TOWARDS DEVS META LANGUAGE

Vladimir Janousek
Petr PolaSek
Pavel Slawek
Faculty of Information Technology,

Brno University of Technology
BoZeg&chova 2

612 66 Brno, Czech Republic

E-mail: {janousek|polasek|slavicek}@fit.vutbr.cz

KEYWORDS

DEVS formalism, simulation model, meta-model, model
specification, XML, XSL transformation

ABSTRACT

The aim of this article is to present DEVSMREVS Meta
Languagg that is intended for implementation of simulation
models based on the DEVS formalism. A model
implemented by DEVSML is independent of the coreret
simulation environment implementation. Furthermoee,
model can be simply and automatically transformed a
used by potentially whatever DEVS-based simulation
environment, such as DEVS/C++, DEVSJava, etc. Since
models are generally not portable between different
simulation environments, it is necessary to impleime
models for every framework, which costs a lot ofigiand
resources. DEVSML eliminates this annoyance andlesa
creation of models, which can be shared betwedardift
simulation environments. DEVSML defines model's
structure as well as behavior by XML (eXtensiblerkig
Language). Transformation of models is based orX®Bie
transformation. For every simulation environmenmt, XSL
template needs to be created and used for
transformation.

the

INTRODUCTION

The interest in modeling and simulation is stiltrieasing,
since modeling and simulation is used in many awas
human activity and cannot be substituted durindggtheand
analysis of complex systems. Actually, there is a
pragmatical trend to group models and simulatot® in
tightly linked packages. While creating a new sitioln
environment, basic models are reconstructed and
reimplemented, since they cannot be shared amdiegeutit
frameworks. It seems to be desirable to specifiaadard
for implementations of models, which will put aws#yis
annoyance and allow migration of models betweefermint
environments, saving time and effort spent
implementation. Then the creation of libraries éstirsy of
commonly used components and models will be passibl

on

The article is focused on the DEVS formalisBigcrete
EVent System specification(Zeigler et al. 2000)

representing a formal basis for specification ofcdite
event systems. In theory, the DEVS models are ieégnt

of the chosen simulator as well as of the experiaien
frame. Actually, many implementations of this fofis@
exist, such as DEVS/C++, DEVSJava, etc. Their main
disadvantage is impossibility of sharing modelsween
them because the models are usually implementatiein
same language as simulator itself.

The aim of this article is to present our approaighng to
solve this problem. We are developing a meta-laggdar
description of DEVS models that is based on XML.ddIs
described by this language can be simply transfdrioe
different simulation environments and frameworksheiit
needs of their changes. Furthermore, to simplifg th
implementation, we are developing a prototype of a
modeling tool, based on this language, which emsabgeto
graphically specify a model with the definition todnsition
and transformation functions of atomic models

The paper is organized as follows. The first sectbortly
reviews basic components and terms of DEVS formmalis
Next section delimitates the areas of our work wébpect
to the DEVS standardization group. It deals witlstixg
tools and discusses their advantages and disadyesntahe
main parts of the article are the last two sectidescribing
the DEVSML and shortly reviewing our modeling tool
based on this meta-language. The advantages otwaabp
gives and future plans are discussed in the candus

THE DEVS FORMALISM

The DEVS formalism specifies discrete event systems
hierarchically. We start from the atomic modelsonir
which larger coupled models are built. An atomicdeloM

is defined as:

M =(Sita, o)

ext?

o,

s X0 0o Y, A)

where
Sis the sequential state set,

.
ta; S - Ro,oo is the time advance function,

d.m S = S is the internal transition function,
X is the set of external input event types,
5ext:Qx X — S is the external transition function

© EUROSIS-ETI

where Q = {(S, eXSD SO0<ec< ta(s)},

Y is the set of external event types generated asiput
A:S =Y is the output function.

The coupled model can contain atomic models and als
coupled models, connected together. This model lan
inserted as a component in another coupled moalehirfig

a hierarchical structure. A coupled model C ismedi as:

C=<X Y

self 1

D,EIC,EOC,IC, selecy

self 1

where

X seif is the set of external input events,

Yserris the set of output events,

D is a set of DEVS component models,

EIC s the external input coupling relation,
EOCis the external output coupling relation,
IC is the internal coupling relation,

selects a function, the tie-breaking selector.

More detailed descriptions for the definitions oEYS
models, their variants and abstract simulatorshEafound
in (Zeigler et al. 2000).

EXISTING SYSTEMS AND TOOLS

There exist many implementations of DEVS formalism.
Some of the most known are DEVSC++ (Zeigler et al.
1996), DEVSJava (Sarjoughhian and Zeigler 1998gIEei
1997) and we can also mention PythonDEVS (Boldwt an
Vangheluwe 2001) among others. DEVSJava is coreider
as a reference implementation among them.

There exists an effort to develop a standard ofDE&/S
formalism. One team that is concerned with
standardization is the DEVS standardization groLipeir
research (Wainer 2005) can be divided into thresicba
areas: interoperability of existing DEVS tools (1),
specification of the minimal 'kernel' for a tool be DEVS
compliant (2), definition and implementation ofem$juage
for atomic and coupled model definition and broadgmnhe
models between the community of users (3).

the

There exist some articles (Fishwick 2002) conceyrtime
area (2) and proposing the manners of simulatiodaiso
description. The description or model's structsrbased on
XML, the translation functions are dismissed or are
described with a pseudo code.

There also exists a general modeling tool ATOM3rélLa
and Vangheluwe 2002) focused on meta-modeling and
model-transforming. Meta-modeling refers to degaripor
modeling different kinds of formalisms used to mode
systems. Model-transforming refers to the automaticess

of transforming a model in a given formalism to teo one

(in the same or different formalism). The tool isbd on

graph grammars and uses graph rewriting for model
transformation.

Our focus is the area (3). At least two similarjpcts are
connected with this area. The first is DEVSW (Yuigin
and Lung-Hsiung 1998). In this project, the model's
structure description is based on XML and the dpson

of behavior of atomic models is specified by a pigecode.
An elegant solution represents the second profechgfer
2003) that uses XML only. The description of thadtions

is done by rules with a finite set of states sq diniite state
automata can be specified by this approach.

DEVSML

The primary motivation to develop the DEVSML was to
enable portability of a model between our experiaken
simulation tools and other DEVS-based simulation
frameworks. The portability of a DEVS model allous to
use advantages of complementary features of ther oth
frameworks. However, portability is a general pesbland

its solution can introduce interesting possibititi@nd
facilitate the modeler's effort.

Structure of a Model in DEVSML

DEVSML (DEVS formalism Meta Language) is based on
XML (extensible Markup Language). An XML document
has a hierarchical structure so that the hieraatlsitucture

of DEVS model can be mapped to XML easily. An XML
document defining a coupled DEVS component comgrise
an input and output ports specification, a listnafmes of
the inner components (i.e. atomic DEVS models) thwi
links to the documents containing their definitionand a
description of couplings of the components. EveBM3
component is defined in a separate (possibly detjch
XML document, which can be stored in local filesaadl as
anywhere on the internet. This way it is possibleteate
publicly available libraries of reusable componenis
example of a coupled component defined by DEVSML is
shown in Figure 1.

Figure 1 depicts also a definition of an atomic elod’he
definition of input and output ports of an atomamponent

is similar to the ones of a coupled component. Acept of

a super model can be applied here to simplify the
implementation by means of inheritance - the dediniof
ports, state variables, and functions can be itétefrom a
super-model.

As the definition of an atomic and a coupled DEV&del
structure is quite simple, the definition of theraic DEVS
behavior (specified by the internal transition, #ernal
transition, the output function and the time adeanc
function) is a bit more problematic. We have gatpined
by JavaML project (Badros 2000), which defines aviLX
representation of Java code. This way, the Java d¢ed
available for optimization, verification, and/or
transformation. JavaML features perfectly fit tor meeds
here. That is why our notation for basic progranmgmin

© EUROSIS-ETI

constructs and expressions usable in DEVS functions The hierarchical structure of a model and the dogpbf

specification came out directly from JavaML.

coupledTest

inputi atomic1

j\-j int

input1

outt [|

<coupled name="coupledTest'" modelX="50" modelY="50">
<ports>
<input>
<port name="inputl"/>
</input>
<output>
<port name="outputl"/>
</output>
</ports>
<D>
<component name="atomicl" source="file://atomicl.xml"
modelX="50" modelY="50"/>
</D>
<influences>
<influence source="self" source-port="inputl"
target="atomicl" target-port="inl"/>
<influence source="atomicl" source-port="outl"
target="self" target-port="outputl"/>
</influences>
</coupled>

<atomic name="atomicl" modelX="50" modelY="50">
<state-variables>
<state-variable name="A" type="integer" initial-wvalue=0/>
</state-variables>
<ports>
<input>
<port name="inl"/>
</input>
<output>
<port name="outl"/>
</output>
</ports>
<ta> ... <ta/>
<internal-transition-function>

</internal-transition-function>
<external-transition-function>

</external-transition-function>
<output-function> ... </output-function>
</coupled>

Figure 1: A DEVSML Description of a Coupled and
Atomic DEVS Model

In JavaML as well as in DEVSML there are definediba
elements of expressions such as integer valuesuaad/

and binary operators (such as greater than, egtal).

Basic syntax elements comprise getting and settirggy
value of state variable (getStateVar, setStateVéng

element which gets and sets value of local varigipi¢Var,

setVar), conditional branch of program (if-thenegland a
cycle with condition on the beginning (while), &etend

(until) and cycle with known number of passes (for)

Source Languages for DEVSML
The implementation of DEVS models directly in DEVEM

is possible but not very handy. A more user-frigndl
language has to be chosen for modeling.

the components can be specified graphically. Thighbwn
in Figure 1. Such a visual language can be tram&fdrto
DEVSML quite simply. The graphical specification of
models and their transformation is one of the niie&tures
of our experimental modeling tool we are developiflis

is discussed in the next section.

What is more difficult is the behavior specificatiof the
atomic DEVS. Some simple language or a pseudo cade
be used for specification of the functions. Curyenve are
experimenting with a Lisp-like language, which ie@wn in
Figure 2.

LISP-LIKE CODE:

(if (> A 10)
(for i from 0 to 5 do
(set B[i] 0)))
(set A 5)
DEVSML
<Code>
<If>
<Test>

<BinOp operator=">">
<Left>
<GetVar name="A"/>
</Left>
<Right>
<Literal value="10"/>
</Right>
</BinOp>
</Test>
<Code>
<Loop kind="for" variable="i" start="0" end="5" step="1'">
<SetStateVar name="B[i]">
<Literal value="0"/>
</setstatevar>
</Loop>
</Code>
<Else/>
</1£>
<SetVar name="a'">
<Literal value="5"/>
</setvVar>
<SetstateVar name="A'">
<Literal value="5"/>
</setStatevar>
</Code>

Figure 2: Lisp-like Code and Corresponding Reprigiem
in DEVSML

Besides a translator from such a source languagieto
DEVSML code it is essential to have a possibility t
translate the DEVSML code to the source code a$. wel
Then we can use DEVSML code as the only code, which
have to be stored and maintained. We also suppgae t
there can be even more languages used as theriesetyf
views on DEVSML-specified model.

To be more consistent with the graphical specificabf
DEVS components structure, one of the possibilitiesare
going to investigate comprise visual languages for
expressing the DEVS functions. We have slightly
experimented with a visual language based on thd. UM
(France et al. 1997), especially the diagram afviyt An
example of this approach is showed in Figure 3 édodm
Figure 2 is used). Nevertheless we consider thisageh to

be very experimental.

© EUROSIS-ETI

for
<t var i [0,5

Figure 3: Graphical Language for Definition of DEMB
Functions

Transformation to Target Simulation Environment

DEVSML describes the structure of DEVS component$ a
the semantics of functions describing the behavi@tomic
components. It represents a basis for the transtfiiom to
the chosen simulation environment. The transforwnats
based on an XSL transformation with an approprist
template that contains rules for the transformat®uch a
transformation is illustrated in Figure 4. To adduwpport
for a new environment, it is necessary to implenteny a
new XSL template, the models remain unchanged.

: Template for DEVSJava

<l
<Test>
<BinOp operator=">">
<Left>
<GetVar name="A"/>

. <xsltemplate match="If"> :
if (<xsl:apply-templates select="Test"/>) {
<xsl:apply-templates select="Code"/>

} <xsl:apply-templates select="Else"/>

</Left> © </xsl:template>
<Right>
<Literal value="10"/>
</Right> :
</BinOp>
~Test> Template for PythonDEVS
<Code> . <xsltemplate match="If"> ‘
if <xsl:apply-templates select="Test"/> :
<;4E°d8> <xsl:apply-templates select="Code"/>
: <xsl:apply-templates select="Else"/>
o . </xsl:template>
DEVSML
XSL Template
Transformer

DEVSJava \”

PythonDEVS \l,

i (A>10) {

23

CifA>10:

Figure 4: XSL Transformation

A MODELING TOOL

The prototype implementation of a DEVSML-based
modeling tool is being implemented in the Java. Whele
system has two main parts. The first part represent
graphical user interface used to create the steiobdi a
model and a definition of its atomic models behavithe
second part of the system supports transformatibm o
model defined in DEVSML into an equivalent
implementation for some simulation tool or enviramn

The model structure editor allows for insertion of
components whose definition can be stored in saual |
files, or somewhere on the internet. Furthermorallaws
for the creation of new atomic components with tise of
inherited properties of other atomic components.oAg
the atomic DEVS functions, the tool supports alseru
defined functions that can be called from the atoBEVS
component's functions specifying its behavior. Ussfined
functions are included as properties of atomic coments.

The transformer is not just an implementation ofLXS
transformations. Its task is also to retrieve frionernet or
from files the necessary DEVSML definitions needed
the transformation and after that to link and tot sbe
results of the XSL transformation in a form accépgaby
the chosen target simulation framework.

CONCLUSION

The article deals with sharing of simulation modmisong
different DEVS-based simulation frameworks. We have
presented a proposal of our solution - DEVSML. Adwl
defined by DEVSML is independent of the particular
implementation of the DEVS simulator. DEVSML spéssf
the hierarchical structure of model as well as gtracture
and the behavior of the atomic components by XMhe T
creation of models is simplified with the use ofrou
modeling tool prototype. This experimental tooloals us

to graphically specify the model structure andbighavior.
As a future work, we are planning to extend it lpport
for more simulators and to implement new data tygsesul
for implementation of atomic models behavior.

DEVSML puts away the dependence between the
implementation of a model and a simulation envirentnA
model specified by DEVSML is portable to theoreltica
whatever DEVS-based simulation framework whichhis t
main gain of this project. The benefits of portabiedels
are very important. For example, the developmentaof
model can be done in a sequential framework wresng

is often easier. Afterwards, the model can be pogrd
simulated in a distributed or real-time simulatfoamework
that could be more appropriate for some particular
simulation studies. DEVSML can be used also foating
libraries of commonly used reusable models.

The next benefit of DEVSML is the possibility of
automatical verification of new simulation enviroants, as
suggested in (Wainer 2005). A verification can lonel
through a formal proof, which is obviously diffitulThe

© EUROSIS-ETI

other method of verification is to simulate modal a
reference simulation environment and than comphaee t
results with simulation in the tested environm&&EVSML
offers sharing of models between the tested aretapfe
environment.

ACKNOWLEDGEMENT
This work has been supported by the Grant Agency of
Czech Republic grant No. 102/04/0780 "Automated

Methods and Tools Supporting Development of Rediabl
Concurrent and Distributed Systems".

REFERENCES

Badros, G. 2000. “JavaML: A Markup Language foralav
Source Code."Proceedings of the 9th International
World Wide Web Conferen¢dmsterdam, Netherlands,
May. 15-19), 159-77.

Bolduc, J. and H. Vangheluwe. 2001. “The Modellargl
Simulation Package PythonDEVS for Classical
Hierarchical DEVS.” MSDL Technical Report MSDL-
TR-2001-01 Modelling, Simulation & Design Lab,
McGill University. (Feb).

Filippi, J. B.; F. Bernardi; and M. Delhom. 2002The
JDEVS Modelling and Simulation Environment.”
Proceedings of the 1st Biennial Meeting of the iIEMS
(Lugano, Switzerland, Jun. 24-27). International
Environmental Modelling and Software Society, 283-
288.

Fishwick, P. 2002. “XML Based Modeling and Simubeti
Using XML For Simulation Modeling.’Proceedings of
the 2002 Winter Simulation Conference: ExploringvNe
Frontiers 2002(San Diego, California, Dec. 8-11), 616-
622.

France, R.; A. Evans; K. Lano; and B. Rumpe. 19%9¥e
UML as a Formal Modeling Notation.Proceedings
OOPSLA'97 Workshop on Object-oriented Behavioral
Semantics (Atlanta, Georgia, Oct. 6). Munich
University of Technology, 75-81.

Lara, J. and H. Vangheluwe. 2002. “Using ATbls a
Meta-CASE Tool.”The 4th International Conference
on Enterprise Information SystemgqCiudad Real,
Spain, Apr.), 642-649.

Sarjoughhian, H. S. and B. P. Zeigler. 1998. “DEN&A.
Basis for a DEVS-Based Collaborative M&S
Environment.” Proceedings of the 1998 SCS
International Conference on Web-Based Modeling and
Simulation(San Diego, CA, Jan. 11-14), 29-36.

Schéfer, A. 2003. “Visualisierung und XML-Darsteity
von DEVS-Modellen.” M.S. Thesis. Fakultat fur
Informatik, Universitat der Bundeswehr Miinchen.

Vangheluwe, H.; J. Bolduc; and E. Posse. 2001. “BEV
Standardization: Some Thoughts." DEVS Standards
Group meeting Winter Simulation Conference 2001
(Washington, DC, Dec. 11).

Vangheluwe, H. and J. Lara. 2002. “Meta-Models are
Models too.” Proceedings of the 2002 Winter
Simulation Conferen¢&97-605.

Wainer, G. 2005. “DEVS Standardization Study Grdup.
Interim Final Report (Seattle, WA, Apr. 26). TheS8l
Standards Activities Committee (SAC).

Yung-Hsin, W. and W. Lung-Hsiung. 1998. “A Modajin
and Simulation Example Using DEVSWThe 31st
Annual Simulation Symposiu(Boston, MA, Apr. 5-
9). IEEE Computer Society, 210.

Yung-Hsin, W. and L. Yao-Chung. 2002. “An XML-based
DEVS Modeling Tool to Enhance Simulation
Interoperability.” The 14th European Simulation
Symposium and Exhibitio(Dresden, Germany, Oct.
23-26), SCS Europe, 406-410.

Zeigler, B. P. and V. Sankait. 1993. “DEVS Formaliand
Methodology: Unity of Conception/Diversity of
Application.” Proceedings of the 1993 Winter
simulation conferenceACM Press, New York, NY,
USA, 573-579.

Zeigler, B. P.; Y. Moon; D. Kim; J.G. Kim. 1996
“DEVS/C++ A High Performance Modelling and
Simulation Environment.* 29th Annual Hawaii
International Conference on System Scien@daui,
Hawaii, Jan. 3-6). IEEE Computer Society, 350-359.

Zeigler, B.P. 1997. “DEVS-JAVA Users Guide.”
Technical Report. Al & Simulation Lab. Departmefit o
Electrical and Computer Engineering. University of
Arizona, Tucson. (Feb).

Zeigler, B. P.; H. Praehofer; and T. Kim. 2000. &bhy of
Modeling and Simulation.” 2nd edition. Academic
Press. ISBN 0-12-778455-1.

BIOGRAPHY

VLADIMIR JANOUSEK received the Ph.D. degree from
the Faculty of Information Technologrno University of
Technology in 1999. He is an assistant professoth@
Department of Intelligent Systems at the Faculty of
Information TechnologyBrno University of Technology.
His research focuses on simulation-driven developl,
pure object orientation and reflective architecture

PETR POLASEK received the M.S. degree from Faculty
of Information TechnologyBrno University of Technology

in 2005. He is a Ph.D. student in the Department of
Intelligent Systems at the Faculty of Information
Technology Brno University of Technology. His research
focuses on meta-modeling.

PAVEL SLAVIi CEK received the M.S. degree from
Faculty of Information TechnologyBrno University of
Technology in 2003. He is a last year Ph.D. studtenhe
Department of Intelligent Systems at the Faculty of
Information TechnologyBrno University of Technology.
His research focuses on meta-modeling, distributed
simulations and multiagent systems.

© EUROSIS-ETI

