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A B S T R A C T

Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces 
the challenge of functional annotation of identified mutations. Various algorithms have been developed to 
predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that 
handle biological data must integrate multiple software tools, which can add complexity and hinder non- 
specialist users from accessing the pipeline. Here, we have developed an online user-friendly web server tool 
PredictONCO that is fully automated and has a low barrier to access. The tool models the structure of the mutant 
protein in the first step. Next, it calculates the protein stability change, pocket level information, evolutionary 
conservation, and changes in ionisation of catalytic amino acid residues, and uses them as the features in the 
machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of held-out 
data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.97 and 0.94, and the 
average precision from the precision-recall curve of 0.99 and 0.94 for structure-based and sequence-based 
predictions, respectively. Finally, PredictONCO calculates the docking results of small molecules approved by 
regulatory authorities. We demonstrate the applicability of the tool by presenting its usage for variants in two 
cancer-associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1. Our free 
web tool will assist with the interpretation of data from next-generation sequencing and navigate treatment 
strategies in clinical oncology: https://loschmidt.chemi.muni.cz/predictonco/.

1. Introduction

In the last two decades, we have witnessed substantial technological 
advancements in human genomics, which are attributed mainly to the 
implementation of next-generation sequencing (NGS). With its ability to 
simultaneously analyse a large amount of genetic information, 
increasing availability, and decreasing costs, NGS has already been 

adopted by multiple academic and clinical laboratories and is getting to 
the forefront of medical diagnostics. This considerable progress and the 
resulting impact on clinical management is especially apparent in 
oncology, where comprehensive genomic profiling brings valuable in-
formation on the presence of acquired somatic alterations that can be 
utilised for therapeutic planning within the paradigm of precision 
medicine [1], with further augmentation of predictive capabilities by 
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artificial intelligence [2].
Several knowledge bases that gather published data from preclinical 

experiments and real-life clinical data are used to assess the potential 
impact of identified alterations on protein function. However, it is 
impossible to keep up with the amount of data generated with high- 
throughput technologies, and many variants lack the functional anno-
tation necessary to distinguish oncogenic drivers from passenger events 
with little to no significant diagnostic, prognostic, or predictive impact. 
While the effect of some types of genetic variants, such as frameshift and 
nonsense variants, is quite definite, it is particularly challenging to 
predict the outcome of missense variants. This issue was soon recognized 
and resulted in the development of several algorithms that mainly 
employ information about evolutionary conservation and sequential or 
physicochemical properties, which might prove helpful for Mendelian 
disorders [3]. However, for cancer-associated proteins, a robust pre-
diction requires a more comprehensive assessment that also employs 
structural data or binding properties of known inhibitors to reliably sort 
variants that should be pursued in preclinical studies or even clinical 
scenarios.

2. Minimal information for job submission

Computational pipelines that handle biological data can string 
together multiple software tools, each with its own settings and pa-
rameters. This can add multiple layers of complexity barring non- 
specialist users with little background in bioinformatics to access such 
a pipeline. Thus, it is important for a clinically relevant tool to have a 
low barrier to access. Making the tool available as an online web server 
would make access easier. Therefore, we have developed the new web 
PredictONCO, which can become a valuable tool for routine analysis of 
the data from next-generation sequencing experiments. The tool is 
designed to keep in view the urgency of oncologically relevant analysis, 
hence it was made fully automated, with very little input required from a 
user’s side. Effectively, the only two pieces of information required to 
start a job on the web server are the target protein’s name and the 
associated mutation. Inputting this information is done via the easy-to- 
use graphical user interface of the web server (Fig. 1). Once the job has 
started, it can take about a day to complete, but it can be longer with a 
load of the server. However, if the calculation for that protein and 

Fig. 1. The graphical user interface of PredictONCO web server’s job submission page. (A) Protein selection window, (B) Mutation selection window via textual 
input, and (C) Alternative mutation selection window via the selection on the sequence table.
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mutation combination has been made previously, the results are pro-
vided immediately from the jobs database. All completed calculations 
are added to the results page as soon as they are available, regardless of 
the status of the other calculations. An email alert is also sent to the user 
upon initiation and completion of the calculations, providing identifi-
cation of the calculation and the hyperlink to the web page with results. 
Compared to our original study by Khan et al. [4] which contained 44 
oncology-related proteins, we have updated the list for eight new targets 
(Supplementary Table 1). The addition of new proteins to the internal 
database of PredictONCO is offered to the user community based on user 

requests.

3. Output information and interpretation of results

The results page is an easy-to-use collection of calculations, organ-
ised in separate fields (Fig. 2). The wild type structures are used by the 
pipeline to calculate the stability changes using FoldX [5] and Rosetta 
[6]. The pipeline also models structures of the mutant proteins, and 
these modelled structures have pocket-level information calculated 
using P2Rank [7] as well as information about essential residues from 

Fig. 2. The graphical user interface of PredictONCO web server’s results page. (A) An ‘at a glance’ style Summary window, which compiles the most important 
calculations, (B) Various other analyses detailed in their own windows, such as Mutant description, Known mutants, and Conservation analysis from the HOPE server, 
as well as a window reporting changes in pKa for the catalytic residue, (C) Inhibitors window for showing binding energies of inhibitors in the wild type and the 
mutant protein, (D) Protein structure visualisation window for viewing the wild type and mutant protein structures with various settings. This window also allows for 
the visualisation of inhibitors and other protein features such as pockets and essential residues, and (E) The Top scoring inhibitor chart which compares the top 100 
binding energies for individual inhibitors as a bar chart.
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M-CSA [8] and UniProt databases [9]. The pKa values of ionizable 
groups, indicative of changes in reactivity between the wild type and 
mutant proteins are calculated using PropKa [10]. The newly developed 
XGBoost-based predictor uses all obtained values as features to return 
the probability of a mutation’s oncogenic effect. To retrain the predictor 
with the new set of protein targets, we used an updated dataset of 592 
oncogenic and 590 non-oncogenic mutations (269 new data points – 
Supplementary Table 2) compiled from the ClinVar [11] and OncoKB 
[12] databases. All mutations were annotated with a clinically verified 
effect based on available information from precision oncology databases 
[13–16] and primary literature. The predictor was validated on an in-
dependent subset of held-out data, demonstrating areas under the 
receiver operating characteristic curve (ROC AUC) of 0.97 and 0.94 for 
structure-based and sequence-based predictions, respectively 
(Supplementary Figure 1 and 2). The average precision from the 
Precision-Recall curve was 0.99 and 0.94 for structure-based and 
sequence-based predictions, respectively.

The results page also contains docking results of 4380 small mole-
cules approved by the Food and Drug Administration and European 
Medicines Agency, docked onto both the wild type and the mutant 
structure using Autodock Vina [17]. Changes in the binding affinity of 
the drugs associated with the target protein upon mutation can support 
decisions on treatments (Fig. 2). The structure visualisation page allows 
users to inspect the tertiary structure of the wild type and mutant pro-
tein, along with the mutated residue, essential residues, and bound 
top-scoring drugs, in various visualisation formats. Furthermore, the 
results page contains information from other useful tools and databases 
such as UniProt [9] and HOPE [18], as well as pathogenicity scores 
based on the PredictSNP server [19]. The most important bits from the 
results page are available at the top in the ‘Summary’ field, along with 
the PredictONCO oncogenicity score. This score utilises multiple outputs 
of the pipeline to predict the mutation’s result on the target protein’s 
oncogenicity in a single value. To demonstrate the tool’s usage, results 
for variants in two cancer-associated proteins, cellular tumour antigen 
p53, and fibroblast growth factor receptor FGFR1, are presented as case 
studies.

4. Case study with R175H and K139M variants of cellular 
tumour antigen p53

For p53, the R175H and K139M variants were submitted for analysis, 
with R175H being a notoriously known inactivating variant and K139M 
being an unknown alteration identified by comprehensive genomic 
profiling. Input data consisted only of the respective protein selection 
and selection of a particular mutation through either textual or sequence 
entry using a nomenclature corresponding with the canonical transcript. 
For R175H, the PredictONCO results showed a deleterious prediction on 
both the stability level and by the PredictSNP consensus classifier. 
Taking all calculations into account, the variant is predicted to be 
deleterious with a 100 % confidence score, which is in agreement with 
the variant being a well-known cancer-associated event leading to a loss 
of protein function. Its occurrence in many tumour types, of both 
germline and somatic origin, is also shown in the “Known mutants” 
section, which makes the data interpretation-related literature search 
easier by providing the user with relevant references.

The K139M variant of cellular tumour antigen p53, on the other 
hand, is a variant that lacks proper functional characterization and re-
quires careful assessment for subsequent clinical management, espe-
cially when of germline origin, which makes it suitable for PredictONCO 
evaluation. PredictSNP consensus classifier predicted a deleterious ef-
fect with a moderate confidence score of 61 %, while both stability 
predictors predicted a neutral effect. However, differences in physico-
chemical properties and reported occurrence of different mutants in 
identical residues suggest a functional impact. The overall prediction 
indicates a deleterious effect with a 98 % confidence score. Therefore, 
by not relying just on the results of widely used sequence-based 

prediction algorithms, we were able to significantly increase the confi-
dence in protein effect prediction, by 37 p.p. specifically. With such 
increased confidence, the clinical management of patients harbouring 
this germline variant would support further studies of incidence in the 
family and potential co-segregation with the disease.

5. Case study for N546K variant of fibroblast growth factor 
receptor FGFR1

A similar example can be applied to known protooncogenes with the 
added benefit of inhibitor binding data. Demonstrated by the example of 
the FGFR1 N546K variant, we got an overall deleterious prediction with 
a 100 % confidence score. Similar to the p53 R175H mutant, several 
literature references showing causality in cancers and an activating ef-
fect on protein function were available. Most importantly, as multiple 
inhibitors (e.g., Nintedanib, Stivarga, Ponatinib, etc.) can target FGFR1, 
their comprehensive overview was provided. Inhibitors were accom-
panied by calculated changes in binding energies, whose decreased 
values suggest better binding capability, which can help in the selection 
process if multiple options can be considered. All calculations were 
performed in a reasonably timely manner, under 2 h for p53 and 6 h for 
FGFR1, with the difference being explained by inhibitor docking and 
binding energy calculations.

6. Conclusions

PredictONCO is a web-based tool that uses computational algorithms 
to predict the effect of somatic alterations in cancer-associated proteins. 
It employs several algorithms and database searches that assess the 
impact of a mutation on protein stability, functionality, and oncoge-
nicity. Importantly, PredictONCO also quantifies the effect of mutations 
on protein-drug interactions. The input for the web server is straight-
forward, with only the name of the target protein and associated mu-
tation required. The results page contains several fields with different 
calculated properties of the mutant protein, including structure, stability 
change, pocket level information, and essential residues. The web server 
is fully automated, with email alerts sent to users upon initiation and 
completion of calculations, and all completed calculations are added to 
the results page as soon as they become available.

Web tool availability

The service PredictONCO is available free of charge to all users at the 
website https://loschmidt.chemi.muni.cz/predictonco/ [20].
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