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Abstract

The reliability of a network is a crucial requirement for systems

such as IoT, client-server, or cloud-based solutions. Unfortunately,

real networks cannot be assumed to be fault-free, especially when

considering various hardware problems, performance issues, or

malicious attacks. Testing networked systems should therefore in-

clude evaluating fault tolerance under various network conditions.

The paper presents a doctoral research project on automated veri�-

cation of networked systems using fault-attack injection using a

derived model of network communication.

CCS Concepts

• Computer systems organization→ Reliability; • Software

and its engineering→ Software testing and debugging.
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1 Introduction

The development of networked systems commonly occurs in lab-

oratory conditions having, e.g., negligible delays and zero losses.

However, real-world network communication does not have such

properties due to physical limitations, presence of other partici-

pants, etc. Therefore, non-negligible delays, losses, reordering, or

(targeted) data alteration must be considered when deploying net-

worked systems in a real-world environment [24].

Poor treatment of imperfect networking can lead to system fail-

ures that can be costly and dangerous, especially for cyber-physical

or autonomous systems—e.g., remotely controlled vehicles. There-

fore, developing and testing reliable networked systems must con-

sider various network events—faults (unintentionally occurring)

and attacks (purposefully created).

Problem: Testing a networked system is complex, time-consuming,

and it often requires highly specialised expertise to, e.g., modify

lower-level networking (hardware or software/OS-kernel-based).

Moreover, the number of test scenarios rises rapidly with di�erent
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network events on which the networked system must be evaluated

due to their possible combinations.

Objectives: Our approach sketched in Section 2 aims to (i) stream-

line, accelerate, and simplify testing and verifying of networked

systems; (ii) bring the development conditions of networked sys-

tems closer to real-world situations—using fault-attack-injection;

and (iii) provide the means to (semi-)automatically evaluate the

correctness of the communication implementation—using criteria

such as expected response to various injected faults and attacks or

coverage of tested edge cases.

2 Proposed Approach

The proposed approach to achieve the objectives set up in Sec-

tion 1 consists of the following research tasks. First, new techniques

for monitoring real-world network tra�c will be proposed to facili-

tate the analysis of network communications (T1). Subsequently,

techniques for automated deriving of network communication mod-

els using the results of the analyses mentioned above will be devel-

oped (T2). These models will be used to verify further communi-

cations (T3) with anomaly detection in network communication

as a feedback loop (T4). Finally, the created models will be used to

direct the creation of new, real-world-inspired network situations,

which otherwise rarely arise in the development environment (T5).

T1. Monitoring and Analysis of Network Communication:

An e�cient and �exible technique for monitoring and analysing

network communication is a crucial part of the proposed approach,

given that real-world network communication is the primary source

of information for further steps. Among analysed communication

properties, we include (1) general properties—e.g., distribution of

packets over time or their size; (2) context properties—relations be-

tween packet occurrences; and (3) content properties—e.g., analysis

of transmitted data. Unfortunately, none of the tools listed in Sec-

tion 3 monitors all these properties. Thus, this task aims to study

and develop methods that cover them.

T2. DerivingModels of Network Communication: For targeted

veri�cation of networked systems, it is necessary to have a model of

the typical communication patterns between nodes. Such a model

will be derived by monitoring and analysing the packets exchanged

between the nodes. We will review and identify suitable models and

techniques for this task (cf. Section 3) and adapt them as necessary

or create new approaches to meet our speci�c requirements. The

outcome will be a set of techniques and an accompanying tool

capable of automatically deriving models using the monitoring and

analysis means provided by Task T1.

T3. Veri�cation of Networked Systems: For verifying networked

systems, we will concentrate on model-based testing and runtime

veri�cation using the communication model(s) obtained through

Task T2. These techniques, along with the faults/attacks injection

studied in Task T5, will be used to (1) drive the generation of test
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scenarios and to (2) compare the behaviour of networked systems

in the presence of injected faults or attacks against the expected

behaviour de�ned by the model.

T4.AnomalyDetection inNetworkCommunication:An anom-

aly can be described as a situation that di�ers from the usual. In

the context of network communication, it can manifest in terms

of (1) general properties—e.g., a packet has a di�erent size or type;

(2) context properties—e.g. a missing or unexpected packet; and

(3) content properties—a packet may contain di�erent data, both

in terms of the error caused by a faulty network component or a

targeted modi�cation caused by an attack.

The anomalies can be detected using amodel describing the usual

behaviour of the network communication. Such models will be

obtained using techniques developed in Task T2. Anomaly detection

methods described in Section 3 can identify anomalies based on

statistical data in network communication. We will review and

extend these methods to detect anomalies related to context and

content properties of individual packets. This enhanced anomaly

detection will serve as a feedback loop for automated veri�cation

of the networked system in Task T3.

T5. In�uencing Network Communication: The proposed ap-

proach focuses on bringing the development conditions of net-

worked systems closer to the real ones to facilitate their verifying

using fault/attack injection. However, none of the existing tools

listed in Section 3 are suitable for that purpose. Therefore, we have

already started to develop our own tool NetLoiter [19, 20]. It should

provide a simple way to enforce various network conditions to al-

low developers to have better opportunities to verify the reliability

and cybersecurity of the networked systems.

3 Related Work

This section discusses state-of-the-art approaches related to the

topics in the proposed approach described in Section 2.

Monitoring and Analysis of Network Communication:Mul-

tiple tools aim to monitor and analyse network tra�c, including

the well-known WireShark [2] and TCPDump [11]. They primarily

focus on analysing individual packets, e.g., their contents or simple

links within the communication protocol [8, 23]. However, they do

not look for the relation between their occurrence. Even though

Deep Packet Inspection tools classify packet �ows to application

protocols, they only support a �xed set of protocols [10]. However,

to analyse a sequence of login-requests-responses-logout packets,

it is necessary to examine the packet contents and create a commu-

nication context. This includes abstracting the communication and

identifying relationships and sequencing between packets.

Deriving Models of Network Communication: A variety of

methodologies has been proposed for modelling communication in

networked systems. An approach based on FSAs is used in [3] to

model system communication, but this approach is constrained to

learning a �xed number of components. Process mining [29], a well-

established technique for modelling event-based systems, is not

considered ideal for industrial systems as it relies heavily on data

quality, which is di�cult to guarantee when dealing with computer

networks. If the data is incomplete, inaccurate, or has confused time-

lines, process mining may provide too inaccurate results [7, 13].

Anomaly detection in communication modelling [15] uses a proba-

bilistic automata-based approach. However, most communication

in industrial systems is deterministic, resulting in no probabilistic

transitions in the derived automaton. Lastly, the methodologies pre-

sented in [1, 5, 12] are at a research prototype stage, not su�ciently

mature for deployment in real-world distributed systems.

Veri�cation of Networked Systems: Verifying the correctness

of communication is complex, especially for real-world industrial

systems. Formal veri�cation uses methods with mathematical roots

to prove the system’s correctness against a formal speci�cation.

However, it requires great expertise to create and interpret for-

mal models and struggles with large-scale systems due to the state

explosion [4]. Model-based testing generates test cases from be-

havioural models. However, the quality of the generated test cases

heavily depends on the quality of the model [16], which can be

challenging to obtain in practice. Runtime veri�cation monitors

system execution for compliance but must deal with collecting and

analysing runtime data, performance overhead, and the possibility

of missing the errors [26].

Anomaly Detection in Network Communication: Anomaly

detection methods include (1) statistical methods needing large

amounts of data; (2) sampling methods observing only selected val-

ues and thus having lower memory requirements; and (3) arti�cial

intelligence methods using unsupervised learning or supervised

learning with a communication model. See, e.g., [21, 27, 28]. How-

ever, all these detection methods primarily rely on statistical proper-

ties of a packet stream and do not consider the content of individual

packets nor its semantics in the whole communication context.

In�uencing Network Communication: To create new situations

in network communication, an ability to interfere with the com-

munication, e.g., discard or delay packets, is necessary. Common

network monitoring and analysis tools are unsuitable for this task

as they work with copies of packets. Several hardware and software

tools can a�ect network communication [22]. Unfortunately, hard-

ware tools are heavy-weight, usually proprietary, and with limited

availability. Currently, the most common method of simulating

faults on a network communication is using software implemented

fault-injection. The method focuses on the e�ects of the faults as

the faults on a link layer are hard to be controlled [17].

Many tools support injection of faults into network commu-

nication. However, they are either purpose-speci�c—e.g., Virtual-

Wire [9], or general but requiring a complicated setup or experience

with networking—e.g., ThorFI [6]. Based on the technology used,

the tools can be divided to (1) simulation tools, which simulate

various network situations—e.g., OMNet++ [18] modelling entire

network infrastructures; (2) tools deployed to real systems to evaluate

the resulting implementation—e.g., Netem [14, 25] allowing to add

delays, packet losses, and other queuing disciplines. However, none

of them meets all our expectations: they are complicated to use

(Netem), do not support dynamic recon�guration (Netem), are slow

(OMNet++), do not have all the needed functionality (ThorFI), or

their use is problematic and limited as they do not directly target

fault-injection (VirtualWire).
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