
Oracleboros: Reusing Hyperledger Fabric
Mechanisms to Provide Oracle Functionality

Michal Koutenský
Faculty of Information Technology

Brno University of Technology
Brno, Czechia

0000-0001-6912-8713

Vladimı́r Veselý
Faculty of Information Technology

Brno University of Technology
Brno, Czechia

0000-0002-6346-2152

Abstract—
Index Terms—hyperledger fabric, blockchain, decentralized

oracle network, periodic transactions

I. INTRODUCTION

Blockchain technologies provide a novel approach to build-
ing distributed applications. By combining peer-to-peer net-
working, tamper-proof storage, and distributed computation,
they provide all the necessary building blocks for decentralized
applications with low level of trust between actors.

The rise of popularity of blockchain technologies has
been lead by Bitcoin. Created as an pseudonymous currency
that is resistant to government censorship, Bitcoin utilizes a
distributed, append-only ledger of transactions grouped into
blocks forming a cryptographically verifiable chain; hence the
term blockchain. The network is governed by a set of rules
on how new blocks are added, thus maintaining consensus on
the ledger state.

While Bitcoin remains the most popular and well-known
blockchain technology to this day, it has spawned numerous
successors, trying to fix some of Bitcoin’s perceived short-
comings or innovate on its design. Notable projects belonging
in the first group are Monero, Dash, PIVX, Firo @todospytat
honzu, cryptocurrencies developed with the goal of enhancing
user privacy. These projects typically use various transac-
tion obfuscation techniques (e.g., tokenization, coinjoining)
or employ zero-knowledge cryptography. For the latter, it
is important to mention Ethereum. Ethereum, like Bitcoin,
is a blockchain-based cryptocurrency. Unlike Bitcoin, whose
sole feature is the exchange of assets (and value), Ethereum
introduces the concept of smart contracts.

A smart contract is a piece of user code that is executed
within the network as part of a transaction. This places some
limitations on what the code can do, as it has to produce the
same result on all the nodes in the network that execute it.
Generally speaking, this means that it cannot interact with
any resources outside the blockchain, as such interactions
are, by their nature, non-deterministic and do not guarantee
availability. On the upside, the inputs and the result — and
even the code 1 — of such computation can be independently

Identify applicable funding agency here. If none, delete this.
1bytecode

verified. This enables parties that do not necessarily trust each
other to engage and participate in interactions more complex
than a simple asset transfer, since all parties can rely on
the blockchain network to enforce the agreed-upon rules of
interaction: the contract.

This programmability enables blockchain technologies to
serve a much wider set of use-cases. Smart contracts now
power a diverse ecosystem of decentralized applications in-
cluding Decentralized Finance (DeFi), gaming, supply chain
management, governance, and even healthcare.

Other use-cases, however, still require interaction with the
“outside world”. Examples might be querying the price of
some external asset to calculate the value for a transaction, or
checking the outcome of a sports match to reward the person
who made the closest guess. This problem is being tackled
by oracles - nodes or networks of nodes acting as a bridge
between a blockchain and external systems. Oracles monitor
blockchain activity for events which require their collabora-
tion, and then provide an external system with blockchain
information, or query an external system and write the received
information back into the blockchain, thus making it available
to smart contracts.

So far, all the blockchain technologies mentioned have been
permissionless, i.e., public networks anyone can participate in.
While having a low barrier to entry is desirable, it also comes
with some drawbacks. Most notably, the consensus mechanism
used by Bitcoin, Proof-of-Work, has been shown to consume
massive amounts of resources and have a severe destructive
impact on the Earth’s natural environment. In other cases,
mainly for use within various industries, e.g., supply chain
management, this lack of access control is undesirable.

There now exist a number of blockchain technologies at-
tempting to target these non-cryptocurrency, industrial use-
cases by being permissioned, or having the option to run
as permissioned, by design. Most notably, these exist under
the Hyperledger project umbrella, which itself is under the
Linux foundation. It contains industry-leading members such
as American Express, IBM, MasterCard, Oracle, T-Mobile,
and many others.

Hyperledger Fabric is one of these permissioned
blockchains. In addition to having an identity layer based
on TLS certificates, its most notable feature is the built-in



support of private data. This is data that is meant to be
disseminated only to a subset of a network’s peers (which
rules out writing it to the ledger), while preserving the
properties that make blockchains an attractive vehicle for
decentralized applications in the first place. It is effectively an
off-chain database whose state is determined by transactions
in combination with a gossip protocol between the peers.
Optionally, this data can have a lifetime, after which it is
deleted. Currently, the lifetime is measured in blocks. This
is unsuitable for scenarios with data retention policies which
require data to be deleted after a certain time period (days,
weeks, months...), be it a corporate policy or a government
regulation. Adapting the mechanism to work with regular SI
time units is an open research problem.

We aim to tackle this problem of timely data deletion
in Hyperledger Fabric in this paper. Section II provides an
overview of prior art, focusing on the use of oracles in
permissioned blockchains. In Section III we describe the
problem in more detail, and outline how it could be solved
with the use of oracles. In Section IV we showcase how all the
necessary building blocks are already present in Hyperledger
Fabric and propose a theoretical extension to provide this
functionality without relying on external oracle services, in
keeping with the batteries-included nature of Hyperledger
Fabric. Section V contains a discussion about the limitations
and possible extensions of our work.

II. RELATED WORK

[1]
TODOVladmir - encrypted data v smart contractoch - oracle

a ich implementacia - oracle v permissioned sietach - secure
offchain storage - usecase s periodickymi transakciami?

III. PROBLEM DESCRIPTION

One of the unique features provided by Hyperledger Fabric
are Private Collections, a confidential, mutable access storage.
Other popular blockchain technologies which support user
programmability (smart contracts) usually only provide storage
in the form of a public (with regards to network membership)
immutable ledger. For scenarios where data confidentiality
is required, the ledger contents can be encrypted to restrict
access. Alternatively, an off-chain storage can be used, with
varying levels of integration, possibly using the smart contract
to exercise access control.

All these solutions suffer from requiring additional work
to set up and maintain the supporting services. Whether it
is an external storage platform or a management scheme for
encryption secrets, these supporting services are needed for the
proper functioning of the decentralized application and thus
shape its properties. The governance, integration, and failure
modes are just some of the things that need to be considered
when building such an application. Off-chain storage can be
susceptible to tampering unless there are mechanisms in place
to prevent or detect such behavior. In the case of storing
encrypted data in the ledger, the data will stay there for
the whole lifetime of the ledger. If the decryption secrets

are leaked, or an adversary manages to break the encryption
mechanism, data confidentiality is lost.

Private Collections, by contrast, provide a confidential stor-
age that is well-integrated with the blockchain. It is deployed
as part of regular blockhain node deployment; the smart
contract API has methods to interact with it; access control
rules are analogous to those for the blockchain itself; any
activity (as it is done through smart contracts only) is logged in
the ledger by the smart contract execution environment; and
data, including its history, can be deleted while preserving
the necessary audit trail. This greatly simplifies the design
and development of applications which need this kind of
confidential data storage.

One missing feature is the ability to restrict the lifetime of
data in the system. In certain scenarios, there are requirements
on how long data can be stored, which necessitates their timely
deletion. These requirements may be regulatory and therefore
cannot be simply ignored. As a practical example, let us briefly
describe the blockchain system for exchange of Passenger
Name Records between European Passenger Information Units
that we have developed within the TENACITy project, as our
experience there directly motivated this work.

For flights which do not originate or land in an EU member
state, air carriers are required to collect Passenger Name
Records (PNR). These PNRs contain sensitive information
about the passenger, such as their personal information, book-
ing information, etc. The air carriers collect this information
and forward it to a dedicated Passenger Information Unit (PIU)
in the corresponding member state. Each member state has one
PIU which collects data for flights originating or ending in
their state. In certain cases, a PIU of one member state might
need to request some PNR data from another PIU to aid in
their investigation. This would be potentially done using our
blockchain system, which uses Private Collections to store this
data and exercise access control. However, the PNR directive
requires the data to be deleted after five years.

Within Hyperledger Fabric, the only automated possibility
right now is to set the lifetime in a number of blocks. As
blocks are generated on demand, this approach is unreliable
and therefore unsuitable for the strict requirements of handling
citizen’s personal information. The deletion can be triggered
externally, which is the approach we have chosen for our
system, but this decision comes with its own set of problems. It
means that the external service must be reliable and available
at all times, else data does not get deleted. A malicious actor
could turn it off without compromising their interaction with
the system. Even in situations where the unavailability is
unintentional and not malicious, leaving data in the system
is a liability. A system cannot leak data it does not have.

In light of European Union’s actions on protecting citizen
privacy, such as the General Data Protection Regulation and
the aforementioned PNR directive, it is likely that any other
systems attempting to transfer sensitive personal information
(e.g., finance, travel, healthcare, administration) will face sim-
ilar challenges. As such, we believe it would be valuable for
Hyperledger Fabric, a popular blockchain technology targeting



industry use-cases, to support such feature natively.

IV. PROPOSED HYPERLEDGER FABRIC EXTENSION

To automatically delete data after a certain time period, we
need three things: a) some kind of time information related
to the data’s lifetime (i.e., the creation timestamp and lifetime
duration, or the expiration timestamp); b) a function which
takes the current time and a set of data (together with the
lifetime information) and produces a subset of the data that
is meant to be deleted; and c) a way to periodically run the
function from b). We will refer to a) as cleanup metadata, to
b) as cleanup function, and to c) as cleanup trigger.

As Hyperledger Fabric if quite flexible with regards to how
data is stored and accessed, we will consider the following
setup when designing our solution. A Fabric Channel contains
n participating organizations. Each participating organization
has an m number of peers, where m can be different for each
organization. Each organization has a single corresponding
Private Collection which holds its data. These collections use
the key-value store provided by LevelDB. The organization is
responsible only for the timely deletion of data in its Private
Collection.

The capabilities provided by Fabric are very well suited for
handling both the cleanup metadata and cleanup function. A
smart contract, which we will call the cleanup contract, can
be deployed within the channel to provide this functionality.
It would have the following methods:

• AddData(collection, id, timeInfo)
• RemoveExpiredData(currentTime)
• RenameData(collection, oldId, newId)

AddData allows users to inform the contract about the
existence of new data which needs to be cleaned up. In cases
where the key associated with some data needs to be changed
(e.g., for more efficient access when using composite keys),
the cleanup contract can be informed of this change by the
RenameData method. Crucially, this preserves the associated
cleanup metadata, when compared to an otherwise equivalent
delete/add sequence. Both of these methods can be called by
other smart contracts when manipulating data as part of their
normal operation, to keep the cleanup metadata consistent.
The mechanism of storing the cleanup metadata can be im-
plemented in various ways (ledger, single private collection,
multiple private collections) depending on the confidentiality
requirements of the channel.
RemoveExpiredData is the core of the cleanup contract.

It implements the cleanup function and uses the output to
execute the side effect of actually deleting the data from the
corresponding private collection. This coupling is intentional;
leaving the responsibility of deleting the data to the caller
would weaken the guarantees we are trying to achieve.

Such a smart contract can be implemented fairly easily in
the current version of Fabric. What is missing for a fully
functioning, self-contained system, as discussed in Section III,
is the cleanup trigger.

Unlike AddData and RenameData,
RemoveExpiredData cannot be called by a user smart

contract which implements the trigger logic, as that smart
contract cannot execute its methods without having been
invoked in turn by something else, effectively only shifting
the problem around. Indeed, were it possible, the trigger
could be contained in the cleanup contract itself, avoiding
this unnecessary indirection.

This suggests that the trigger must be external, i.e., a user
manually creating a transaction, or an external application
creating a transaction on a user’s behalf (possibly an oracle).
This is how transactions are commonly created. However, this
creates a dependency on such an external service, or, in the
case of explicit user activity, is not automatic.

Due to the permissioned nature of Fabric, all the participat-
ing peer nodes have identities with corresponding organization
membership. This means they can sign transactions. A peer
could, therefore, periodically submit a transaction invoking
RemoveExpiredData on the cleanup contract. The period
can be part of the channel configuration so that it can be
adjusted for different scenarios, even during a channel’s life-
time; or, it can be part of the peer node configuration, set by
the organization as deemed necessary. As the presence of a
peer node is required for the organization’s participation in
the channel, this does not introduce any new dependency or
failure point in the system.

An organization can, however, have more than one peer. If
each peer submits such a transaction, only the first one will
be valid and the following ones will fail due to a conflict.
Such conflicts pose a scalability issue, negatively impacting
network throughput and latency [2]. Ideally, we only want
one transaction per organization per cleanup time period to be
submitted.

To achieve that, we need to select a single available peer
to act on behalf of the organization. More precisely, it is
the organization’s peers themselves which need to agree on
this. This is a familiar consensus problem common to all
sorts of distributed systems, blockchains included. In fact, it
is analogous to the problem faced by orderer nodes within a
channel, which need to agree on how to order the transactions
in a block. One of the mechanisms used by Fabric is the Raft
consensus algorithm, where the orderer nodes elect a leader
to do the actual ordering. We can apply that solution here as
well — the organization’s peer nodes will elect a leader using
Raft to submit the transaction.

V. DISCUSSION

Our proposed extension manages to provide a subset of
functionality usually provided by oracles — access to external
information, i.e., current time — without introducing addi-
tional actors and services into the system. However, it does
so under very constrained conditions.

The proposal is limited to one “cleanup period”. If the
system uses multiple kinds of data with different cleanup
periods, the period must be set to the greatest common divisor
of all the periods. This can result in a significant increase
in the number of transactions generated in certain scenarios.



Consider two periods2, 2 and 3, which share no common
divisor except 1.

TABLE I
A VISUALIZATION OF TRANSACTION GENERATION FOR PERIODS 2 AND 3

AND THEIR GREATEST COMMON DIVISOR.

Period T1 T2 T3 T4 T5 T6 Txs
2 • • • 43 • •
1 • • • • • • 6

Table I visualizes the transaction generation over a period of
their lowest common multiple. Triggered independently, this
would create 4 transactions; when merged, it creates 6, a 33%
increase in the number of transactions. For periods 4 and 7,
the results are much worse: 10 and 28 respectively, resulting
in a 65% increase — over half of the generated transactions
are not required and do no useful work.

A possible solution would be to run each period trigger in-
dependently, with its own leader election and transaction gen-
eration cycle. This suffers from a complementary problem —
generating duplicate transactions when the periods align (as
in T6 in Table I). As the number of period triggers increases,
such alignments will happen more often, possibly generating
even more than just two transactions at a time. Therefore,
the scalability of this approach requires further evaluation.
Even if the cleanup contract(s) were designed in a way to
prevent these transactions from creating collisions, the extra
transactions are redundant, as they carry the same information.
Ideally, the system would allow specifying these complex
requirements and trigger transactions accordingly, possibly
through a powerful programmable interface.

The proposal assumes that the peer nodes have correctly
synchronized time and do not behave in a malicious way.
While not completely unwarranted, as the peer nodes are in
control of the organization, we should still consider the case
where some nodes do not report the correct time. This problem
occurs in oracle networks, where even honest nodes might not
agree on the value of some data due to the natural variability of
the external data source they query [3]. Chainlink solves this
through the use of an aggregation function, which takes the
collected inputs and produces a single value, accounting for
the variations. A similar approach could be used here. This
would, in addition, allow the trigger to not only supply the
current time, but other external information obtained through
calling an external data source. For auditing purposes, the
values provided by each node could even be recorded in some
kind of immutable decentralized storage.

The proposal assumes a specific kind of channel configura-
tion, especially with regards to how data is stored in private
collections, the rules for accessing it, and the responsibility
for timely deletion. The scenario has been selected for its
simplicity and ease of understanding, as well as being closely
resembling our practical problem in the TENACITy project.
To support a wider variety of configurations, an additional

2Of your favorite unit of time.

mechanism for managing consensus groups would need to
be introduced, as it is no longer possible to use an implicit
membership (organizational association). This is similar to the
need to define channel membership.

Observant readers might have noticed that the modifications
suggested to make our proposal more general resemble fea-
tures found in blockchains and/or decentralized oracle net-
works. This connection is briefly mentioned in the Chainlink
2.0 whitepaper [1] on page 21:

A DON could in principle alternatively use a highly
performant permissionless blockchain for its ledger
in its role supporting an equally scalable layer-2 or
blockchain system. Similarly, hybridization is also
possible: The DON could in principle be composed
of nodes that are validators in an existing blockchain,
e.g., in Proof-of-Stake systems in which committees
are selected to execute transactions. This particular
mode of operation requires that nodes operate in
a dual-use manner, i.e., operate both as blockchain
nodes and DON nodes.

The whitepaper discusses Chainlink’s vision for the next
generation of their oracle service, focusing on novel features
such as off-chain data aggregation, fair transaction sequencing,
and data source authentication. It does not elaborate further on
the consequences of this hybridization.

We consider it an interesting development to have arrived at
a similar conclusion from “the other end” — instead of having
a vision of how DONs should work and considering whether
existing blockchain technologies could be utilized to support
some of its functions, we took an existing blockchain tech-
nology and tried to adapt its mechanisms to enable additional
usescases, reaching something resembling a DON.

To the best of our knowledge, there is no research studying
this duality. Hyperledger Fabric, somewhat unusually in the
blockchain landscape, already natively supports both on-ledger
and off-ledger (private collections) storage to be used by
application developers; a feature envisioned to be provided
by DONs [1]. This means that hybridization has already
been happening in practice, possibly by chance. Intentionally
designing and implementing such complete “oraclechain”, able
to provide both blockchain and oracle functionality — and thus
able to act as a supporting service for itself — could provide
valuable insight into the future of distributed applications as
envisioned by Web 3.0.

VI. CONCLUSION

ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in
America is without an “e” after the “g”. Avoid the stilted
expression “one of us (R. B. G.) thanks . . .”. Instead, try
“R. B. G. thanks. . .”. Put sponsor acknowledgments in the
unnumbered footnote on the first page.



REFERENCES

[1] Lorenz Breidenbach, Christian Cachin, Benedict Chan, et al.,
Chainlink 2.0: Next steps in the evolution of decentralized
oracle networks, Apr. 15, 2021. [Online]. Available: https : / /
research.chain.link/whitepaper-v2.pdf.

[2] A. Stoltidis, K. Choumas, and T. Korakis, “Performance opti-
mization of high-conflict transactions within the hyperledger
fabric blockchain,” in 2024 6th Conference on Blockchain
Research & Applications for Innovative Networks and Services
(BRAINS), Berlin, Germany: IEEE, Oct. 9, 2024, pp. 1–4,
ISBN: 979-8-3503-6784-3. DOI: 10.1109/BRAINS63024.2024.
10732190. [Online]. Available: https : / / ieeexplore . ieee . org /
document/10732190/ (visited on 03/08/2025).

[3] S. Ellis, A. Juels, and S. Nazarov, ChainLink: A decentralized
oracle network, Sep. 4, 2017. [Online]. Available: https : / /
research.chain.link/whitepaper-v1.pdf.


