2), active macrostates will contain breakpoints, which the construction
will try to empty, and once a breakpoint is seen, FinCompl will add some more runs
to the rank-based algorithm. The new runs might not be tight at the given point, so we
switch into the tracking mode and wait for newly added runs to become tight before
switching into the active mode again.

Let 𝑤 be a word and GΔ
𝑤 = (𝑆0, 𝑆1, . . . ) be an RRDAG over 𝑤. A Fin-run 𝑅 of S𝜑

Δ

over GΔ
𝑤 is a sequence (M0,M1, . . . ) s.t. M0 ∈ M0 and M𝑖+1 ∈ SuccΔ (𝑆𝑖+1, 𝑤𝑖 ,M𝑖) for

all 𝑖 ≥ 0. 𝑅 is accepting if EmptyBreak(M𝑖) holds for infinitely many 𝑖’s. We say that
the subprocedure S𝜑

Δ
is correct for 𝜑 if for each word 𝑤 and every RRDAG GΔ

𝑤 over 𝑤 it
holds that GΔ

𝑤 is not accepting wrt 𝜑 iff there is an accepting Fin-run 𝑅 of S𝜑
Δ

over GΔ
𝑤 .

Let us now move to the definition of FinCompl. For subprocedure S𝜑
Δ

and TELAA
given above, the algorithm will construct the BA FinCompl(S𝜑

Δ
,A) = (Q′, 𝐼 ′, 𝛿′, 𝐹′)

defined as follows:

– Q′ = {(𝑆, 𝑃,M) ∈ 2Q × 2Q ×M},
– 𝐼 ′ = {(𝐼, 𝐼,M0) | M0 ∈ M0},
– 𝛿′ = 𝛿1 ∪ 𝛿2 where
• 𝛿1 : Q′ × Σ→ 2Q

′ such that (𝑆′, 𝑃′,M′) ∈ 𝛿1 ((𝑆, 𝑃,M), 𝑎) iff
∗ 𝑆′ = 𝛿(𝑆, 𝑎),
∗ if EmptyBreak(M): 𝑃′ = 𝑆′,
∗ if ¬EmptyBreak(M): 𝑃′ = Δ(𝑃, 𝑎),
∗ M′ ∈ SuccActΔ (𝑃′, 𝑎,M),

• 𝛿2 : Q′ × Σ→ 2Q
′ such that (𝑆′, 𝑃′,M′) ∈ 𝛿2 ((𝑆, 𝑃,M), 𝑎) iff

∗ 𝑆′ = 𝛿(𝑆, 𝑎),
∗ 𝑃′ = Δ(𝑃, 𝑎),
∗ M′ ∈ SuccTrackΔ (𝑃′, 𝑎,M), and

– 𝐹′ = {(𝑆, 𝑃,M) 𝑎→ (𝑆′, 𝑃′,M′) ∈ 𝛿′ | 𝑎 ∈ Σ,EmptyBreak(M′)}.

Intuitively, the construction executes S𝜑
Δ

on the restricted transition relation Δ, while
also keeping track of all runs (in 𝑆) and runs that either need to terminate or see a 𝑐 -
transition (in 𝑃). Whenever S𝜑

Δ
clears its breakpoint, 𝑃 is re-sampled (and some new

runs can be added to S𝜑
Δ

).

Theorem 11. For a correct subprocedure S𝜑
Δ

, L(FinCompl(S𝜑
Δ
,A)) = Σ𝜔 \ L(A).

The overhead of the procedure over the subprocedure S𝜑
Δ

is at most 3𝑛-times.

Theorem 12. Suppose S𝜑
Δ
= (M, ·, ·, ·). Then |FinCompl(S𝜑

Δ
,A)| ∈ O(3𝑛 · |M|).

Proof. Since in (𝑆, 𝑃,M), it always holds that 𝑃 ⊆ 𝑆, each state of A can be in one of
the three following sets: (i) Q \ 𝑆, (ii) 𝑆 ∩ 𝑃, and (iii) 𝑆 \ 𝑃. ⊓⊔

5 Complementation of TELAs and their Subclasses

We proceed by instantiating the modular algorithm FinCompl from the previous sec-
tion for several common automata classes—co-Büchi automata, Rabin automata, parity
automata, generalized Rabin automata, and, eventually, TELAs.
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5.1 Co-Büchi Automata

As a simple demonstration of instantiation of FinCompl, we use it to create a com-
plementation algorithm for co-Büchi automata. The acceptance condition for co-Büchi
automata is Fin( 0 ) = Fin( 0 ) ∧ tt , we therefore need to provide a trivial subproce-
dure Stt = (Mtt ,Mtt

0 , SuccAct
tt
Δ , ∅,EmptyBreaktt ) that is correct for tt (notice that

SuccTrackttΔ is empty). In the subprocedure,Mtt = 2Q ,Mtt
0 = {𝐼}, and the remaining

components are given as follows:

SuccActttΔ (𝑃, 𝑎, 𝑆) = {𝑃} and EmptyBreaktt (𝑃) ⇐⇒ 𝑃 = ∅.

Intuitively, the instantiated procedure works with macrostates (𝑆, 𝑃, 𝑃) (i.e., to adhere
to the formal definition of FinCompl, 𝑃 is there twice) where 𝑆 tracks all runs and 𝑃 is
a breakpoint that contains runs that yet need to either terminate or see 0 . To accept, 𝑃
needs to be emptied infinitely often. One can observe that FinCompl(Stt ,A) resembles
the well-known Miyano-Hayashi construction [34] for complementation of co-Büchi
automata.

Lemma 13. The subprocedure Stt is correct for the acceptance condition tt .

Corollary 14. For a co-Büchi automaton A, L(FinCompl(Stt ,A)) = Σ𝜔 \ L(A).

Proof. Follows from Lemma 13 and Theorem 11. ⊓⊔

Since the result of the construction can be mapped to the Miyano-Hayashi’s algo-
rithm [34], the complexities also match.

Corollary 15. |FinCompl(Stt ,A)| ∈ O(3𝑛).

5.2 Rabin Automata

In this section, we give an instantiation of FinCompl with subprocedure Sinf = (M inf ,
M inf

0 , SuccActinfΔ , SuccTrackinfΔ ,EmptyBreakinf ) for Inf( 1 ), which will allow us to
complement TELAs where the acceptance condition is a single Rabin pair. The algorithm
is based on the optimal rank-based BA complementation algorithm from [38] adjusted to
the needs of the modular construction. The macrostates of the instantiation are given as

M inf =

M inf
Act︷                                         ︸︸                                         ︷

2Q ∪ (T × 2Q × {0, 2, . . . , 2𝑛 − 2}) ∪

M inf
Track︷                          ︸︸                          ︷

(T × {0, 2, . . . , 2𝑛 − 2})

where M inf
0 = {𝐼}. Notice that active macrostates (M inf

Act) are either sets of states
(from 2Q , just keeping track of all runs) or states of the form ( 𝑓 , 𝑂, 𝑖) (representing tight
runs). On the other hand, tracking macrostates (M inf

Track) are of the form ( 𝑓 , 𝑖); these are
used to wait for newly arrived runs to become tight. The remaining components are then
defined as follows:
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(b) The resulting complement automaton with the acceptance con-
dition Inf( 0 ). The macrostates are depicted in the form 𝑆 (grey),
𝑃 (blue), M (green).

Fig. 3: Example of FinCompl instantiated with Sinf for complementation of automata
with the acceptance condition containing a single Rabin pair.

– ( 𝑓 ′ , 𝑂′ , 𝑖′ ) ∈ SuccActinf
Δ
(𝑃, 𝑎, ( 𝑓 , 𝑂, 𝑖) ) iff

• 𝑓 ⊑𝑎
Δ

𝑓 ′ and rank ( 𝑓 ) = rank ( 𝑓 ′ ) ,
• dom( 𝑓 ′ ) = 𝑃,
• 𝑂 ≠ ∅,
• 𝑖′ = 𝑖,
• 𝑂′ = Δ(𝑂, 𝑎) ∩ 𝑓 ′−1 (𝑖)

– ( 𝑓 ′ , 𝑖′ ) ∈ SuccActinf
Δ
(𝑃, 𝑎, ( 𝑓 , 𝑂, 𝑖) ) iff

• 𝑓 ⊑𝑎
Δ

𝑓 ′ and rank ( 𝑓 ) = rank ( 𝑓 ′ ) ,
• 𝑂 = ∅,
• 𝑖′ = (𝑖 + 2) mod (rank ( 𝑓 ′ ) + 1)

– 𝑃′ ∈ SuccActinf
Δ
(𝑃, 𝑎, 𝑃) iff

• 𝑃′ = 𝑃

– ( 𝑓 ′ , 𝑖′ ) ∈ SuccTrackinf
Δ
(𝑃, 𝑎, 𝑃) iff

• 𝑓 ′ is 𝑃-tight
• 𝑖′ = 0

– { ( 𝑓 ′ , 𝑖′ ) , ( 𝑓 ′ , 𝑂′ , 𝑖′ ) } ⊆ SuccTrackinf
Δ
(𝑃, 𝑎, ( 𝑓 , 𝑖) ) iff

• 𝑓 ⊑𝑎
Δ

𝑓 ′ and rank ( 𝑓 ) = rank ( 𝑓 ′ ) ,
• 𝑂′ = 𝑓 ′−1 (𝑖′ ) ,
• 𝑖′ = 𝑖

– EmptyBreakinf ( ( 𝑓 , 𝑂, 𝑖) ) ⇐⇒ 𝑂 = ∅
– EmptyBreakinf (𝑃) ⇐⇒ 𝑃 = ∅
– EmptyBreakinf ( ( 𝑓 , 𝑖) ) ⇐⇒ false

An example of the construction is shown in Fig. 3. The correctness of the instantiation
is then summarized by the following lemma.

Lemma 16. The subprocedure Sinf is correct for the acceptance condition Inf( 1 ).

Proof (Sketch). In order to show that the subprocedure Sinf is correct, we need to show
that for each word 𝑤 and every RRDAG GΔ

𝑤 it holds that GΔ
𝑤 is not accepting wrt Inf ( 1 )

iff there is an accepting Fin-run of Sinf over GΔ
𝑤 . We begin with the proof of the statement

from left to right. Assume that GΔ
𝑤 is not accepting wrt Inf ( 1 ). There is either no run

of GΔ
𝑤 on 𝑤 at all or all runs do not satisfy the formula. If there is no run of GΔ

𝑤 on
𝑤, then there is a sequence (𝑀0, 𝑀1, . . .) where 𝑀0 = 𝐼 and 𝑀 𝑗+1 = Δ(𝑀 𝑗 , 𝑎) for all
𝑗 ≥ 0 such that there is some 𝑖 ≥ 0 such that 𝑀𝑙 = ∅ for all 𝑙 ≥ 𝑖. The predicate
EmptyBreak(𝑀𝑙) is true for all 𝑙 ≥ 𝑖, so it holds infinitely often, and there therefore
exists an accepting run of Sinf overGΔ

𝑤 . Now assume that there is a run ofGΔ
𝑤 on 𝑤. Then,

no matter from which point there are no transitions from 𝑐 , the condition Inf( 1 ) does
not hold for the particular run. With every transition ( 𝑓 , 𝑖) → ( 𝑓 ′, 𝑂′, 𝑖′) we sample
all currently reachable states and then check that all runs from these states contain
transitions from 1 only finitely often by modified Schewe’s rank-based algorithm. The
𝑂-component is emptied infinitely often and so there is an accepting run of Sinf over GΔ

𝑤 .
Now we prove the equivalence in the opposite direction. Assume that there is an

accepting run of Sinf over GΔ
𝑤 . There is therefore a run where the EmptyBreak predicate
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is true infinitely often. The first possible option is that EmptyBreak(𝑃) is true infinitely
many times. That can happen only if there is no run on 𝑤 and GΔ

𝑤 is finite. If there is
no such run, the formula is not satisfied and GΔ

𝑤 is not accepting. The second option is
that EmptyBreak(( 𝑓 , 𝑂, 𝑖)) is true infinitely many times. That means that the formula
Inf( 1 ) does not hold for any run, no matter when the run stops containing transitions
from 𝑐 . The formula is therefore not satisfied in any run and GΔ

𝑤 is not accepting. ⊓⊔

The following lemma shows that using our approach, handling the Fin( 𝑐 ) condition is
“for free,” i.e., the asymptotical complexity stays the same as for the optimal algorithm
for BA complementation from [38].

Lemma 17. |FinCompl(Sinf ,A)| ∈ O(tight (𝑛 + 1)).

Proof. It suffices to count the number of macrostates of the form (𝑆, 𝑃, 𝑓 , 𝑂, 𝑖). Consider
a macrostate (𝑆, 𝑃, 𝑓 , 𝑂, 𝑖). We uniquely encode the macrostate as (ℎ, 𝑖) where ℎ : Q →
{−3, . . . , 2𝑛 − 1} is defined as follows:

ℎ(𝑞) =


−1 if 𝑞 ∈ 𝑂,

−2 if 𝑞 ∈ Q \ 𝑆,
−3 if 𝑞 ∈ 𝑆 \ 𝑃, and
𝑓 (𝑞) otherwise.

(2)

For a fixed 𝑖 we compute the number of such encodings ℎ. First we divide all encodings
into groups according to the set img(ℎ) ∩ {−3,−2,−1} (8 groups at most) and we will
show for each of the groups how we can “shuffle” the ranks in ℎ to obtain the bound
O(tight (𝑛)) for each of the groups. We will denote each of the groups by 𝑔𝑀 with
𝑀 ⊆ {−3,−2,−1}.

𝑔∅ : from the definition, 𝑓 is tight so |𝑔∅ | = O(tight (𝑛))
𝑔{−1} : since there is at least one state 𝑞 with ℎ(𝑞) = −1, this means that 𝑞 ∈ 𝑂

so 𝑞 has an even rank. As a consequence, at least one of the positive odd ranks
of ℎ will not be taken, so we can infer that ℎ : Q → {−1, . . . , 2𝑛 − 3}. We can
therefore uniquely map ℎ to a mapping ℎ′ by incrementing all ranks of ℎ by two, so
ℎ′ : Q → {1, . . . , 2𝑛 − 1}. But then ℎ′ ∈ T (𝑛), so |𝑔{−1} | ∈ O(tight (𝑛)).

𝑔{−2,−1} : via the same reasoning as for 𝑔{−1} we get that |𝑔{−2,−1} | ∈ O(tight (𝑛)).
𝑔{−2} : the reasoning is similar to the one for 𝑔{−1} , with the exception that now, we

know that there is a state 𝑞 ∈ Q\𝑆, which is, according to the definition of a ranking,
assigned the rank 0. This means that one positive odd rank of ℎ is, again, not taken,
so we increment all non-negative ranks of ℎ by two and map all states in Q \ 𝑆 to 1,
obtaining a tight ranking ℎ′ ∈ T (𝑛). Therefore, |𝑔{−2} | ∈ O(tight (𝑛)).

𝑔{−3} : the reasoning is, again, similar to the one for 𝑔{−1} , with the exception that
now, we know that there is a state 𝑞 ∈ 𝑆 \ 𝑃 such that its rank is, according
to the definition 0. Therefore, we increment all non-negative ranks of ℎ by two
and map the states in 𝑆 \ 𝑃 to 1, obtaining a tight ranking ℎ′ ∈ T (𝑛); therefore,
|𝑔{−3} | ∈ O(tight (𝑛)).

𝑔{−3,−2} , 𝑔{−3,−1} : similarly as for 𝑔{−2} , we increment all non-negative ranks of ℎ by
two and set ℎ′ (𝑞) = 0 if ℎ(𝑞) = −3 and ℎ′ (𝑞) = 1 if ℎ(𝑞) = −2 (resp. if ℎ(𝑞) = −1).
Then ℎ′ ∈ T (𝑛) and so |𝑔{−3,−2} | = O(tight (𝑛)) and |𝑔{−3,−1} | ∈ O(tight (𝑛)).



104 V. Havlena et al.

𝑔{−3,−2,−1} : in this case, we know that there is at least one state 𝑞1 ∈ 𝑂 and at least one
state 𝑞2 ∈ Q \ 𝑆. Therefore, there will be at least two odd positions not taken in ℎ,
so we can infer that ℎ : {−3, . . . , 2𝑛 − 5}. We create ℎ′ by incrementing all ranks
in ℎ by four; in this way, we obtain a tight ranking ℎ′ : Q → {0, . . . , 2𝑛 − 1}, so
|𝑔{−3,−2,−1} | ∈ O(tight (𝑛)).

Since the size of all groups is bounded by O(tight (𝑛)), for a fixed 𝑖, the total number
of these encodings is still O(tight (𝑛)). When we sum the encodings for all possible 𝑖’s,
we obtain that the number is bounded by O(tight (𝑛 + 1)), since O(𝑛 · tight (𝑛)) =
O(tight (𝑛 + 1)) [38]. ⊓⊔

The modular construction instantiated withSinf gives us a procedure for complement-
ing Rabin automata with a single pair. To get a procedure for general Rabin automata,
we construct a complement automaton for each Rabin pair, make a product of these
automata, and obtain a GBA accepting the complement of the original automaton. The
complexity reasoning is straightforward and is summarized by the following corollary.

Corollary 18. Let A be a Rabin automaton with 𝑘 Rabin pairs. Then we can con-
struct a GBA accepting the complement of the language of A with O(tight (𝑛 + 1)𝑘) =
O(𝑛𝑘 (0.76𝑛)𝑛𝑘) states and 𝑘 colours.

Proof.O(tight (𝑛+1)𝑘)=O((𝑛 ·tight (𝑛))𝑘)=O((𝑛(0.76𝑛)𝑛)𝑘)=O(𝑛𝑘 (0.76𝑛)𝑛𝑘) ⊓⊔

To the best of our knowledge, the state complexity of our procedure is better than
the complexity of other approaches for complementing Rabin automata (even if we
require the output to be a BA and not a GBA—the BA would have O(𝑘 · tight (𝑛 +
1)𝑘) = O(𝑘𝑛𝑘 (0.76𝑛)𝑛𝑘) states). In particular, it is better than the complexity O(𝑘 ·
3𝑛 · (2𝑛 + 1)𝑛𝑘) of [27]. Comparing the two techniques, the main difference is that our
modular approach allows us to use tight rankings (and the optimal construction of, e.g.,
Schewe [38]), which are a significant factor in decreasing the size of the complement
(both in theory and in practice). On the other hand, [27] does not use tight rankings
(their run DAG ranking procedure does not allow it since ranks can change arbitrarily
when a Fin state is encountered), however, it performs the complementation for the 𝑘

Rabin pairs at once and avoids performing the product. The complexity of our approach
is better; combining the two approaches to get an even better complexity is future work.

The complexity of our approach is also better than the complexity of a proce-
dure that would first transform the input Rabin automaton into a BA with 𝑚 = 𝑛𝑘

states and run the optimal BA complementation with complexity O(𝑚(0.76𝑚)𝑚) =
O(𝑛𝑘 (0.76𝑛𝑘)𝑛𝑘) [38], as shown by the following lemmas.

Lemma 19. O(𝑛𝑘 (0.76𝑛)𝑛𝑘) ⊂ O(𝑘 · 3𝑛 · (2𝑛 + 1)𝑛𝑘)

Proof. 𝑛𝑘 (0.76𝑛)𝑛𝑘 = ( 𝑛
√
𝑛 · 0.76𝑛)𝑛𝑘 . The global maximum of the function 𝑛

√
𝑛 is less

than 1.5, so ( 𝑛
√
𝑛 · 0.76𝑛)𝑛𝑘 < (1.14𝑛)𝑛𝑘 < (2𝑛 + 1)𝑛𝑘 for 𝑛 ≥ 1. ⊓⊔

Lemma 20. O(𝑛𝑘 (0.76𝑛)𝑛𝑘) ⊂ O(𝑛𝑘 (0.76𝑛𝑘)𝑛𝑘)

Proof. Similar reasoning as in the proof of Lemma 19. ⊓⊔
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5.3 Parity Automata
Since the parity condition is a special case of the Rabin condition [15], we can easily
give an upper bound on the complementation of parity automata.
Lemma 21. For a parity automatonA with index 𝑘 , there is a GBA for the complement
of L(A) with 𝑘

2 colours and O(tight (𝑛+1) 𝑘2 )=O(𝑛 𝑘
2 (0.76𝑛) 𝑛𝑘2 ) states.

Proof. The min-odd parity acceptance condition is of the form Acc = Fin( 0 ) ∧
(Inf( 1 ) ∨ (Fin( 2 ) ∧ (Inf( 3 ) ∨ (Fin( 4 ) ∧ . . .)))). If we transform the acceptance
condition into the DNF, we obtain Acc′ = (Fin( 0 ) ∧ Inf( 1 )) ∨ (Fin( 0 + 2 ) ∧ Inf( 1 +
3 )) ∨ (Fin( 0 + 2 + 4 ) ∧ Inf( 1 + 3 + 5 )) ∨ . . . which is a Rabin acceptance condition
with 𝑘

2 Rabin pairs. In the condition, e.g., 0 + 2 denotes union of colours 0 and 2 ,
obtained by changing all occurrences of 0 and 2 in A’s colouring function p to the
new colour 0 + 2 . Note that we can use a new colour for each union of colours and
we obtain the same number of colours as in Acc. According to Corollary 18, the parity
automaton A can be complemented into a GBA with O(tight (𝑛 + 1) 𝑘2 ) states. ⊓⊔
We note that the complexity obtained by our general procedure is worse than the best
one we are aware of, which is 2O(𝑛 log 𝑛) [7].

5.4 Generalized Rabin Automata
Recall that the generalized Rabin pair is of the form Fin( 0 )∧∧𝑛

𝑗=1 Inf( 𝑗 ). We can now
easily combine the procedure for (standard) Rabin automata from the previous section
and the procedure for Inf-TELA from Section 3.2 to construct the subprocedure S∧inf
for

∧𝑛
𝑗=1 Inf( 𝑗 ). The set of macrostates will be

M∧inf = 2Q ∪ (T × 2Q × {0, 2, . . . , 2𝑛 − 2} × LM) ∪ (T × {0, 2, . . . , 2𝑛 − 2} × LM)

Details are given in [20]. Similarly to Sections 3.2 and 5.2, one can then obtain the
following bound on the size of the complement.
Lemma 22. Let A be a generalized Rabin automaton with one generalized Rabin pair
with ℓ Infs. Then, there exists a BA accepting the complement ofA with O(ℓ𝑛tight (𝑛 +
1)) = O(𝑛ℓ𝑛 (0.76𝑛)𝑛) states.
Theorem 23. LetA be a generalized Rabin automaton with 𝑘 generalized Rabin pairs,
each with at most ℓ Infs. Then, there exists a GBA with 𝑘 colours and O(ℓ𝑛𝑘tight (𝑛 +
1)𝑘) = O(𝑛𝑘 (0.76ℓ𝑛)𝑛𝑘) states accepting Σ𝜔 \ L(A).
There is not much work on the complementation of generalized Rabin automata or
general TELAs (we are only aware of the upper bound 22

O(𝑛) from [37])). One could
approach the complementation by translation of the generalized Rabin automaton into
a GBA using the technique from [22]. The technique first performs Fin-removal, i.e., it
makes 𝑘 copies of A, each with the corresponding Fin-transitions removed, obtaining
a GBA with 𝑛(𝑘 + 1) states and ℓ colours (one can share colours across the independent
copies). After that, we could use our GBA complementation algorithm from Section 3,
which would give us a BA with O(𝑛(𝑘 +1) (0.76ℓ𝑛(𝑘 +1))𝑛(𝑘+1) ) states, which is worse.

Lemma 24. O(𝑛𝑘 (0.76ℓ𝑛)𝑛𝑘) ⊂ O(𝑛(𝑘 + 1) (0.76ℓ𝑛(𝑘 + 1))𝑛(𝑘+1) )
Proof (Idea). Let us observe the behaviour of the fraction with a simplified right-hand
side: 𝑛𝑘 (0.76ℓ𝑛𝑘 )𝑛𝑘

𝑛𝑘 (0.76ℓ𝑛)𝑛𝑘 = 𝑛𝑘𝑛𝑘+1

𝑛𝑘 . There are two options:

(i) 𝑛 ≥ 𝑘: in this case, 𝑘𝑛𝑘 ≫ 𝑛𝑘 and the claim holds.
(ii) 𝑘 ≥ 𝑛: in this case, 𝑘 𝑘 ≫ 𝑛𝑘 and the claim holds. ⊓⊔
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5.5 General TELAs

For complementation of general TELAs, we use the fact that any TELA can be converted
into a generalized Rabin automaton with the same structure by modifying the acceptance
condition into the DNF form (and not touching the structure of the automaton). For
a TELA with 𝑘 colours, the DNF will have at most 2𝑘 clauses (i.e., generalized Rabin
pairs), each one with at most 𝑘 literals.

Theorem 25. LetA be a TELA with 𝑘 colours. Then, there exists a GBA with 2𝑘 colours
and O(𝑘𝑛2𝑘 tight (𝑛 + 1)2𝑘 ) = O(𝑛2𝑘 (0.76𝑛𝑘)𝑛2𝑘 ) states accepting Σ𝜔 \ L(A).
Proof. By substituting to Theorem 23. ⊓⊔

6 Related Work

Lower bounds for complementation of classes of 𝜔-automata using the full automata
technique were established in [45] (improving the previous Ω(𝑛!) lower bound of
Michel [33]). The technique was later generalized to improve the lower bound of Rabin
automata complementation [8]. A double exponential lower bound for complementation
of general Emerson-Lei automata was given in [37]. See the survey in [4] for more details.

Simultaneously to establishing the lower bound, there emerged algorithms for deter-
minizing and complementing various classes of 𝜔-automata. The optimal determiniza-
tion approach for GBAs introduced in [39] yields a deterministic Rabin automaton with
the number of states bounded by (1.47𝑛𝑘)𝑛 for large 𝑘 and 2𝑛 − 1 Rabin pairs. In [13],
the Miyano-Hayashi construction [34] is used within Büchi determinization. Rank-based
complementation of GBAs was proposed in [28]. Furthermore, there are approaches
for semideterminization-based complementation of GBAs [3] with double exponential
complexity. Regarding other acceptance conditions, determinization of parity automata
based on root history trees was proposed in [40]. A rank-based complementation of
Streett and Rabin automata was introduced in [27] and later improved by tree structures
in [7]. Tight determinization of Streett automata was presented in [43]. A tight comple-
mentation technique for parity automata based on flattened nested history trees was then
proposed in [41]. A lot of effort has been put into complementation of Büchi automata
leading to algorithms roughly divided into several groups: Ramsey-based [5,6,42], rank-
based [16,19,18,44,26,38], determinization-based [36,35,30], slice-based [23], and oth-
ers [1,17,31]. There are specialized more efficient algorithms for subclasses of BAs, such
as inherently-weak [34], deterministic [29], semideterministic [2], elevator [19,17], or
unambiguous [32,12] BAs.
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with ranker. In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
II, volume 13372 of Lecture Notes in Computer Science, pages 188–201. Springer, 2022.
doi:10.1007/978-3-031-13188-2\_10.
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