
Communication Performance of Mesh- and Ring-Based NoCs

Vaclav Dvorak

Brno University of Technology
 dvorak@fit.vutbr.cz

Abstract

As multi-core systems begin to appear, their
possible applications, parallel performance and on-
chip interconnection networks have to be clarified,
analyzed and optimized. The paper investigates an
impact of collective communication (CC) overhead
that may be critical for performance of parallel
applications. Two potential topologies of networks on
chip (NoC) are investigated, a ring-based network
and 2D-mesh, due to their easy manufacturability on
a chip. The wormhole switching, full duplex links and
1-port non-combining as well as combining nodes
are considered. The lower bounds on the number of
communication steps and upper bounds of CC times
based on real CC algorithms are given. They can be
evaluated for any given start-up time and link
bandwidth. This enables performance prediction of
applications with CCs among computing nodes.

1. Introduction

With an increasing number of processor cores,
memory modules and other hardware units in the
latest chips, the importance of communication among
them and of related interconnection networks is
steadily growing. The memory of many-core systems
is physically distributed among computing nodes that
communicate by sending data through a Network on
Chip (NoC), [1].

Communication operations can be either point-to-
point, with one source and one destination, or
collective, with more than two participating
processes. Collective operations are invoked by nodes
to distribute, gather, and exchange data; to perform
global computation operations on distributed data;
and to synchronize with one another at specific points
in a program flow. Some embedded parallel
applications, like network or media processors, are

characterized by independent data streams or by a
small amount of inter-process communications [2].
However, many general-purpose parallel applications
display a bulk synchronous behavior: the processing
nodes access the network according to a global,
structured communication pattern

The performance of these collective communi-
cations (CC for short) has a dramatic impact on the
overall efficiency of parallel processing. The most
efficient way to switch messages through the network
connecting multiple cores makes use of wormhole
(WH) routing, in which each message is divided into
small pieces that are pipelined through the network.
Wormhole routing reduces the effect of path length
on communication time, but if multiple messages
exist in the network concurrently (as is happens in
CCs), contention may be a source of waiting times.
Provided that computation times are known, as is
usually true in case of application-specific systems,
the only thing that matters in obtaining the highest
performance are durations of various collective
communications.

Logarithmic diameter networks, e.g. hypercube,
butterfly and fat tree, provide enough bandwidth for
all-to-all communications, but do not map well into
two dimensions provided by a silicon chip: the length
of some interconnection wires increases
proportionally to the number of processors. This will
decrease the clock frequency dramatically and
degrade the performance. In this paper we therefore
investigate two NoC topologies with only local
interconnection among processors, namely the
hierarchical rings and the 2D-mesh, which are under
consideration for Tera-scale computing platform [3].

The paper is structured as follows. In the following
Section 2 we analyze time complexity of collective
communications in WH networks, namely the lower
bounds on the number of start-ups for general
networks (uniform messages, non-combining model).
In Section 3 we investigate upper bounds on number
of startups and on link occupancy for two topologies
of our choice, hierarchical rings and 2D-mesh, with

message combining. Performance prediction and
scalability of four typical CC is a subject of Section 4.
Results and possible extensions are commented on in
Conclusions.

2. Time complexity of collective communi-
cations in WH networks

A collective operation is usually defined in terms
of a group of processes. The operation is executed
when all processes in the group call the
communication routine with matching parameters.
We classify collective operations into three types
according to their purpose: CCs (One-to-All, OA,
All-to-One, AO, All-to-All, AA), global computation
(reduction AOR or AAR and scan) and
synchronization (barrier).

The CCs are most important, as other collective
operations are closely related to them. In a broadcast
(OAB), one process sends the same message to every
group member, whereas in a scatter (OAS), one
process sends a different message to each member.
Gather (AOG) is the dual operation of scatter, in that
one process receives a message from each group
member. These basic operations can be combined to
form more complex operations. In all-to-all broadcast
(AAB), every process sends a message to every other
group member. In complete exchange, also referred to
as all-to-all scatter-gather (AAS), every group
member sends a different message to every other
group member. Permutation operations, such as shift
and transpose, are also CCs. Since complexities of
some communications are similar (AOG ~ OAS,
AOR ~ OAB, AAR ~ AAB), we will focus only on 4
basic types (OAB, OAS, AAB, AAS). Also, from
now on, when we refer to „collective
communications”, then we will assume only CCs
involving the group of all processors.

Performance of CCs is closely related to their time
complexity. The simplest time model of point-to-
point communication in direct WH networks takes the
communication time composed of a fixed start-up
time ts at the beginning (SW and HW overhead), a

serialization delay − transfer time of m message units
(words or bytes), and of a component that is a
function of distance h (the number of channels on the
route or hops a message has to do):

tWH = ts + m t1 + h tr , (1)

where t1 is per unit-message transfer time and tr
includes a routing decision delay, switching and inter-
router latency. The dependence on h is rather small,

(since tr << m t1), so that WH switching is considered
distance-insensitive. Possible synchronization over-
head involved in communication steps, be it hardware
or software-based, should be included in the start-up
time ts. According to frequency of CCs and an
amount of interleaved computation in a certain
application, efficiency of parallel processing can be
estimated.

In the rest of the paper we assume that the CC in
WH networks proceeds in synchronized steps. In one
step of CC, a set of simultaneous packet transfers
takes place along complete disjoint paths between
source-destination node pairs. If the source and
destination nodes are not adjacent, the messages go
via some intermediate nodes, but processors in these
nodes are not aware of it; the messages are routed
automatically by the routers attached to processors.

Complexity of collective communication will be
determined in terms of the number of communication
steps or equivalently by the number of “start-ups”
τ

CC(G) (upper bound). Neglecting the hardware
overhead in routers along the traversed path (term htr)
and excluding contention for channels, CC
communication times can be obtained approximately
as number of start-ups plus the sum of associated
serialization delays mi t1,
tCC=

)2()()(
)(

1
11

)(

1
∑∑

==

+=+
G

i
i

CC
S

G

i
iS

CCCC

kmtGttmt
ττ

τ

The above expression takes into account the fact that
message length mi can vary from one step to another,
e.g. when ki messages of length m are combined
together in step i.

The port model of the system defines the number k
of CPU ports that can be engaged in communication
simultaneously. This means that there are 2k internal
unidirectional (DMA) channels, k input and k output
channels, connecting each local processor to its router
that can transfer data simultaneously. Always k ≤ d,
where d is a node degree; a one-port model (k=1) and
an all-port router model (k=d) are most frequently
used. Fig. 1 shows a one-port and an all-port router in
a 2D-mesh. In a one-port system, a node must
transmit (and/or receive) messages sequentially.
Architectures with multiple ports alleviate this
bottleneck. In an all-port router every external
channel has a corresponding port. The port model is
important in designing collective operations as it
determines the number of required start-ups and thus
the CC performance.

Moreover, the CC performance is influenced by the
fact whether or not the nodes can combine/extract
partial messages with negligible overhead (combining
model) or can only re-transmit/consume original
messages (non-combining model). Finally, the lower
bound on number of steps τCC(G) depends on a
channel type; we have to distinguish between
unidirectional (simplex) channels and bi-directional
(half-duplex HD, full-duplex FD) channels. Typically
τCC(G) will be 2-times larger for HD channels than for
the FD ones. Further on we will consider FD channels
and the most frequent one-port router model only.

 local
CPU port

E

S

W

N

a)

local CPU
ports

E

S

W

N

b)
Fig.1. Port models for a 2D-mesh.

a) one-port router b) all-port router

One of the key design factors of an interconnection
network is its topology. The lower bounds τCC(G) for
the network graph G depend on node degree d,
number of nodes P, and bisection width BC, Tab.1.

 As far as the broadcast communication (OAB) is
concerned, the lower bound on the number of steps
τOAB(G) = s = logk+1P is given by the number of
nodes informed in each step, that is initially 1, 1+1×k
after the first step, (k+1)+(k+1)×k = (k+1)2 after the
second step, etc.,…, and (k+1)s ≥ P nodes after step s.

In case of AAB communication, since each node
has to accept P−1 distinct messages, the lower bound
is (P−1)/k steps. A similar bound applies to OAS
communication, because each node can inject into the
network not more than k messages in one step.

The lower bound for AAS can be obtained
considering that one half of messages from each
processor cross the bisection, whereas the other half
do not. There will be altogether 2(P/2)(P/2)/ BC of

such messages in both ways, where BC is the network
bisection width [4].

Table 1. Lower bounds on complexity of CCs

on non-combining networks

For the network topologies potentially useful in a
NoC the lower bounds of selected CCs are given in
Tab.2. Wormhole switching and full duplex links
have been assumed everywhere except unidirectional
1-way rings. Let us note that all the lower bounds can
be reached for a simple ring topology and most of
them also for a mesh topology by means of known
algorithms [5]. Non-minimum routing would be
necessary for further improvement of some upper
bounds in meshes [5].

Table 2. Lower bounds τCC(G) from Tab.1 for

selected networks

WH, FD, 1-port
 non-combining

OAB AAB OAS AAS

1-way ring, P=4 2 3 3 5

2-way ring, P=4 2 3*) 3 3+)

1-way ring, P=8 3 7 7 16

2-way ring, P=8 3 7 7 8

H. rings, P=16 4 15 15 32

H. rings, P=64 6 63 63 512

2D mesh 4 x 4 4 15 15 16

2D mesh 6 x 6 6 35 35 54

2D mesh 8 x 8 6 63 63 128

*) three rotations
+) pairwise exchange – horizontal, vertical, diagonal

The bidirectional ring topology, though very
simple, is not free from routing deadlock, because the
channel dependency graph is not acyclic [4]. This
can be seen on a common permutation called cyclic
shift. The problem can be solved by introduction of
virtual channels [4] and by implementing rules on
channel usage. We assume that these rules are

CC WH, k-port, full duplex links,
without message combining

OAB log k+1 P  = (log P) / log (k+1)

AAB Max (log k+1 P  , (P – 1) / k)

OAS (P – 1) / k

AAS Max (P2 / (2BC) , (P – 1) / k)

adhered to in all our CC schedules and thus the
deadlock is avoided.

As far as 2D meshes is concerned, the dimension-
ordered deterministic routing (first in x, then in y
direction) on meshes and tori is known to be
deadlock-free. A certain degree of adaptiveness can
be obtained by more relaxed routing, such as North-
last or West-first strategy [4].

a)

b)

Fig.2. Hierarchical rings (H- rings)
a) P=16 b) P=64

3. Time complexity of real CC algorithms
with message combining

The lower bounds on number of start-ups for
uniform messages are easily translated into
communication times by means of the linear
communication model (2). E.g. AAS on the 8-node
bidirectional ring would require 8 steps. Provided that
a message has m = 100 byte, time per byte t1 = 1ns
and start-up time ts = 10 ns (typical NoC parameters
from [6]) , we get the total time

 TAAS = 8 (10 + 100*1) ns = 880 ns.
However, in large networks we can reduce the
number of startups (further denoted by #) if we
combine several messages locally and send them as a
single message to a remote node representing another

local group. In this case the total communication time
must be calculated as

 TCC = #startups × ts + ∑ki m t1

= #startups× ts + m t1 TCO, (3)
where message size ki × m is generally different in
every communication step i over which we do
summation. Term TCO is the Total Channel
Occupancy time normalized by a transfer time mt1 of
an elementary message of size m bytes. So if we
could replace the above AAS communication by
another one with 3 steps and with transmission of
100, 200 and 400 bytes in successive steps, then m =
100, TCO = 1+2+4 = 7 and
 TAAS = 3 *10 + (100+200+400) *1 ns =
 = 3 *10 + 100* (1+ 2 + 4) *1 = 730 ns.
Here the overhead of message combining is neglected
as a second-order quantity.

3.1. CC algorithms on one-port combining
rings and 2D-meshes

The combining model has no effect on OAB

communication pattern because there are no distinct
messages to be combined. The logarithmic lower
bound on the number of start-ups in Table 1 (k=1) is
reachable by binary jumping algorithm [4]. Since
meshes are not node-symmetric, a direction that the
message is sent along has to be determined depending
on source node type (corner, edge, inner), unlike the
torus networks.

AAB algorithm in meshes alternates odd-
numbered steps and even-numbered steps. In former
steps odd-even pairs of processors exchange and then
combine data, and in even-numbered steps even-odd
pairs do the same. This is done first in all rows
simultaneously, then in all columns. The total number
of startups is a plain sum of their count in two phases,
since the message-combining overhead is ignored.
The size of messages grows from one to P in rows,
then from P to P/2 in columns, so that altogether
TCO = 1+2+4+ …+ P + 2 P +4 P +…+P/2 = P-1.
For a ring we have a better way of AAB: all
processors send their data in one direction around the
ring, one hop at a time, in P-1 steps.

The combining OAS on a ring can use again the
binary jumping. Unlike OAB, the size of messages
now varies (decreases) as the nodes extract their data:

TCO = P/2 + P/4 +…+ 1= P-1.
In 2D-meshes we perform first OAS within the row of
the source node with messages of size P (a
combination of messages destined for a whole

column). Then OAS follows in all columns in
parallel.

The combining AAS pattern is the same as for
AAB, but the contents and size of messages are
different. On a ring, all processors simultaneously
rotate messages around in one direction, extracting
and accumulating their part in each step. The size of
messages thus gets reduced linearly,

TCO = (P-1)+(P-2)+…+1= P(P – 1)/2 .
In 2D-meshes we can use the same rotating strategy
first in rows and then in columns (with WH switching
we can rotate messages even if there is no wrap-
around link). The normalized message size will
decrease linearly from P (P -1) to P during
rotation in rows, but each node will accumulate data
of size P (P -1) plus P left behind for its column.
The same situation will repeat in the column rotation
except the data left behind in a node are now P -1
messages from partners in the row. Therefore
TCO = 2 [P (P -1) + P (P -2)+…+ P] =
 = P (P -1)
All the results are summarized in Table2.

Table 2. Parameters of CCs on a combining
P-ring and a P × P mesh (upper bounds)

3.2. Scheduling CCs on the hierarchical ring
network topology

Optimum scheduling CCs on the hierarchical ring
topology at Fig.2 requires careful consideration.
Generally hierarchical networks are a good match for
combining one-to-all CCs as combined messages can
flow between adjacent levels of hierarchy with only
one start-up time. For all-to-all communications the
number of start-up times may get reduced in
comparison to non-combining CCs, but with longer
messages the total occupancy of links is higher. In
Table 3 we give both #of start-ups and TCO.

There is no advantage of message combining in
OAB on hierarchical rings. The broadcast pattern on
P = 16 processors is shown in Fig. 3. The source node
has the message in time 0, other nodes get the
message in the time step given inside table cells. In 4
steps all nodes get informed.

1 4 4 2 3 4 4 3
4 3 3 4 4 1 2 4
4 3 3 4 4 2 0 4
2 4 4 0 3 4 4 3

 a) b)

Fig. 3. OAB on hierarchical rings in 4 steps
a) a corner source 0 b) an inner source 0

The combining OAS communication has the same
complexity (in steps) as OAB. Unlike the OAB, the
message size recursively halves from P/2 to 1.

The AAB pattern is more interesting. It can be
done by gathering messages in 4 representative nodes
and then broadcasting from them. E.g. for P=16:
1. Combining OAG on basic (level 0) rings, 2 steps,

messages of size m and 2m
2. Non-combining AAB by rotation on level 1 rings,

3 steps, messages of uniform size 4m. A
representative node on each basic ring has all 16
messages.

3. OAB within a basic ring. Two steps, message size
16m.

The result: 7/47.
Non-combining AAB among P =16 nodes can be
done in two phases:
1. AAB among corresponding nodes in rings at level

0. Rotation in three super-steps, each super-step 4
steps. Message size always 1m.

2. AAS on 0-level rings: 3 steps, message size 4m.
The result: 15/24.

The most complex AAS communication can be
done either as non-combining or combining.
The combining AAS among P=16 nodes (7/138):
1. AOG in 2 steps, with message size 15m, 30m

WH, 1-port, full duplex,
message combining

CC

on a ring
of start-ups TCO

OAB log 2 P  log 2 P 

AAB P – 1 P – 1

OAS log 2 P  P – 1

AAS P – 1 P(P – 1)/2

WH, 1-port, full duplex,
message combining

CC

on a
mesh # of start-ups TCO

OAB 2 log 2 P  2 log 2 P 

AAB 2(P – 1) P – 1

OAS 2 log 2 P  P – 1

AAS 2(P – 1) P (P – 1)

2. AAS among 4 nodes at level 1 in 3 steps, message
size always 16.

3. OAS from nodes at level 1 to 3 local nodes in 2
steps, message size 30m, 15m.

 Non-combining AAS among P= 16 nodes (51/51):
1. AAS among rings at level 0. Three super-steps, 32

pair-wise exchanges in each super-step, 2 in each
step. Message size is always 1m.

2. The local AAS in level 0 rings. 3steps, message
size 1m.

All-to-all CC algorithms for P=64 nodes use the
similar strategy as those for P=16. The results of all
algorithms given above are listed in Table 3.

Table 3. Upper bounds of #startups/TCO for
CCs on hierarchical rings and P × P
meshes

WH, FD,
1-port

OAB AAB OAS AAS

H.rings, P=16,
non-combining

4 15/24 15 51

H. rings, P=64
non-combining

6 99/252 63 819

H. rings, P=16
combining

4/4 7/47 4/15 7/138

H. rings, P=64
combining

6/6 11/319

6/63 11/2658

2D mesh 4 x 4
combining

4/4 6/15 4/15 6/48

2D mesh 8 x 8
combining

6/6 14/63 6/63 14/448

Table 4. The best CC times on hierarchical
rings and a 2D- mesh (upper bounds)

time Mesh Mesh Rings Rings
[ns] 4 × 4 8 × 8 16 64
OAB 56 84 56 84
AAB 120 392 246 1386
OAS 100 312 100 312
AAS 252 1932 622 10742

5. Conclusions

 The results, #start-ups and TCO parameters, are
summarized in Table 3. For typical NoC parameters
ts = 10ns, t1 = 1ns and for message size m = 4 bytes
the minimum CC times are highlighted in Table 3 and
for illustration numerically calculated in Table 4. It is

seen that CCs perform generally better on 2D-meshes.
Whereas OAB and OAS perform equally well on 2D-
meshes and H-rings, AAB and AAS are much slower
on H-rings. This is so under our implicit assumption
that all the links in the network of Fig.2 have the same
bandwidth (what may not be true in some cases). Also
the combining mode is always faster than non-
combining except AAB on small H-rings (P=16) with
message size m ≥ 4 bytes.

In future we want to use the obtained CC times for
performance prediction of complete parallel
applications on both considered NoCs. Another
research direction should concentrate on a more
scalable AAB and AAS algorithms on hierarchical
rings.

Acknowledgement

This research has been carried out under the financial
support of the research grants “Design and hardware
implementation of a patent-invention machine”,
GACR, GA 102/07/0850, Grant Agency of Czech
Republic, “Architectures of Embedded Systems
Network“, GA102/05/0467, and “Security-Oriented
Research in Information Technology” Ministry of
Education, MSM 0021630528.

References

[1] A. Ivanov, G. De Micheli, “Guest Editors’ Introduction:

The Network-on-Chip Paradigm in Practice and
Research”, IEEE Design&Test of Computers, Vol.22.
No.5, Sept.-Oct. 2005, pp. 399-403.

[2] A. Jantsch, H. Tenhunen, Networks on Chip, Kluwer
Academic Publ., Boston, 2003.

[3] Intel Tera-scale Computing, 2007. URL:
http://www.intel.com/research/platform/terascale/i
ndex.htm

[4] Duato, J., Yalamanchili, S.: Interconnection Networks –
An Engineering Approach, Morgan Kaufman
Publishers, Elsevier Science, 2003.

[5] Jaroš Jiří, Ohlídal Miloš, Dvořák Václav: Complexity of
Collective Communications on NoCs, In: Proc. of 5th
International Symposium on Parallel Computing in
Electrical Engineering, IEEE CS Press, 2006, Los
Alamitos, CA, US, pp. 127-132.

[6] Hennessy, J.L., Patterson, D.A.: Computer
Architecture - A Quantitative Approach. 4th
Edition, Morgan Kaufman Publishers, Inc., 2006.

