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Abstract 
 

As multi-core systems begin to appear, their 
possible applications, parallel performance and on-
chip interconnection networks have to be clarified, 
analyzed and optimized. The paper investigates an 
impact of collective communication (CC) overhead   
that may be critical for performance of parallel 
applications. Two potential topologies of networks on 
chip (NoC) are investigated, a ring-based network 
and 2D-mesh, due to their easy manufacturability on 
a chip. The wormhole switching, full duplex links and 
1-port non-combining as well as combining nodes 
are considered. The lower bounds on the number of 
communication steps and upper bounds of CC times 
based on real CC algorithms are given. They can be 
evaluated for any given start-up time and link 
bandwidth. This enables performance prediction of 
applications with CCs among computing nodes.   
 
 

1. Introduction 
 

With an increasing number of processor cores, 
memory modules and other hardware units in the 
latest chips, the importance of communication among 
them and of related interconnection networks is 
steadily growing. The memory of many-core systems 
is physically distributed among computing nodes that 
communicate by sending data through a Network on 
Chip (NoC), [1].  
 

Communication operations can be either point-to-
point, with one source and one destination, or 
collective, with more than two participating 
processes. Collective operations are invoked by nodes 
to distribute, gather, and exchange data; to perform 
global computation operations on distributed data; 
and to synchronize with one another at specific points 
in a program flow. Some embedded parallel 
applications, like network or media processors, are 

characterized by independent data streams or by a 
small amount of inter-process communications [2]. 
However, many general-purpose parallel applications 
display a bulk synchronous behavior: the processing 
nodes access the network according to a global, 
structured communication pattern 

The performance of these collective communi-
cations (CC for short) has a dramatic impact on the 
overall efficiency of parallel processing. The most 
efficient way to switch messages through the network 
connecting multiple cores makes use of wormhole 
(WH) routing, in which each message is divided into 
small pieces that are pipelined through the network.  
Wormhole routing reduces the effect of path length 
on communication time, but if multiple messages 
exist in the network concurrently (as is happens in 
CCs), contention may be a source of waiting times. 
Provided that computation times are known, as is 
usually true in case of application-specific systems, 
the only thing that matters in obtaining the highest 
performance are durations of various collective 
communications. 

Logarithmic diameter networks, e.g. hypercube, 
butterfly and fat tree, provide enough bandwidth for 
all-to-all communications, but do not map well into 
two dimensions provided by a silicon chip: the length 
of some interconnection wires increases 
proportionally to the number of processors. This will 
decrease the clock frequency dramatically and 
degrade the performance. In this paper we therefore 
investigate two NoC topologies with only local 
interconnection among processors, namely the 
hierarchical rings and the 2D-mesh, which are under 
consideration for Tera-scale computing platform [3]. 

The paper is structured as follows. In the following 
Section 2 we analyze time complexity of collective 
communications in WH networks, namely the lower 
bounds on the number of start-ups for general 
networks (uniform messages, non-combining model).  
In Section 3 we investigate upper bounds on number 
of startups and on link occupancy for two topologies 
of our choice, hierarchical rings and 2D-mesh, with   



message combining. Performance prediction and 
scalability of four typical CC is a subject of Section 4. 
Results and possible extensions are commented on in 
Conclusions.  

 

2. Time complexity of collective communi-
cations in WH networks 
 

A collective operation is usually defined in terms 
of a group of processes. The operation is executed 
when all processes in the group call the 
communication routine with matching parameters. 
We classify collective operations into three types 
according to their purpose: CCs (One-to-All, OA, 
All-to-One, AO, All-to-All, AA), global computation 
(reduction AOR or AAR and scan) and 
synchronization (barrier). 

The CCs are most important, as other collective 
operations are closely related to them.  In a broadcast 
(OAB), one process sends the same message to every 
group member, whereas in a scatter (OAS), one 
process sends a different message to each member. 
Gather (AOG) is the dual operation of scatter, in that 
one process receives a message from each group 
member. These basic operations can be combined to 
form more complex operations. In all-to-all broadcast 
(AAB), every process sends a message to every other 
group member. In complete exchange, also referred to 
as all-to-all scatter-gather (AAS), every group 
member sends a different message to every other 
group member. Permutation operations, such as shift 
and transpose, are also CCs. Since complexities of 
some communications are similar (AOG ~ OAS, 
AOR ~ OAB, AAR ~ AAB), we will focus only on 4 
basic types (OAB, OAS, AAB, AAS). Also, from 
now on, when we refer to „collective 
communications”, then we will assume only CCs 
involving the group of all processors.   

Performance of CCs is closely related to their time 
complexity. The simplest time model of point-to-
point communication in direct WH networks takes the 
communication time composed of a fixed start-up 
time ts at the beginning (SW and HW overhead), a 

serialization delay − transfer time of m message units 
(words or bytes), and of a component that is a 
function of distance h (the number of channels on the 
route or hops a message has to do): 

tWH = ts +  m t1 +  h tr  ,                                    (1) 

where t1 is per unit-message transfer time and tr 
includes a routing decision delay, switching and inter-
router latency. The dependence on h is rather small,  

(since tr << m t1), so that WH switching is considered 
distance-insensitive. Possible synchronization over-
head involved in communication steps, be it hardware 
or software-based, should be included in the start-up 
time ts. According to frequency of CCs and an 
amount of interleaved computation in a certain 
application, efficiency of parallel processing can be 
estimated. 

In the rest of the paper we assume that the CC in 
WH networks proceeds in synchronized steps. In one 
step of CC, a set of simultaneous packet transfers 
takes place along complete disjoint paths between 
source-destination node pairs. If the source and 
destination nodes are not adjacent, the messages go 
via some intermediate nodes, but processors in these 
nodes are not aware of it; the messages are routed 
automatically by the routers attached to processors.  

Complexity of collective communication will be 
determined in terms of the number of communication 
steps or equivalently by the number of “start-ups” 
τ

CC(G) (upper bound). Neglecting the hardware 
overhead in routers along the traversed path (term htr)  
and excluding contention for channels, CC 
communication times can be obtained approximately 
as number of start-ups plus the sum of associated 
serialization delays mi t1, 
tCC=      

)2()()(
)(

1
11

)(

1
∑∑

==

+=+
G

i
i

CC
S

G

i
iS

CCCC

kmtGttmt
ττ

τ

The above expression takes into account the fact that 
message length mi can vary from one step to another, 
e.g. when ki  messages of length m are combined 
together in step i. 

The port model of the system defines the number k 
of CPU ports that can be engaged in communication 
simultaneously. This means that there are 2k internal 
unidirectional (DMA) channels, k input and k output 
channels, connecting each local processor to its router 
that can transfer data simultaneously. Always k ≤ d, 
where d is a node degree; a one-port model (k=1) and 
an all-port router model (k=d) are most frequently 
used. Fig. 1 shows a one-port and an all-port router in 
a 2D-mesh. In a one-port system, a node must 
transmit (and/or receive) messages sequentially. 
Architectures with multiple ports alleviate this 
bottleneck. In an all-port router every external 
channel has a corresponding port. The port model is 
important in designing collective operations as it 
determines the number of required start-ups and thus 
the CC performance. 



Moreover, the CC performance is influenced by the 
fact whether or not the nodes can combine/extract 
partial messages with negligible overhead (combining 
model) or can only re-transmit/consume original 
messages (non-combining model). Finally, the lower 
bound on number of steps τCC(G) depends on a 
channel type; we have to distinguish between 
unidirectional (simplex) channels and bi-directional 
(half-duplex HD, full-duplex FD) channels. Typically 
τCC(G) will be 2-times larger for HD channels than for 
the FD ones. Further on we will consider FD channels 
and the most frequent one-port router model only.  
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Fig.1. Port models for a 2D-mesh. 

a) one-port router  b) all-port router 

 

One of the key design factors of an interconnection 
network is its topology. The lower bounds τCC(G) for 
the network graph G depend on node degree d, 
number of nodes P, and bisection width BC,  Tab.1. 

 As far as the broadcast communication (OAB) is 
concerned, the lower bound on the number of steps 
τOAB(G) = s = logk+1P is given by the number of 
nodes informed in each step, that is initially 1, 1+1×k 
after the first step, (k+1)+(k+1)×k = (k+1)2 after the 
second step, etc.,…, and (k+1)s ≥ P nodes after step s.  

In case of AAB communication, since each node 
has to accept P−1 distinct messages, the lower bound 
is (P−1)/k steps. A similar bound applies to OAS 
communication, because each node can inject into the 
network not more than k messages in one step.  

The lower bound for AAS can be obtained 
considering that one half of messages from each 
processor cross the bisection, whereas the other half 
do not. There will be altogether 2(P/2)(P/2)/ BC of 

such messages in both ways, where BC is the network 
bisection width [4].  

 
Table 1. Lower bounds on complexity of CCs 

on non-combining networks 

 
For the network topologies potentially useful in a 
NoC the lower bounds of selected CCs are given in 
Tab.2. Wormhole switching and full duplex links 
have been assumed everywhere except unidirectional 
1-way rings. Let us note that all the lower bounds can 
be reached for a simple ring topology and most of 
them also for a mesh topology by means of known 
algorithms [5]. Non-minimum routing would be 
necessary for further improvement of some upper 
bounds in meshes [5]. 

 
Table 2. Lower bounds  τCC(G) from Tab.1 for 

selected networks     

WH, FD, 1-port 
 non-combining  

OAB AAB OAS AAS 

1-way ring, P=4 2 3 3 5 

2-way ring, P=4 2 3*) 3 3+) 

1-way ring, P=8 3 7 7 16 

2-way ring, P=8 3 7 7 8 

H. rings, P=16   4 15 15 32 

H. rings, P=64   6 63 63 512 

2D mesh 4 x 4 4 15 15 16 

2D mesh 6 x 6 6 35 35 54 

2D mesh 8 x 8 6 63 63 128 

 
*) three rotations 
+) pairwise exchange – horizontal, vertical, diagonal 
 

The bidirectional ring topology, though very 
simple, is not free from routing deadlock, because the 
channel dependency graph is not acyclic [4].  This 
can be seen on a common permutation called cyclic 
shift. The problem can be solved by introduction of 
virtual channels [4] and by implementing rules on 
channel usage. We assume that these rules are 

CC WH, k-port, full duplex links,  
without message combining 

OAB log k+1 P  = (log P) / log ( k+1) 

AAB Max ( log k+1 P  , (P – 1) / k ) 

OAS (P – 1) / k 

AAS Max ( P2 / (2BC) , (P – 1) / k ) 



adhered to in all our CC schedules and thus the 
deadlock is avoided. 

As far as 2D meshes is concerned, the dimension-
ordered deterministic routing (first in x, then in y 
direction) on meshes and tori is known to be 
deadlock-free. A certain degree of adaptiveness can 
be obtained by more relaxed routing, such as North-
last or West-first strategy [4]. 
 

 

 
a) 
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Fig.2. Hierarchical rings (H- rings) 
a) P=16  b) P=64 

 
3. Time complexity of real CC algorithms 
with message combining 
 

The lower bounds on number of start-ups for 
uniform messages are easily translated into 
communication times by means of the linear 
communication model (2). E.g. AAS on the 8-node 
bidirectional ring would require 8 steps. Provided that 
a message has m = 100 byte, time per byte t1 = 1ns 
and start-up time ts = 10 ns (typical NoC parameters 
from [6] ) , we get the total time 

   TAAS = 8 (10 + 100*1) ns = 880 ns. 
However, in large networks we can reduce the 
number of startups (further denoted by #) if we 
combine several messages locally and send them as a 
single message to a remote node representing another 

local group. In this case the total communication time 
must be calculated as  

        TCC = #startups × ts + ∑ki m t1  

= #startups× ts + m t1 TCO,   (3)                             
where message size ki × m is generally different in 
every communication step i over which we do 
summation. Term TCO is the Total Channel 
Occupancy time normalized by a transfer time mt1 of 
an elementary message of size m bytes. So if we 
could replace the above AAS communication by 
another one with 3 steps and with transmission of 
100, 200 and 400 bytes in successive steps, then m = 
100, TCO = 1+2+4 = 7 and 
      TAAS = 3 *10 + (100+200+400) *1 ns = 
               = 3 *10 + 100* (1+ 2 + 4) *1 = 730 ns. 
Here the overhead of message combining is neglected 
as a second-order quantity. 
 
3.1. CC algorithms on one-port combining 
rings and 2D-meshes 

 
The combining model has no effect on OAB 

communication pattern because there are no distinct 
messages to be combined. The logarithmic lower 
bound on the number of start-ups in Table 1 (k=1) is 
reachable by binary jumping algorithm [4]. Since 
meshes are not node-symmetric, a direction that the 
message is sent along has to be determined depending 
on source node type (corner, edge, inner), unlike the 
torus networks.  

AAB algorithm in meshes alternates odd-
numbered steps and even-numbered steps. In former 
steps odd-even pairs of processors exchange and then 
combine data, and in even-numbered steps even-odd 
pairs do the same. This is done first in all rows 
simultaneously, then in all columns. The total number 
of startups is a plain sum of their count in two phases, 
since the message-combining overhead is ignored. 
The size of messages grows from one to P  in rows, 
then from  P  to P/2 in columns, so that altogether 
TCO = 1+2+4+ …+ P + 2 P +4 P +…+P/2 = P-1. 
For a ring we have a better way of AAB: all 
processors send their data in one direction around the 
ring, one hop at a time, in P-1 steps.  

The combining OAS on a ring can use again the 
binary jumping. Unlike OAB, the size of messages 
now varies (decreases) as the nodes extract their data:  

TCO = P/2 + P/4 +…+ 1= P-1. 
In 2D-meshes we perform first OAS within the row of 
the source node with messages of size P  (a 
combination of messages destined for a whole 



column). Then OAS follows in all columns in 
parallel. 

The combining AAS pattern is the same as for 
AAB, but the contents and size of messages are 
different. On a ring, all processors simultaneously 
rotate messages around in one direction, extracting 
and accumulating their part in each step.  The size of 
messages thus gets reduced linearly, 

TCO = (P-1)+(P-2)+…+1= P(P – 1)/2 . 
In 2D-meshes we can use the same rotating strategy 
first in rows and then in columns (with WH switching 
we can rotate messages even if there is no wrap-
around link). The normalized message size will 
decrease linearly from P ( P -1) to P  during 
rotation in rows, but each node will accumulate data 
of size P ( P -1) plus P  left behind for its column. 
The same situation will repeat in the column rotation 
except the data left behind in a node are now P -1 
messages from partners in the row. Therefore 
TCO = 2 [ P ( P -1) + P ( P -2)+…+ P ] =  
        = P ( P -1)   
All the results are summarized in Table2. 
 
Table 2. Parameters of CCs on a combining 
P-ring and a P × P  mesh  (upper bounds)  

 

 

3.2. Scheduling CCs on the hierarchical ring   
network topology 

Optimum scheduling CCs on the hierarchical ring 
topology at Fig.2 requires careful consideration.  
Generally hierarchical networks are a good match for 
combining one-to-all CCs as combined messages can 
flow between adjacent levels of hierarchy with only 
one start-up time. For all-to-all communications the 
number of start-up times may get reduced in 
comparison to non-combining CCs, but with longer 
messages the total occupancy of links is higher. In 
Table 3 we give both #of start-ups and TCO. 

There is no advantage of message combining in 
OAB on hierarchical rings. The broadcast pattern on 
P = 16 processors is shown in Fig. 3. The source node 
has the message in time 0, other nodes get the 
message in the time step given inside table cells. In 4 
steps all nodes get informed. 

1 4 4 2   3 4 4 3 
4 3 3 4   4 1 2 4 
4 3 3 4   4 2 0 4 
2 4 4 0   3 4 4 3 

                         a)                            b) 

Fig. 3. OAB on hierarchical rings in 4 steps 
a) a corner source 0 b) an inner source 0 

The combining OAS communication has the same 
complexity (in steps) as OAB. Unlike the OAB, the 
message size recursively halves from P/2 to 1.  

The AAB pattern is more interesting. It can be 
done by gathering messages in 4 representative nodes 
and then broadcasting from them. E.g. for P=16:      
1. Combining OAG on basic (level 0) rings, 2 steps, 

messages of size m and 2m 
2. Non-combining AAB by rotation on level 1 rings, 

3 steps, messages of uniform size 4m. A 
representative node on each basic ring has all 16 
messages. 

3. OAB within a basic ring. Two steps, message size 
16m.  

The result: 7/47. 
Non-combining AAB among P =16 nodes can be 
done in two phases: 
1.  AAB among corresponding nodes in rings at level 

0. Rotation in three super-steps, each super-step 4 
steps. Message size always 1m. 

2. AAS on 0-level rings: 3 steps, message size 4m. 
The result: 15/24.  

The most complex AAS communication can be 
done either as non-combining or combining.  
The combining AAS among P=16 nodes (7/138): 
1. AOG in 2 steps, with message size 15m, 30m  

WH, 1-port, full duplex,  
message combining 

CC 

on a ring 
# of start-ups  TCO  

OAB log 2 P  log 2 P  

AAB P – 1 P – 1 

OAS log 2 P  P – 1 

AAS P – 1 P(P – 1)/2  

WH, 1-port, full duplex,  
message combining 

CC 

on a 
mesh # of start-ups  TCO  

OAB 2 log 2 P   2 log 2 P   

AAB 2( P   – 1) P – 1 

OAS 2 log 2 P    P – 1 

AAS 2( P   – 1) P ( P – 1) 



2. AAS among 4 nodes at level 1 in 3 steps, message 
size always 16. 

3. OAS from nodes at level 1 to 3 local nodes in 2 
steps, message size 30m, 15m. 

    Non-combining AAS among P= 16 nodes (51/51): 
1. AAS among rings at level 0. Three super-steps, 32 

pair-wise exchanges in each super-step, 2 in each 
step. Message size is always 1m. 

2. The local AAS in level 0 rings. 3steps, message 
size 1m.  

All-to-all CC algorithms for P=64 nodes use the 
similar strategy as those for P=16. The results of all 
algorithms given above are listed in Table 3. 
 

Table 3. Upper bounds of #startups/TCO for 
CCs on hierarchical rings and P × P  
meshes   
 

WH, FD,  
1-port 

OAB AAB OAS AAS 

H.rings, P=16,   
non-combining  

4 15/24 15 51 

H. rings, P=64   
non-combining 

6 99/252 63 819 

H. rings, P=16  
combining 

4/4 7/47 4/15 7/138 

H. rings, P=64  
combining 

6/6 11/319 
 

6/63 11/2658 
 

2D mesh 4 x 4 
combining 

4/4 6/15 4/15 6/48 

2D mesh 8 x 8 
combining 

6/6 14/63 6/63 14/448 

 

Table 4. The best CC times on hierarchical 
rings and a 2D-  mesh  (upper bounds)  

 
time  Mesh  Mesh Rings Rings 
[ns] 4 × 4  8 × 8  16 64 
OAB 56 84 56 84 
AAB 120 392 246 1386 
OAS 100 312 100 312 
AAS 252 1932 622 10742 
 

 

5. Conclusions 
 

 The results, #start-ups and TCO parameters, are 
summarized in Table 3. For typical NoC parameters 
ts = 10ns, t1 = 1ns and for message size   m = 4 bytes 
the minimum CC times are highlighted in Table 3 and 
for illustration numerically calculated in Table 4. It is 

seen that CCs perform generally better on 2D-meshes. 
Whereas OAB and OAS perform equally well on 2D-
meshes and H-rings, AAB and AAS are much slower 
on H-rings. This is so under our implicit assumption 
that all the links in the network of Fig.2 have the same 
bandwidth (what may not be true in some cases). Also 
the combining mode is always faster than non-
combining except AAB on small H-rings (P=16) with 
message size m ≥ 4 bytes. 

In future we want to use the obtained CC times for 
performance prediction of complete parallel 
applications on both considered NoCs. Another 
research direction should concentrate on a more 
scalable AAB and AAS algorithms on hierarchical 
rings.  
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