
Online Protocol Testing for FPGA Based Fault Tolerant Systems

Jiri Tobola, Zdenek Kotasek, Jan Korenek, Tomas Martinek, Martin Straka
Brno University of Technology

Faculty of Information Technology
Bozetechova 2, Brno, 612 66, Czech Republic

{xtobol01, kotasek, korenek, martinto, strakam}@fit.vutbr.cz

Abstract

In this paper, the methodology for automated design of
checker for communication protocol testing is presented.
Based on the level of checking, different design strategies
can be performed - in the paper the lowest level is pre-
sented. The definition of dedicated language for the de-
scription of possible communication faults is presented. The
core generator is used to produce VHDL code describing
the behaviour of the checker.

1. Instructions

Fault-tolerance is an important system metric for many
operating environments, from automotive to space explo-
ration. The conventional technique for improving system
reliability is through component replication, which usually
comes at significant cost: increased design time, testing,
power consumption, volume, and weight. Reconfigurable
systems implemented using user-programmable logic ele-
ments such as FPGA are well suited for applications where
high dependability is required. The problems combined
with the design of dependable systems include error de-
tection during system operation, fast fault location, quick
recovery from temporary failures, and fast permanent-fault
repair [4].

In [2] the method of highly reliable digital circuit design
method based on totally self checking blocks implemented
in FPGAs is described, parity predictors are used for this
purpose. The parity predictor design method based on mul-
tiple parity groups is proposed. Proper parity groups are
chosen in order to obtain minimal area overhead and to de-
crease the number of undetectable faults.

In [5], the authors present how an original method to
synthesize monitors from declarative specifications writ-
ten in the PSL (Property Specification Language) standard
was developed. Monitors observe sequences of values on
their input signals, and check their conformance to a speci-

fied temporal expression. The method implements both the
weak and strong versions of PSL FL operators, and has been
proven correct using the PVS theorem prover. The paper
discusses the salient aspects of the proof of their prototype
implementation for on-line design verification.

The problem of on-line testing is widely discussed in nu-
merous papers. In [3], it is presented how path (min) de-
lay faults when designing on-line testable circuits should be
taken into account. The challenges that this poses to the
existing on-line testing strategies are discussed. Examples
showing the possible incorrect behaviour of a self-checking
circuit as a result of this kind of faults are given. In [1], the
idea of combining self-test technology for production test
and for on-line self test is presented.

2 Motivation for the research

The complexity of the checker will be different based
on the type of communication protocol fault supposed to
be detected by the checker. The complexity of the checker
will influence the area required on the chip and communica-
tion speed. As an important aspect of the methodology we
saw that the alternative of automated design of the checker
should be available to a designer. For this purpose, we felt
the need for a language by means of which the checker will
be described together with the need for core generator to
compile checker description into VHDL code. Based on
the detection of incorrect sequences in the communication
protocol it can be judged that a fault occurred in the hard-
ware and the hardware can be reconfigured to guarantee the
correct operation. To provide this, certain features which
are typical for fault tolerant systems were added to the ar-
chitecture. Based on the experience gained during the re-
search, the results were summarized and plans for the future
accepted to enhance fault tolerant aspects of the design.

The final objective of our research can be characterised
in the following way: 1) the development of fault tolerant
hardware for Virtex-II Pro board which is now being used
in different applications (FlowMon, Traffic scanner, etc.),



2) the development of both on-line and off-line strategies to
detect hardware faults, 3) the development of self-repairing
reconfiguration strategies to recover from hardware faults.
We intend to develop three levels of the checker, the lowest
one is presented in this paper.

3 Language Definition

The faults which possibly occur in digital devices can be
described in many different ways. Typically, formal model
or language is one of the possible ways how to describe fault
states. For the description of possible communication pro-
tocol faults the dedicated language was defined. The main
advantage of this approach is such that based on the lan-
guage the checker can be generated automatically without
the intervention of experienced designer.

The language description is composed of two parts. The
first one defines the input alphabet symbols that uniquely
specify the transitions between automata states. Each input
symbol is defined as the set of conditions over the commu-
nication protocol signals. The second part of the language
defines the transition function of automata. For each state
and input symbol, the transition to the next state is defined.
The initial state is labelled asStartand the error during the
communication protocol is detected by the transition toEr-
ror state. If the automata is not completely defined, for un-
covered input signal combinations it remains in the same
state.

The input automata symbols are defined as conjunction
of conditionscond1, cond2, ..., condN separated by∧ sym-
bol. Each condition contains single comparison operators
(<, >, <=, >=, == and<>) between signal and constant,
and each condition can be negated using operator ”!”. Ex-
pression defined in this way is assigned to new input sym-
bol. Syntactic structure is shown in the following example:

p0 = cond0 ∧ cond1 ∧ cond2 ∧ ... ∧ condN

The automata behaviour is described using transition func-
tion which is represented by a set of transitions in the form
(S1, p0) → S2. Based on the set of input characters and
transition function, it is possible to formally construct the
finite state machine and thus to design the checker. Exam-
ple of the simple checker behavior is shown here:

p0 = a0 = 1 ∧ a1 > 3 ∧ ...
p1 = a0 = 1 ∧ a1 > 3 ∧ ...

(S0, p0) → S1

(S1, p1) → S3

(S3, p0) → S0

(S3, p1) → Serror

Serror → S0

A = (Q,T, P, Start, Error),

Q is the set of states,T is the set of input symbols,P
is used to define the following state for each state and input
symbol. Start is the starting state andError is the error
state of the checker.

4 Core Generator

Core generator is a program which was created for auto-
matic design of checker from the definition language. The
generation process consists of two phases shown in Fig-
ure 1. In the first phase, input file is analysed and finite state
machine (FSM) is constructed. During the second phase,
FSM is mapped into VHDL description. The output of the
core generator is a VHDL description of checker.

Input file analysis is started by reading input symbols
and conditions. During the analysis, set of input symbols
with conditions is constructed. Concurrently, the condition
is parsed and a syntactic tree is created and stored for the
usage in the mapping phase.

Mapping
to VHDL

Input file
Analysis A=(Q, T, P, Start, Error)

Finite State Machine

checker.def checker.vhd

Checker description
in VHDLof protocol states

Definition 

Figure 1. Two phasis of core generator
processing

When the set of input symbolsT is constructed, the
analysis process continues by reading FSM transitions.
Source and destination states are then extracted from the
transitions and both states are added to the set of statesQ.
After that it is checked if the input symbol which is used to
trigger the transition, is in the setT . If the input symbol is
not included inT , an error is reported and the core genera-
tor is closed. At the end of input file analysis an automaton
A = (Q,T, P, Start, Error) is constructed.

The mapping phase starts by developing checker inter-
face. First, used signals are extracted from every symbol
condition. All extracted signals are used as the input to FSM
transitions and have to be part of the checker interface. The
error signal is the only output of checker and has to be in-
cluded into the component interface. All FSM inputs and
error output are signals which are used for the VHDL entity
generation.

The generation of VHDL architecture is started by map-
ping conditions to VHDL processes. Inputs to the process
are signals used in the condition and an output is signal with
the same name as the input symbol associated to the condi-
tion. Process contents is generated from the syntax tree con-
structed during the analysis phase. FSM is mapped in two
VHDL processes. The first process is a current state regis-
ter and the second process describes the next state logic. In



both cases, the description is similar to the language tem-
plates for synthesis. Synthesis tools can recognize FSM
from the VHDL description and find appropriate implemen-
tation for target technology.

5 Evaluation of the Methodology

The proposed approach for generating checker structure
was tested on Local Link communication protocol [6] de-
veloped byXilinx company which is used especially for
FPGA components interconnection. The Local Link pro-
tocol has been integrated to many IP Cores. The Local Link

Figure 2. Local Link Protocol Timing Diagram

(LL) is based on synchronous point-to-point communica-
tion protocol which transfers data in the form of packets.
To the LL advantages generic data width of transferred data
belongs which is a very important aspect for stream process-
ing applications. Six control signals are used for identi-
fying the structure of transferred packet. The example of
Local Link communication protocol is shows in Figure 2.
Detailed specification of Local Link protocol is available
in [6].

For the purposes of checker evaluation, three differ-
ent levels of diagnosis were chosen: (1) The lowest level,
where checker checks the protocol control signals and de-
tects states that do not meet the protocol specification. (2)
The second level verifies the correct sequence of control sig-
nals and evaluates the transitions between communication
protocol states. (3) At the third level, the content of data is
verified whether it satisfies specified conditions and rules.

In the first case, the checker only checks the protocol
control signals without the information about the communi-
cation protocol status. From the Local Link timing diagram
(see Figure 2), it is obvious, that some of the control signals

cannot be active simultaneously. Forbidden combinations
can be summarized in the following rules:

1. Active SOF and EOF are forbidden because header and
footer have to be present.

2. Active SOF and EOP are forbidden because footer can-
not start before header.

3. Active SOP and EOP are forbidden because the infor-
mation about header and payload reminder cannot be
available at the same time.

4. Active SOP and EOF are forbidden because frame can-
not end without footer.

5. Active EOP and EOF are forbidden because the infor-
mation about payload and footer reminder cannot be
available at the same time.

This list of the rules can be easily rewritten into the lan-
guage (defined in section 3) as follows:

p0 = SRC RDY N = 0 ∧DST RDY N = 0 ∧
SOF N = 0 ∧ EOF N = 0

p1 = SRC RDY N = 0 ∧DST RDY N = 0 ∧
SOF N = 0 ∧ EOP N = 0

p2 = SRC RDY N = 0 ∧DST RDY N = 0 ∧
SOP N = 0 ∧ EOP N = 0

p3 = SRC RDY N = 0 ∧DST RDY N = 0 ∧
SOP N = 0 ∧ EOF N = 0

p4 = SRC RDY N = 0 ∧DST RDY N = 0 ∧
EOP N = 0 ∧ EOF N = 0

(S0, p0) → Serror, (S0, p1) → Serror

(S0, p2) → Serror, (S0, p3) → Serror

(S0, p4) → Serror

Q = (Q,T, delta, q0, F )

The second group of rules considers the sequences of
control signals. For the Local Link protocol the following
rules can be applied:

• Any of four control signals SOFN, SOPN, EOPN,
EOF N can not be activated more then once without
activation of any other control signal. The condition is
valid only if signal SRCRDY N and DSTRDY N are
active.

• If the frame does not contain either header or footer
then a EOFN activation has to follow SOFN activa-
tion. The condition is valid only if signal SRCRDY N
and DSTRDY N are active.



• If the frame contains header and footer then the control
signals are activated in the following order: SOFN,
SOPN, EOPN, SOPN, EOPN, SOPN, EOPN,
and EOFN. The condition is valid only if signal
SRCRDY N and DSTRDY N are active.

p0 = SRC RDY N = 0 ∧DST RDY N = 0 ∧
SOF N = 0

p1 = SRC RDY N = 0 ∧DST RDY N = 0 ∧
SOP N = 0

p2 = SRC RDY N = 0 ∧DST RDY N = 0 ∧
EOP N = 0

p3 = SRC RDY N = 0 ∧DST RDY N = 0 ∧
EOF N = 0

(S 0, p 0) → S SOF, (S 0, p 1) → S SOP,
(S 0, p 2) → S EOP, (S 0, p 3) → S EOF,
(S SOF, p 1) → S SOP . . .
. . . (S SOF, p 0) → S error,
(S SOP, p 1) → S error,
(S EOP, p 2) → S error,
(S EOF, p 3) → S error,

The third type of rules check not only control signals
but also control data which can be part of frame header or
footer. Rules can for example check the first byte of Eth-
ernet frame or any other byte in frame header which do
not not have arbitrary value. For the LocalLink protocol,
eight bytes of data were tested to evaluate the number of
resources needed for checker unit implementation.

Rules Slices

Signal Combination (1) 4
Sequence of signals (2) 7
Data checking (3) 16

Table 1. Resources usage in Slices

The synthesis to Virtex-II Pro FPGA was also performed
to obtain basic parameters of generated circuit. For all
generated circuits the maximal frequency was higher than
300 MHz and does not affect maximal frequency of IP
cores. FPGA logic utilization was different for all types
of rules. The results are summarized in table 1.

6 Conclusions and Future research

This paper proposes a technique for automatic design
of checker component for communication protocol testing.

Using a simple language it is possible to model the fault
states at different levels of communication protocol. The
complexity of the fault model or its input rules directly im-
pacts the amount of resources needed for component im-
plementation. The results achieved on Local Link protocol
show that relatively small number of resources is needed for
the detection of possible faults. The presented approach can
be further utilized for example in systems with two module
redundancy or as a trigger for activating a partial reconfigu-
ration of corrupted components.

Acknowledgements

This work was supported by the Research Project No.
MSM 0021630528 - Security-Oriented Research in Infor-
mation Technology and by GACR project No. 102/05/H050
- Integrated Approach to Education of PhD Students in the
Area of Parallel and Distributed Systems (Grant Agency of
the Czech Republic).

References

[1] C. Galke, M. Grabow, and H. T. Vierhaus. Perspectives of
combining on-line and off-line test technology for dependable
systems on a chip.IOLTS, 00:183, 2003.

[2] P. Kubalik, P. Fiser, and H. Kubatova. Fault tolerant system
design method based on self-checking circuits. InProceed-
ings of the 12th IEEE International Symposium on On-Line
Testing (IOLTS06), pages 185–186, Corno, Italy, 2006. IEEE
Computer Society.

[3] C. Metra, M. Omana, D. Rossi, J. M. Cazeaux, and T. Mak.
Path (min) delay faults and their impact on self-checking cir-
cuits’ operation. InProceedings of the 12th IEEE Interna-
tional Symposium on On-Line Testing (IOLTS06), pages 17–
22, Corno, Italy, 2006. IEEE Computer Society.

[4] S. Mitra, W.-J. Huang, N. R. Saxena, S.-Y. Yu, and E. J. Mc-
Cluskey. Reconfigurable architecture for autonomous self-
repair. IEEE Design and Test of Computers, 21(3):228–240,
2004.

[5] K. Morin-Allory and D. Borrione. Proven correct monitors
from psl specifications. InDATE ’06: Proceedings of the
conference on Design, automation and test in Europe, pages
1246–1251, 3001 Leuven, Belgium, Belgium, 2006. Euro-
pean Design and Automation Association.

[6] Xilinx Inc. 2100 Logic Drive.LocalLink Interface Specifica-
tion. San Jose, September 2006.


