
Scattered Context Grammars with One

Non-Context-Free Production and Six

Nonterminals are Computationally Complete

Martin Havel1[0009−0008−3000−6514], Alexander Meduna1[0000−0002−2341−0606],
and Zbyn¥k K°ivka1[0000−0001−8309−0280]

Brno University of Technology, Faculty of Information Technology, Boºet¥chova 1/2,
612 00 Brno, Czech republic {ihavelm, meduna, krivka}@fit.vut.cz

Abstract. The present paper explains how to reduce the size of scat-
tered context grammars with respect to the number of both non-context-
free productions and nonterminals. It proves that every recursively enu-
merable language is generated by a six-nonterminal scattered context
grammar with a single non-context-free production. Open problems are
proposed.

Keywords: Scattered context grammars · Size reduction · The number
of non-context-free productions · The number of nonterminal symbols ·

Computational completeness · Descriptional complexity.

1 Introduction

Over its history, formal language theory has always struggled to reduce its gram-
mars with respect to various numbers of components (see Sections 1.2 and 1.3
in Chapter 4 in [13]). Perhaps most intensively, it has studied how to reduce the
number of nonterminals and productions without a�ecting the generative power
of the grammars in question. The present paper continues with this study in
terms of scattered context grammars (see [11]).

Recall that restricting the amount of nonterminals was always of great in-
terest without disrupting its computational power or how computational power
is changed. Restricting the number of nonterminals was already researched for
phase-structured grammar (see [3]), automata, (see [4], context-free grammars
(see [2], [7]), EOL (see [8], [14]) and countless others. For scattered context
grammars, it was already demonstrated that scattered context grammars with
a single non-context-free production are as powerful as their unlimited versions
because they characterize the family of recursively enumerable languages (see
[6]). This paper improves this result by reducing the number of non-context-
free productions and, simultaneously, the number of nonterminals. Speci�cally,
it demonstrates that six-nonterminal scattered context grammars with one non-
context-free production characterize this family.

Of course, concerning the number of non-context-free productions, this state-
ment represents the best possible result because scattered context grammars

2 M. Havel et al.

without any non-context-free productions are as powerful as context-free gram-
mars, so they are less powerful than their unlimited versions. With respect to
the number of nonterminals, however, an improvement of this statement repre-
sents a challenging open problem. Indeed, as one-nonterminal scattered context
grammars are weaker than their unlimited versions (see Theorem 6.1 in [11]), we
ask whether there exists i in {2, 3, 4, 5, 6, ...} such that i-nonterminal scattered
context grammars with one non-context-free production characterize the family
of recursively enumerable languages.

2 De�nitions

This paper assumes that the reader is familiar with the language theory (see
[9]), including scattered context grammars (see [11], [12]).

For a set, Q, card(Q) denotes the cardinality of Q. For an alphabet, V , V ∗

represents the free monoid generated by V under the operation of concatenation.
The unit of V ∗ is denoted by ε. Set V + = V ∗ − {ε}; algebraically, V + is thus
the free semigroup generated by V under the operation of concatenation. For
w ∈ V ∗, |w| and rev(w) denote the length of w and the reversal of w, respectively.
Furthermore, suffix(w) denotes the set of all su�xes of w, and prefix(w) denotes
the set of all pre�xes of w. For w ∈ V ∗ and T ⊆ V , occur(w, T) denotes the
number of occurrences of symbols from T in w, and erase(w, T) denotes the
string obtained by removing all occurrences of symbols from T in w. For instance,
occur(abdabc, {a, d}) = 3 and erase(abdabc, {a, d}) = bbc. If T = {a}, where a ∈
V , we simplify occur(w, {a}) and erase(w, {a}) to occur(w, a) and erase(w, a),
respectively.

A scattered context grammar is a quadruple,G = (N,T, P, S), whereN and T
are alphabets such that N ∩T = ∅. Symbols in N are referred to as nonterminals
while symbols in T are terminals. N contains S�the start symbol of G. P is a
�nite non-empty set of productions or rules such that every p ∈ P has the form

(A1, A2, . . . , An) → (x1, x2, . . . , xn),

where n ≥ 1, and for all i = 1, 2, . . . , n, Ai ∈ N and xi ∈ (N ∪ T)∗. If each
xi satis�es |xi| ≤ 1, i = 1, 2, . . . , n, then (A1, A2, . . . , An) → (x1, x2, . . . , xn) is
said to be simple. If n = 1, then (A1) → (x1) is referred to as a context-free
production; for brevity, we hereafter write A1 → x1 instead of (A1) → (x1).
If for some n ≥ 1, (A1, A2, . . . , An) → (x1, x2, . . . , xn) ∈ P, v = u1A1u2A2

. . . unAnun+1, and w = u1x1u2x2 . . . unxnun+1 with ui ∈ (N∪T)∗ for all i = 1, 2,

. . . , n, then v directly derives w in G, symbolically written as v ⇒ w [(A1, A2,

. . . , An) → (x1, x2, . . . , xn)] or, simply, v ⇒ w in G. In the standard manner,
extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, de�ne ⇒+ and ⇒∗. The
language of G, L(G), is de�ned as L(G) = {w ∈ T ∗ : S ⇒∗ w}. A derivation of
the form S ⇒∗ w with w ∈ T ∗ is called a successful derivation.

A queue grammar (see [5]) is a sextuple, Q = (V, T,W,F, s,R), where V and
W are alphabets satisfying V ∩W = ∅, T ⊆ V , F ⊆ W , s ∈ (V − T)(W − F),
and R ⊆ (V × (W − F)) × (V ∗ × W) is a �nite relation such that for every

Restricted SCGs are Computationally Complete 3

a ∈ V , there exists an element (a, b, z, c) ∈ R. If u, v ∈ V ∗W such that u = arb;
v = rzc; a ∈ V ; r, z ∈ V ∗; b, c ∈ W ; and (a, b, z, c) ∈ R, then u ⇒ v [(a, b, z, c)]
in Q or, simply, u ⇒ v. In the standard manner, extend ⇒ to ⇒n, where n ≥ 0;
then, based on ⇒n, de�ne ⇒+ and ⇒∗. The language of Q, L(Q), is de�ned as
L(Q) = {w ∈ T ∗ : s ⇒∗ wf , f ∈ F}.

As a slight modi�cation of the notion of a queue grammar, there is the notion
of a left-extended queue grammar such that it is a queue grammar that during
every derivation step shifts the rewritten symbol in front of the beginning of its
sentential form (see# below); in this way, it records the derivation history, which
plays a crucial role in the proof of correctness of Algorithm 1 in the next section.
Formally, a left-extended queue grammar is a sextuple, Q = (V, T,W,F, s, P),
where V, T,W,F , and s are de�ned as in a queue grammar. P ⊆ (V × (W −
F))× (V ∗ ×W) is a �nite relation (as opposed to an ordinary queue grammar,
this de�nition does not require that for every a ∈ V , there exists an element
(a, b, z, c) ∈ R). Furthermore, assume that # /∈ V ∪W . If u, v ∈ V ∗{#}V ∗W so
that u = w#arb; v = wa#rzc; a ∈ V ; r, z, w ∈ V ∗; b, c ∈ W ; and (a, b, z, c) ∈ R,
then u ⇒ v [(a, b, z, c)] in Q or, simply, u ⇒ v. In the standard manner, extend
⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, de�ne ⇒+ and ⇒∗. The language of
Q,L(Q), is de�ned as L(Q) = {v ∈ T ∗ : #s ⇒∗ w#vf for some w ∈ V ∗ and f ∈
F}.

Next, we recall two already known properties of left-extended queue gram-
mars (introduced in [10] and [6]), subsequently used in the proof of Algorithm 1.

Lemma 1. For every recursively enumerable language, L, there exists a left-
extended queue grammar, Q, satisfying L(Q) = L.

De�nition 1. Let Q = (V, T,W,F, s,R) be a left-extended queue grammar. Q is
said to be in normal form 2 if every (a, b, x, c) ∈ R satis�es a ∈ V −T, b ∈ W−F ,
and x ∈ ((V −T)∗ ∪T ∗) and in addition, for every q ∈ W −F , there is no more
than one a ∈ V − T such that (a, q, x, p) ∈ R, where x ∈ (V − T)∗ ∪ T ∗ and
p ∈ W .

Lemma 2. For every left-extended queue grammar H, there exists an equivalent
left-extended queue grammar Q in normal form 2.

In general, two grammars are equivalent if both generate the same language.

3 Results

This section demonstrates that every recursively enumerable language, L, is gen-
erated by a scattered context grammar, G = (N,T, P, S), such that L = L(G),
(i) P contains a single non-context-free production of the form (1, 2, 0, 3, 0, 2, 1)
→ (2, ε, ε, ε, ε, ε, 2), and (ii) N consists of six nonterminals. This demonstration
is based on left-extended queue grammars, which are computationally complete.

First, we de�ne certain codes and their counterparts, referred to as anti-codes.
We establish several general results about these codes and anti-codes, which are

4 M. Havel et al.

used later in this section. Then, we give the major algorithm that turns any left-
extended queue grammar to an equivalent scattered context grammar having
�rstly a single non-context-free production and secondly seven nonterminals.
We establish several results about this algorithm, based on which, we verify
that the algorithm is correct. Finally, we improve the result sketched about
so we demonstrate that every recursively enumerable language L is generated
by a scattered context grammar having no more than (i) one non-context-free
production and (ii) six nonterminals.

Next, we explain how to turn any left-extended queue grammar Q in second
normal form to an equivalent scattered context grammar G with a single non-
context-free production and only seven nonterminals. The basic idea consists of
the simulation of a derivation in Q by context-free productions in an utterly
arbitrary way, after which the only scattered context production is repeatedly
used to verify that the derivation is correct. More precisely, G generates every
x ∈ L(G) by performing (I) and (II).

First, we introduce a coding generated by context-free productions of G that
handles any context dependency. It derives uxv from its start symbol, where u
and v are codes over {0, 1, 2, 3}, where 0 through 3 are special encoding nonter-
minals. The �rst phase ends when precisely two 2s are generated in the current
sentential form. Then, in (II), by using its only non-context-free production π of
the form

(1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2),

it removes u and v. G completes its removal successfully and, thereby, generates
x i� x belongs to L(Q). Thus, L(G) = L(Q).

De�nition 2. For k ≥ 1, let Xk, Yk ⊆ {0, 1, 3}∗ such that

Xk = {103}+{1}{10}+ ∩ {x : x ∈ {0, 1, 3}∗, occur(x, 1) = k}

and
Yk = {301}+{0301}{01}+ ∩ {x : x ∈ {0, 1, 3}∗, occur(x, 1) = k}

Let A,B be a �nite (non-empty) sets. Let us de�ne an injection ι : A×B →
Xn where n is a positive integer great enough to allow us to introduce ι as
injection (a proof that such a constant necessarily exists is simple and left to the
reader). Extend the domain of ι to (A×B)∗ in the standard way.

Let β : {0, 1}∗ → {0, 1, 3}∗ be a homomorphism such that β(0) = 30 and
β(1) = 1.

Let κ : A × B → Yn be an injection with κ(a, b) = z10301w where z =
β(rev(v)) and w = rev(erase(u, {3})) where u11v = ι(a, b). Extend the domain
of κ to (A×B)∗ in the standard way too.

We refer to x, y ∈ {0, 1, 3}∗ as a code string and its anticode string i�
x = ι(a, b) and y = κ(a, b) for some a ∈ A and b ∈ B.

Example 1. For instance, for A = {C,D} and B = {s} (|A| = 2, |B| = 1) and
n = 4, we can de�ne ι as ι(C, s) = 10311010 and ι(D, s) = 103103110. Then,
κ(C, s) = 301301030101 and κ(D, s) = 30103010101.

Restricted SCGs are Computationally Complete 5

The following lemma demonstrates that in scattered context grammar with
two special productions, we can safely annihilate some code string and its cor-
responding anticode string.

De�nition 3. We say that a code string and its corresponding anticode string
are annihilated if xuwvz ⇒∗ ω(x)wω′(z) where u = ι(a, b) and v = κ(a, b), for
some a ∈ A and b ∈ B, w ∈ (N ∪T)∗, and ω and ω′ replaces the last 1 by 2 and
the �rst 1 by 2, respectively.

Lemma 3. Let G = (N,T, P, S) be a scattered context grammar with N = N ′ ∪
D, D = {0, 1, 2, 3}, and the only two productions in P that rewrite nonterminals
from D are

(1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2)

2 → ε

For any sentential form xuwvz with u = ι(a, b) and v = κ(a, b) for some
a ∈ A and b ∈ B (will be speci�ed later), where x, u, v, z ∈ D∗, u and v can be
annihilated.

Claim. Any substrings from V ∗ in the sentential form do not matter for the
annihilation (i.e. cannot block the annihilation of some code and its anticode).

More formally, if u ∈ D∗ can be annihilated by productions from P in G,
then u scattered with x, where x ∈ (V −D)∗, can be rewritten to x in G as the
rest of u.

De�nition 4. Based on ι : A × B → Xk, de�ne the substitution ν from A to
2Xk by

ν(a) = {ι(a, b) : b ∈ B}

for every a ∈ A; then, extend its domain to A∗ in the standard way.

Next, using κ : A×B → Yk, de�ne the substitution µ from B to 2Yn by

µ(b) = {κ(a, b) : a ∈ A}

for every b ∈ B; then, extend its domain to B∗ in the standard way too.

Example 2. Notice that every x ∈ ν(a) is a string of the form

103103 · · · 10311010 · · · 10

in which there are n occurrences of 1 and precisely one occurrence of substring
11. Notice that every y ∈ µ(q) is a string of the form

301301 · · · 30103010101 · · · 01

in which there are n occurrences of 1 and precisely one occurrence of 030.

6 M. Havel et al.

Before giving a proof of the correctness, we describe Algorithm 1 informally.
Recall that the input Q is left-extended, so it records the pre�x of all symbols
rewritten at the beginning of the queue during the generation of x ∈ L(Q).

In addition, apart from recording this pre�x, Q also records all the states
through which Q passes through. That is, it always records two identical states
to the left. Furthermore, based onQ generate code two times denoted as δ de�ned
later in this section and generates mirroring anticode later in the derivation to
ensure that all terminals are generated.

When simulating this generation, G takes an advantage of this recorded
rewriting history to verify that the entire simulation has been performed prop-
erly. To give a more precise insight into this simulation and subsequent veri�-
cation, assume that Q generates x ∈ L(Q) by using a sequence of productions
r1, r2, . . . , rm. G simulates this generation as follows.

(I) During the �rst phase, G makes S ⇒∗ q0u1q1q1u2q2q2 · · ·um−1qm−1qm−1

umqmqmxqmqmvmqm−1qm−1vm−1 · · · q2q2v2q1q1v1q0 where each uj and vj
encodes a production applied during the jth derivation step in Q, and all of
them have the same number of 1s. More speci�cally, each ui = pui sui where

pui is a pre�x of ui over {0, 1, 3} and sui is a su�x of ui over {0, 1}. Let us
call the beginning of sui as ui-break. Similarly, each vi = pvi svi where pvi
is a pre�x of vi over {0, 1} and svi is a su�x of vi over {0, 1, 3}. Let us call
the end of pvi as vi-break. The position of ui-break and vi-break encodes a
production in Q so this encoding satis�es the following property:

if (a, q, x, p) and (b, o, y, r) are two productions
encoded by the same break position, then p = r and x = y.

The states are encoded analogously.
(II) During the second phase, G has to make sure that the simulation of the

generation of x in Q is performed correctly. To do so, G has to verify that
for j = m, . . . , 2, 1, both uj and vj encode the same production rj in Q. G
makes this veri�cation solely by using π so it eliminates all um through u1

and, simultaneously, vm through v1 in the insight-out way.
To explain the elimination process more precisely, consider this portion

u1u2 · · · pui · sui x pvi · svi · · · v2v1

where · points out the position of ui-break and vi-break, respectively. G can
eliminate the codes ui and vi if and only if ui-break and vi-break are simul-
taneously rewritten by π; thereby, it guaranties that sui and pvi have the
same number of 1s and 0s, therefore, ui and vi encode the same production
ri. Analogously, G veri�es that during any two consecutive derivation steps,
in the �rst step, Q enters the same state from which it performs the other
step.

De�nition 5. De�ne function δ over {y : y ∈ ν(a), a ∈ A}∗ as follows

1. δ(ε) = ε

Restricted SCGs are Computationally Complete 7

2. let z = x1x2x3 · · ·xn for some n ≥ 1, xi ∈ ν(ai) for some ai ∈ A; then,
δ(z) = x2

1x
2
2x

2
3 · · ·x2

n.

Let D = {0, 1, 2, 3}.

Algorithm 1 Input: A left-extended queue grammar Q = (V, T,W,F, s,R) in
normal form 2.
Output: A scattered context grammar G = (N,T, P, S) such that L(G) = L(Q).
Method:

1. Set N = {S, 4, 5} ∪D.
2. Consider the de�nition of ι (see De�nition 2) with A = V − T and B =

W − F . Based on A, B, and ι, consider speci�c de�nitions of κ, µ, ν, and
δ (see De�nitions 2, 4, and 5).

3. Initialize M with ∅. Perform (3i) through (3v), given next, to construct M .
(i) if s = a0q0, where a0 ∈ V −T and q0 ∈ W−F , then add S → 1δ(u)4w1

to M , for all u ∈ ν(a0) and w ∈ µ(q0);
(ii) if (a, q, y, p) ∈ R, where a ∈ V − T , p, q ∈ W − F , and y ∈ (V − T)∗,

then add 4 → δ(u)4w to M , for all u ∈ ν(y) and w ∈ µ(p)µ(q);
(iii) add 4 → 205 to M ;
(iv) if (a, q, y, p) ∈ R, where a ∈ V − T , p, q ∈ W − F , y ∈ T ∗, then add

5 → y5w to M , for all w ∈ µ(p)µ(q);
(v) if (a, q, y, p) ∈ R, where a ∈ V − T , q ∈ W − F , y ∈ T ∗, and p ∈ F ,

then add 5 → y302w to M , for all w ∈ µ(q).
4. Set O = {(1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2), 2 → ε}.
5. Set P = M ∪O.

Hereafter, for brevity, we refer to (1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2) as π.

Basic Idea. Algorithm 1 extends the Algorithm proposed in [6], but for clarity,
we explained it completely. Next, we sketch the reason why L(G) = L(Q).

What we need to demonstrate is that for any y ∈ T ∗,

S ⇒∗ y in G if and only if #s ⇒∗ w#yf in Q

with s = a0q0, w ∈ (V − T)∗, and f ∈ F .
To rephrase this equivalence more precisely, we need to show that S ⇒∗ y

in G if and only if for some m ≥ 1, Q makes #a0q0 ⇒∗ a0 · · · am#yf according
to (a0, q0, z0, q1) through (am, qm, zm, qm+1), where qm+1 = f . To see why this
equivalence holds true, take any S ⇒∗ y with y ∈ L(G). Examine the construc-
tion of P to see that S ⇒∗ y in G has, in a greater detail, the form

S ⇒∗ 1ν120y302ν21 ⇒∗ y

with ν1, ν2 ∈ D∗, ν1 ∈ ν(a0 · · · aℓ), ν2 ∈ µ(qk . . . q0), where ℓ, k ≥ 1. Conse-
quently, we see that proving the equivalence requires a demonstration that in
the derivation of the above form in G,

(I) m = ℓ = k;

8 M. Havel et al.

(II) ν1 ∈ ν(a0 · · · aℓ) with a0, . . . , aℓ ∈ V − T ;
(III) ν2 ∈ µ(qk . . . q0) with q0, . . . , qk ∈ W − F .

Consider (II) above. Observe that ν1 encodes the pre�x of all the front queue
symbols (including the erased symbols) rewritten during the generation of y.
This is the reason why we assume that Q is a left-extended queue grammar,
which records this pre�x as opposed to any ordinary queue grammar, which
throws it away.

During the sketch of this basic idea, we refer to all symbols that occur some-
where to the left of y as left nonterminals, and we refer to all symbols that occur
somewhere to the right of y as right nonterminals. From the de�nition of ν, it
follows that
1ν120 = 1103103 · · · 103110 · · · 1010 · · · 103103 · · · 103110 · · · 101010 · · ·

· · · 103103 · · · 103110 · · · 1020
Counting from the right to the left, we refer to the ith underlined occurrence

of 11 as the ith left turn, 1 ≤ i ≤ n. From the de�nition of µ, it follows that
302ν21 = 302301 · · · 301030101 · · · 0101 · · · 301301301 · · · 301030101 · · ·

· · · 0101 · · · 301301 · · · 301030101 · · · 01011
Counting from the left to the right, we refer to the ith underlined occurrence

of 030 as the ith right turn.
Let us examine 1ν120y302ν21 ⇒∗ y in a greater detail. The �rst 1 and the

last 1 are produced by a production from step (3i) in the construction. Fur-
thermore, in front of y, 20 is made by a production from (3iii), and behind y,
302 is produced by a production from (3v). Observe that all the left and right
nonterminals can be removed only by π and 2 → ε. In 1ν120y302ν21, there exist
two occurrences of 2. Production π is applicable as soon as two occurrences of 2
appear in the rewritten string, and its application does not change the number
of these occurrences. Consequently, during 1ν120y302ν21 ⇒∗ y, 2 → ε is applied
only during the last two steps while all the preceding steps are made by using
π. The �rst 2 is always a left nonterminal and the other occurs always as a right
nonterminal. Considering these observations and π, we see that if a string con-
tains 1 somewhere in between the left 2 and the right 2, then G cannot derive
a terminal string from it. Consequently, during 1ν120y302ν21 ⇒∗ y, G elimi-
nates 1s in an inside-out way so that it always rewrites the rightmost occurrence
within the left 1s and, simultaneously, the leftmost occurrence among the right
1s. Unless a string contains 0, 3, 0 in this order scattered somewhere in between
the left 2 and the right 2, then G cannot apply π and derive a terminal string.
More speci�cally, every successful derivation in G is of the form

S ⇒∗ 1ν120y302ν21 ⇒∗ 1203y021 ⇒ 2y2 ⇒2 y

Let 1v3yv41 ⇒ 1v′3yv
′
41 be a direct derivation step in 1ν120y302ν21 ⇒∗

1203y021. Then, in a greater detail, this step has one of these �ve forms

a) 1v51020y302301v61 ⇒ 1v520y302v61 with v51020 = v3 and 302301v6 = v4;
b) 1v5120y3020301v61 ⇒ 1v52y0302v61 with v5120 = v3 and 3020301v6 = v4;
c) 1v51032y030201v61 ⇒ 1v5203y02v61 with v51032 = v3 and 030201v6 = v4;

Restricted SCGs are Computationally Complete 9

d) 1v5103203y0201v61 ⇒ 1v5203y02v61 with v5103203 = v3 and 0201v6 = v4;
e) 1v510203y02301v61 ⇒ 1v520y302v61 with v510203 = v3 and 02301v6 = v4.

Hereafter, to point out that a derivation step u ⇒ v [π] satis�es one speci�c
form of the �ve previous forms (X ∈ {a, b, c, d, e}), we write u ⇒X) v.

Suppose that the leftmost right turn occurs closer to y than the rightmost
left turn does. For instance,

1103103 · · · 1031031101010101020y3020301010101 · · · 01011

From this string, G performs these steps

1103103 · · · 1031031101010101020 y 3020301010101 · · · 01011
⇒ 1103103 · · · 10310311010101020 y 0302010101 · · · 01011
⇒ 1103103 · · · 1031031101010200 y 020101 · · · 01011

Observe that in between the two 2s, no 3 occurs, soG cannot derive a terminal
string from it.

Suppose that the leftmost right turn occurs farther from y than the rightmost
left turn does. For instance,

1103103 · · · 10310311020y3023013013013010301010101 · · · 01011

From this string, G performs these steps

1103103 · · · 10310311020 y 3023013013013010301010101 · · · 01011
⇒ 1103103 · · · 103103120 y 3023013013010301010101 · · · 01011
⇒ 1103103 · · · 1031032 y 3023013010301010101 · · · 01011

Observe that in between the two 2s, only one 0 occurs, so G cannot derive a
terminal string from it.

Next, we give an example for some a ∈ V − T and q ∈ W − F , where the
right and left turns match.

1103103 · · · 103110101010 · · · 101020y302301301 · · · 30103010101 · · · 01011

where
ι(aq) = 103103 · · · 103110101010 · · · 1010 ∈ ν(a)

and
301301 · · · 30103010101 · · · 0101 ∈ µ(q)

Consequently, G always simultaneously eliminates the ith left turn and the
ith right turn in the way sketched next

1103103 · · · 103110101010 · · · 101020 y 302301301 · · · 30103010101 · · · 01011
⇒a) 1103103 · · · 103110101010 · · · 1020 y 302301 · · · 30103010101 · · · 01011
⇒a) 1103103 · · · 103110101010 · · · 20 y 302 · · · 30103010101 · · · 01011
⇒
⇒ 1103103 · · · 10310311020 y 3023010301010101 · · · 01011
⇒a) 1103103 · · · 103103120 y 3020301010101 · · · 01011
⇒b) 1103103 · · · 1031032 y 0302010101 · · · 01011
⇒c) 1103103 · · · 103203 y 020101 · · · 01011

10 M. Havel et al.

In this way, G simulates the successful derivation of y performed by Q so

S ⇒∗ 1ν120y302ν21 ⇒∗ y

with ν1, ν2 ∈ D∗, ν1 ∈ ν(a0 · · · am) with a0, . . . , am ∈ V − T , and ν2 ∈
µ(qm . . . q0) with q0, . . . , qm ∈ W − F . Thus, L(Q) = L(G).

Next, we illustrate the construction of a simulating scattered context gram-
mar for a very simple left-extended queue grammar.

Example 3. To make this example as readable as possible, we introduce some
notation. First, ⌈a, q⌉ denotes the code of ι(a, q) from ν(a) for any a ∈ V − T .
Then, ⌊a, q⌋ denotes an element (code) based on ι(a, q) from µ(q) for any q ∈
W − F .

Consider a left-extended queue grammar Q = (V, T,W, {f}, Ss,R) in normal
form 2 with V = {S,X, a, b}, T = {a, b},W = {s, p, q, f}. Let R consist of
(S, s,XS, p), (X, p, aa, q) and (S, q, bb, f).

Considering the construction from Algorithm 1, we present the introduc-
tion of some productions in the resulting scattered context grammar, G =
(N,T, P, S), in the corresponding steps with rules not deriving words replaced
with '...' for brevity:

(i): Add . . . , S → 1⌈S, s⌉⌈S, s⌉4⌊S, s⌋1, . . . into P ;
(ii): For (S, s,XS, p) ∈ R, add . . . , 4 → ⌈X, p⌉⌈X, p⌉⌈S, q⌉⌈S, q⌉4⌊X, p⌋⌊S, s⌋,

. . . into P ;
(iii): Add 4 → 205 into P ;
(iv): For (X, p, aa, q) ∈ R, add . . . , 5 → aa5⌊S, q⌋⌊X, p⌋, . . . into P ;
(v): For (S, q, bb, f) ∈ R, add . . . , 5 → bb302⌊S, q⌋, . . . into P .

Now, we explore how a derivation

#Ss ⇒ S#XSp ⇒ SX#Saaq ⇒ SXS#aabbf

in Q is simulated in G.
We explore the �rst phase of a derivation of aabb in G:

S

⇒ 1⌈S, s⌉⌈S, s⌉4⌊S, s⌋1
⇒ 1δ(⌈S, s⌉)⌈X, p⌉⌈X, p⌉⌈S, q⌉⌈S, q⌉4⌊X, p⌋⌊S, s⌋⌊S, s⌋1
⇒ 1δ(⌈S, s⌉⌈X, p⌉⌈S, q⌉)205⌊X, p⌋⌊S, s⌋⌊S, s⌋1
⇒ 1δ(⌈S, s⌉⌈X, p⌉⌈S, q⌉)20aa5⌊S, q⌋⌊X, p⌋⌊X, p⌋⌊S, s⌋⌊S, s⌋1
⇒ 1δ(⌈S, s⌉⌈X, p⌉⌈S, q⌉)20aabb302⌊S, q⌋⌊S, q⌋⌊X, p⌋⌊X, p⌋⌊S, s⌋⌊S, s⌋1

According to the construction, the injection ι should handle card((V − T)×
(W −F)) elements. Thus, for simple coding, k should be at least card((V −T)×

Restricted SCGs are Computationally Complete 11

(W − F)) + 2. In the second phase of this example, we need to code six pairs�
(S, s), (S, p), (S, q), (X, s), (X, p), and (X, q). Take k = 8. Next, we introduce ι
for these pairs�that is,

ι(Ss) = 1031(10)6 = ⌈S, s⌉ ι(Xs) = (103)41(10)3 = ⌈X, s⌉
ι(Sp) = (103)21(10)5 = ⌈S, p⌉ ι(Xp) = (103)51(10)2 = ⌈X, p⌉
ι(Sq) = (103)31(10)4 = ⌈S, q⌉ ι(Xq) = (103)6110 = ⌈X, q⌉
κ(Ss) = (301)6030101 = ⌊S, s⌋ κ(Sq) = (301)40301(01)3q = ⌊S, q⌋

κ(Xp) = (301)20301(01)5 = ⌊X, p⌋

Now we illustrate an erasure in the second phase of the derivation with
y = aabb in G, which is similar to erasure in [6]:

1δ(⌈S, s⌉⌈X, p⌉)⌈S, q⌉(103)31(10)4 20y302 (301)40301(01)3⌊S, q⌋δ(⌊X, p⌋⌊S, s⌋)1

⇒8 1δ(⌈S, s⌉⌈X, p⌉)(103)31(10)4 203y02 (301)40301(01)3δ(⌊X, p⌋⌊S, s⌋)1

⇒8 1⌈S, s⌉⌈S, s⌉⌈X, p⌉(103)51(10)2 203y02 (301)20301(01)5⌊X, p⌋⌊S, s⌋⌊S, s⌋1

⇒8 1⌈S, s⌉⌈S, s⌉(103)51(10)2 203y02 (301)20301(01)5⌊S, s⌋⌊S, s⌋1

⇒8 1⌈S, s⌉1031(10)6 203y02 (301)6030101⌊S, s⌋1

1 1031(10)6 203y02 (301)6030101 1

⇒8 1 203y02 1

⇒ 2 y 2

⇒2 y

Lemma 4. Algorithm 1 is correct.

The rigorous proof is due to the lengthiness included in the appendix.

Theorem 1. Let L be a recursively enumerable language; then, there is a scat-
tered context grammar G = (N,T, P, S) such that (a) L = L(G), (b) N has no
more than six nonterminals, and (c) P has no more than one non-context-free
production.

Proof. Let us consider the algorithm based on the Algorithm 1 such as:

Algorithm 2 Input: A left-extended queue grammar Q = (V, T,W,F, s,R) in
normal form 2.
Output: A scattered context grammar G = (N,T, P, 4) such that L(G) = L(Q).
Method:

1. Set N = {4, 5} ∪D.

12 M. Havel et al.

2. Consider the de�nition of ι (see De�nition 2) with A = V − T and B =
W − F . Based on A, B, and ι, consider speci�c de�nitions of κ, µ, ν, and
δ (see De�nitions 2, 4, and 5).

3. Initialize M with ∅. Perform (3i) through (3v), given next, to construct M .

(i) if s = a0q0, where a0 ∈ V −T and q0 ∈ W −F , then add 4 → 1δ(u)4w1
to M , for all u ∈ ν(a0) and w ∈ µ(q0);

(ii) if (a, q, y, p) ∈ R, where a ∈ V − T , p, q ∈ W − F , and y ∈ (V − T)∗,
then add 4 → δ(u)4w to M , for all u ∈ ν(y) and w ∈ µ(p)µ(q);

(iii) add 4 → 205 to M ;

(iv) if (a, q, y, p) ∈ R, where a ∈ V − T , p, q ∈ W − F , y ∈ T ∗, then add
5 → y5w to M , for all w ∈ µ(p)µ(q);

(v) if (a, q, y, p) ∈ R, where a ∈ V − T , q ∈ W − F , y ∈ T ∗, and p ∈ F ,
then add 5 → y302w to M , for all w ∈ µ(q).

4. Set O = {(1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2), 2 → ε}.
5. Set P = M ∪O.

Lemma 5. Algorithm 2 is correct.

It allows two new subsets of derivations compared to Algorithm 1. Therefore,
to show that a grammar from Algorithm 2 generates identical language as a
grammar from Algorithm 1, we need to show that all new sets of derivations
do not change the language. Therefore, we split the two new derivations in two
Claims to prove Algorithm 2 is correct.

Claim. If a derivation of grammar G begins with the rule 4 → 1δ(u)4w1 and
there are n applications of the rule 4 → 1δ(u)4w1, where n ̸= 1, then it does not
generate any words.

Proof. If there is n applications of the rule 4 → 1δ(u)4w1 after the �rst derivation
step with the rule 4 → 1δ(u)4w1, where n ≥ 1 then a sentential form is (1δ(u))n1
δ(u)41δ(u)(w1)n. Therefore we would have to be able in the annihilation phase
to eliminate more nonterminals 1 but we do not have enough nonterminals 0 to
use the rule (1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2) which is only possible way to
eliminate nonterminal 1. Therefore, this does not generate any words.

Claim. If a derivation of grammar G does not start with rule 4 → 1δ(u)4w1,
then it does not generate any words.

Proof. There is no rule to get rid of nonterminal 0 since the only possibility to get
rid of 0 is rule (1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2), which is not possible because
there cannot be a nonterminal 1 before a nonterminal 0. Or if nonterminals 1
are generated in di�erent positions, then they interrupt the dependency between
codes and anticodes and, in this case, do not generate any words. Therefore, the
grammar does not generate any words.

⊓⊔

Restricted SCGs are Computationally Complete 13

4 Conclusion

In conclusion, we would like to propose open problems. Firstly, is it possible to
reduce the grammar further to �ve or fewer nonterminals? Secondly, we already
know that two-nonterminal scattered context grammars are computationally
complete (see [1]). So are scattered context grammars with a single non-context-
free production (see [6]). Consider two-nonterminal scattered context grammars
with one non-context-free production. Are they computationally complete, too?
If not, then study, from a more general viewpoint, whether there exist con-
stants n and m such that n-nonterminal scattered context grammars with m
non-context-free productions are computationally complete.

Acknowledgments. This work was supported by Brno University of Technology grant
FIT-S-23-8209.

References

1. Csuhaj-Varjú, E., Vaszil, G.: Scattered context grammars generate any recur-
sively enumerable languages with two nonterminals. Information Processing Letters
110(20), 902�907 (2010)

2. Dassow, J., Stiebe, R.: Nonterminal complexity of some operations on
context-free languages. Fundamenta Informaticae 83(1-2), 35�49 (2008).
https://doi.org/10.3233/FUN-2008-831-205

3. Ge�ert, V.: Context-free-like forms for the phrase-structure grammars. In: Chytil,
M.P., Koubek, V., Janiga, L. (eds.) Mathematical Foundations of Computer Sci-
ence 1988. pp. 309�317. Springer Berlin Heidelberg, Berlin, Heidelberg (1988)

4. Ginsburg, S.: Algebraic and automata-theoretic properties of formal languages.
Journal of Symbolic Logic 41(4), 788�789 (1976). https://doi.org/10.2307/2272400

5. Kleijn, H.C.M., Rozenberg, G.: On the generative power of regu-
lar pattern grammars. Acta Informatica 20(4), 391�411 (Dec 1983).
https://doi.org/10.1007/BF00264281

6. K°ivka, Z., Meduna, A.: Scattered context grammars with one non-context-free
production are computationally complete. Fundamenta Informaticae 179(4), 361�
384 (2021). https://doi.org/10.3233/FI-2021-2028

7. Maurer, H.A., Penttonen, M., Salomaa, A., Wood, D.: On non context-free gram-
mar forms. Mathematical Systems Theory 12, 297�324 (1978)

8. Maurer, H.A., Salomaa, A., Wood, D.: EOL forms. Acta Informatica 8, 75�96
(1977)

9. Meduna, A.: Automata and Languages: Theory and Applications. Springer, Lon-
don (2000)

10. Meduna, A.: Generative power of three-nonterminal scattered con-
text grammars. Theoretical Computer Science 246(1), 279�284 (2000).
https://doi.org/10.1016/S0304-3975(00)00153-5

11. Meduna, A., Techet, J.: Scattered Context Grammars and their Applications. WIT
Press, UK, WIT Press (2010), https://www.fit.vut.cz/research/publication/
c62000/

12. Meduna, A., Zemek, P.: Regulated Grammars and Automata. Springer (2014),
https://www.fit.vut.cz/research/publication/c111518/

14 M. Havel et al.

13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. 1: Word,
Language, Grammar. Springer, New York (1997)

14. �ulik, K., Maurer, H., Ottmann, T.: On two-symbol complete EOL forms.
Theoretical Computer Science 6(1), 69�92 (1978). https://doi.org/10.1016/0304-
3975(78)90005-1

