
 

 

 

  

Abstract—The paper presents a new concept of parallel 

bivariate marginal distribution algorithm using the stepping 

stone based model of communication with the unidirectional 

ring topology. The traditional migration of individuals is 

compared with a newly proposed technique of probability 

model migration. The idea of the new xBMDA algorithms is to 

modify the learning of classical probability model (applied in 

the sequential BMDA [1]). In the first strategy, the adaptive 

learning of the resident probability model is used. The 

evaluation of pair dependency, using Pearson’s chi-square 

statistics is influenced by the relevant immigrant pair 

dependency according to the quality of resident and immigrant 

subpopulation. In the second proposed strategy, the evaluation 

metric is applied for the diploid mode of the aggregated resident 

and immigrant subpopulation. Experimental results show that 

the proposed adaptive BMDA outperforms the traditional 

concept of individual migration. 

I. INTRODUCTION 

HE concept of traditional parallel genetic algorithm 

(PGA) is well known. The population is divided into a 

few subpopulations or demes, and each of these demes 

evolves separately on different processors. Exchange of 

information among subpopulations is possible via 

a migration operator. In this context, the term island model is 

ordinarily used. On each island the population is free to 

converge toward different optima. The migration operator is 

supposed to mix good features that emerge locally in the 

different demes. 

Many topologies can be defined to connect the demes, but 

the most common models are the island model and the 

stepping stones model. In the basic island model, migration 

can occur between any subpopulations, whereas in the 

stepping stone model demes are disposed on a ring and 

migration is restricted to neighboring demes. In [2] the 

theory is published providing rational decisions for the 

proper setting of control parameters. An interesting survey of 

PGA is published in [3]. An effective technique for the 

massive parallelization of compact GA was published in [4]. 

An extremely prestigious PGA which is capable to solve 
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billion-variable optimization problems was recently 

published in [5]. 

This paper concerns the application of the stepping stone 

model (for simplicity will use the term island-based model) 

for bivariate marginal distribution algorithm BMDA. This 

new approach using probability model migration is 

conceptually different from the traditional parallel genetic 

algorithms with migration of individuals/solutions and also 

from the EDAs using parallel building of pseudo-sequential 

probabilistic models. 

The paper is organized as follows: Section II introduces 

the basic concept of EDA algorithm and current techniques 

used in the parallelization of the EDA algorithms. In Section 

III the sequential BMDA is described including the 

factorization and graphical representation of probability 

model. Section IV presents the motivation and a new idea of 

learning probability model using a concept of probability 

model migration. Experimental results are shown in Section 

V, Section VI concludes the paper. 

II. TRADITIONAL EDAS 

EDAs belong to the advanced evolutionary algorithms 

based on the estimation and sampling of graphical 

probabilistic models [6-13]. They do not suffer from the 

disruption of building blocks known from the theory of 

standard genetic algorithms. In Fig. 1 the canonical 

sequential EDA is described. 

 

Set t ← 0; 

Generate initial population D(0); 

While termination criteria is false do 

begin 

  Select a set of promising solution 

D
s(t); 

  Construct a new probability model Μ   
from Ds(t) using chosen metric; 

  Sample offspring O(t) from Μ; 

  Evaluate O(t); 

  Create D(t+1)as a subset of O(t) ∪ 
D(t) with cardinality N; 

  t ← t + 1; 

end 

Figure 1. The pseudo code of canonical EDA 

 

EDAs often surpass classical EAs in the number of 

required fitness function evaluations. However, the absolute 

execution time is still limiting factor which determines the 

size of practically tractable problems. Referring to Fig. 1 the 

most time consuming task is the estimation of probability 
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model. Most papers on EDAs concentrate on parallel 

construction and sampling of probabilistic models. The well-

known algorithm employing parallel construction of 

Bayesian network is EBNA algorithm designed for MIMD 

architecture designed both for MPI and POSIX threads, 

published in [14, 15, 16]. In [17] the theory of population 

sizing and timing to convergence is published. 

A new idea of the multideme parallel estimation of 

distribution algorithm (PEDAs) based on PBIL algorithm 

was published in [18]. In [19] mixtures of distribution with 

Bayesian inference are discussed. Parallel learning of belief 

networks in large domains is investigated in [20]. Using the 

concept of PBIL algorithm [21, 22, 23] the classical 

phenomenon of migration in island based EAs was carried 

over into probability distribution of EDAs. A new approach 

of probability vector crossover was implemented with very 

good performance. Another approach is published in [24] 

where on UMDA platform the convex combination of 

univariate probability models is investigated for various 

network topologies (ring, star etc.). Further enhancement of 

this concept is described in [25] where the local search 

methods are used to identify which part of the immigrant 

model can improve the resident model.  

In our paper we propose a new concept of island based 

BMDA algorithm with ring topology based on the 

combination of two adjacent bivariate probability models. 

III. SEQUENTIAL BMDA 

The well known representative of bivariate EDAs is the 

Bivariate Marginal Distribution Algorithm (BMDA) 

proposed by Pelikan and Mühlenbein [1, 23]. This algorithm 

uses a factorization of the joint probability distribution that 

exhibits second-order dependencies.  

EDAs are also population based algorithm but unlike GAs 

the new population is generated by sampling the recognized 

probability model. 

Let us denote: 

D = (X
0
, X

1
,..., X

N-1
) with X ∈ D, is the population of 

strings /solutions/individuals, 

X = (X0, X1,..., Xn-1) is a string/solution of length n with Xi 

as a variable, 

x = (x0, x1,..., xn-1) is a string/solution with xi as a possible 

instantiation of variable Xi, xi ∈{0,1},  

p(X) = p(X0, X1,..., Xn-1) denotes the n dimensional 

probability distribution, 

p(x0, x1,..., xn-1) = p(X0 = x0, X1 = x1,..., Xn-1 = xn-1) denotes 

a probability of a concrete n dimensional vector. 

The probabilistic model used in BMDA can be formalized 

by Μ = (G, Θ), where G is dependency graph and Θ = (θ0, 

θ2,…, θn-1) is a set of parameters which are estimated by 

local conditional or marginal probability for each 

node/variable of the dependency graph. 

A greedy algorithm for building dependency graphs is 

used. At the beginning the root node is selected and 

subsequently the nodes with maximum dependency value are 

searched among the remaining nodes and joined. These 

pairwise dependencies in BMDA are discovered by 

Pearson’s chi-square statistics: 
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where N is the size of parent population and m(xi, xj), m(xi) 

resp. m(xj) denote the number of individuals in the parent 

population with concrete values of xi and/or xj. These values 

are stored in the contingency tables. From the theoretical 

point of view this metric can be seen as statistical testing of 

hypothesis – for example binary genes Xi and Xj are 

considered to be independent at 95 percent confidence level 

if 84.32

, <jiχ . Like COMIT, BMDA also uses a variant of 

minimum spanning tree technique to learn a model. 

However, during the tree construction, if none of the 

remaining variables can be “rooted” to existing tree, BMDA 

starts to form additional tree from remaining variables. The 

final probability distribution is thus a forest distribution (a 

set of mutually independent dependency trees): 
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where V is the set of nodes of dependency tree, R is the set of 

root nodes and Xj(i) denotes the parent node of Xi. Given the 

tree dependence structure, the univariate marginal 

probability distributions are estimated from the 

promising/parent population: 
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and the bivariate conditional probability distributions 
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For example, the joint probability distribution for the 

dependency graph in Fig. 2 can be expressed by the 

factorization: 

a) p(X) = p(X4) p(X3 |X4) p(X2 |X3) p(X1 |X2) p(X0|X1) 

b) p(X) = p(X2) p(X3 |X2) p(X0 |X4) p(X4) p(X1 |X4) 
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Figure 2. Example of dependency graph for: a) COMIT, b) BMDA 



 

 

 

IV. ISLAND-BASED BMDA 

The principal motivation for the proposal of a new 

concept of BMDA parallelization is to discover the 

efficiency of the transfer of probabilistic parameters in 

comparison with the traditional transfer of individuals. The 

main goal is to obtain better solution quality. The present 

approaches recently published use a simpler probability 

model only (PBIL, UMDA), see [18, 24, 25].  

With the concordance of the theoretical conclusion shown 

in [1] and on the basis of experimental works done in [14], 

we used the island-based communication model with 

unidirectional ring topology with synchronization. We 

simulated this system on single processor computer. It is 

evident that we can decomposed the migration process in the 

ring loop into pairwise interactions of two adjacent islands - 

one of them is the resident island specified by resident 

probabilistic model and the second one is the immigrant 

island whose probabilistic model is transferred to a new 

resident model using a predefined migration rate. 

We focused on the problem of combining the immigrant 

model with the model in the resident island. In general, the 

modification of resident model by immigrant model can be 

formalized by [21, 23]: 

ΜR = β ΜR ° (1- β)ΜI , (5) 

where operator ° can be e. g. sum operator and the 

coefficient β in the range <0, 1> specifies the influence of 

the immigrant model. We have proposed two types of model 

combination:  

A) mixed learning of dependency graph, 

B) adaptive learning of dependency graph. 

A. Mixed Learning of Dependency Graphs 

In this variant, both subpopulations in resident and 

immigrant islands are treated as one subpopulation with a 

diploid structure. During the consecutive building of the 

resident dependency graph GR the new node is added to the 

graph resulting in addition a new edge between node pairs 

(xi, xj) according the resulting Pearson’s chi-square statistics: 
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It means that the search procedure for a new edge of GR 

examines not only inner node pairs of the resident island and 

the inner node pairs of the immigrant island but also mixed 

node pairs, where each node of the pair belongs to different 

islands. We tested two operators °: a) random choice 

(random), b) maximum value (max). More promising 

solutions were achieved by max operator:  
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B. Adaptive Learning of Dependency Graphs 

This variant uses the adaptive learning of both parts of the 

probabilistic model – the dependence graph GR and the 

parameter set ΘR. Equation 5 is thus specified by the 

following equations: 
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Θ’R = β ΘR + (1-β)ΘI (9)  

 

The learning of the dependency graph by (8) and (9) does 

not utilize mixed node pairs. In addition, the adaptation 

coefficient β is used as: 
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where FR represents the mean fitness value of the resident 

subpopulation and FI represents the mean fitness value of the 

immigrant subpopulation. In Fig. 3 the pseudocode of the 

model combination is shown. 

 

Procedure(Output:M’R, Input:SubPopI, SubPopR) 

Define n as the problem size; 

Calculate FR for the resident subpopulation; 

Calculate FI for the immigrant subpopulation; 

Calculate β: 
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  For i=0 to n-1 do begin 

    For j=0 to n-1 do begin 

      Calculate
RR ji

2
,χ ,

II ji
2
,χ ; 

      Store in Chi_Table[i,j]: 
IIRR jijiji
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,
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    end 

  end 

Build the new dependency graphs G´R according Chi_Table; 

Calculate set of the parameters: ΘR(G’R) , ΘI(G'R) ; 

Learning of the parameters: Θ’R = β ΘR + (1-β)ΘI 

Compose new resident model:: M´R = (G´R , Θ’R), 

Sample the adapted model M´R ; 

Replacement of SubPopR; 

Figure 3. Adaptive model learning 

V. EXPERIMENTAL WORKS 

In our experiments, we compared six different variants of 

the BMDA algorithm. The first group consists of three 

versions using the probability model combinations: 

1) aBMDA, with adaptive learning of dependency graph.  

2) mBMDA, with mixed learning of dependency graph 

with max operator. 

3) rBMDA, with mixed learning of dependency graph with 

random operator.  

These three parallel BMDA algorithms works with 8 

island subpopulations, each consisting of 256 individuals as 

a portion of the full population with 2048 individuals.  

The second group used for the comparison includes 3 

classical variants of BMDA: 

4) iBMDA, with the migration of individuals. 

5) sBMDA, sequential BMDA, with full population of 

2048 individuals (as the whole eight-island model). 

6) oBMDA - sequential BMDA with reduced population 

consisting of  256 individuals (as in case of one island). 



 

 

 

Now, we have used fixed subpopulation size for the whole 

range of problem size. We have not wittingly used the 

possibility of the adaptation of the subpopulation size 

according to problem size as discussed in [17]. Our goal was 

to compare namely the parallel adaptive aBMDA version 

with traditional iBMDA version under limited resources 

(subpopulation size). The value of the population size for 

sBMDA is set to 2048 derived partially from our experience 

and from the experimental results published in [17] for the 3-

Deceptive problem.  

In all BMDA variants, truncation-based selection strategy 

was used, i.e. all individuals were ordered by their fitness 

value and the better half was used for model building. The 

truncation-based replacement strategy was also used for the 

replacement operator, i.e. the new generated solutions 

(offspring) replace the worse half of the subpopulation. The 

probabilistic model is built in each generation. Frequency of 

the model migration or individual migration was even - once 

per five generations. In case of the individual migration 

algorithm the elitism is used, that is, 13 best individuals of 

the immigrant subpopulation (i.e. about of k=5 percent of the 

subpopulation) replace the worse individuals of resident 

subpopulation. First stop condition was met after 500 

generations; the second condition was activated if there is no 

improvement in the interval of 50 generations. 

A. Specification of Benchmarks  

For our experimental study four well known benchmarks 

with various complexity and known global optimum were 

used. The OneMax and TwoMax problems served as the 

basic benchmarks for the testing of the basic performance. 

The Quadratic problem represents the adequate benchmark 

that should be solvable just by any BMDA algorithm. The 3-

Deceptive task belongs to the hard deceptive benchmark for 

BMDA and is often used for the testing of BOA algorithms. 

OneMax: ∑
−

=

=
1

0

)(
n

i

iOneMax xxf  

TwoMax: 
22

)(
1

0

nn
xxf

n

i

iTwoMax +−= ∑
−

=

 

Quadratic: ∑
−

=
+=

1
2

0

)12()2(2 ),()(

n

i

iiQuadratic xxfxf ππ
 

where uvvuvuf 9.1)(9.09.0),(2 ++−=  

3-Deceptive: ∑
−

=
++− ++=

1
3

0

)23()13()3(33 )()(

n

i

iiiDeceptive xxxfxf πππ
 

where 











=

=

=

=

otherwise

uif

uif

uif

uf

1

20

18.0

09.0

)(3

      

The four mentioned objective functions were used to form 

fitness functions (FF) without additional modification. We 

have tested 6 variants of BMDA using 30 independent runs. 

To have baseline to island based versions we first tested the 

classic sequential BMDA (sBMDA) with ordinary 

population of 2048 individuals and the classical sequential 

BMDA with reduced population (oBMDA). 

The first metric is represented by the often used success 

rate of the global optimum discovery. The second metric is 

calculated as the average value of the last generation fitness 

function (FF) over 30 runs. The third metric is computed as 

the mean value of the last generation number of correctly 

discovered buildings blocks (BBs) over 30 runs. These 

metrics/statistics are discussed in the next Sections. 

B. OneMax Problem 

The sBMDA, aBMDA and rBMDa algorithms succeeded 

in the whole range of the problem size, see Fig. 4. The 

mBMDA version was able to reliable solve this problem up 

to 280 variables. Behind this limit its success rate steadily 

decreases and beyond 420 variables it completely fails. 

Classical iBMDA version produces comparative result only 

up to 260 variables. The rapid drop follows after this 

threshold. oBMDA was very significantly outperformed with 

all algorithms. 

 

Success rate for OneMax problem
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Figure 4. Success rate for OneMax problem 

C. TwoMax Problem 

In case of TwoMax problem, see Fig. 5, the results of the 

tested algorithms are similar to the results achieved for 

OneMax problem.  
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Figure 5. Success rate for TwoMax problem 



 

 

 

The aBMDA version outperformed all other versions and 

achieved the same results as sBMDA. The drop of success 

rate for the iBMDA version with individual migration is 

stronger than in the case of OneMax problem. 

D. Quadratic Problem 

To achieve global solution for this problem, the second 

order statistics is necessary. This benchmark is thus perfectly 

suitable for testing and comparing all BMDA variants. In 

Fig. 6, the success rate for all compared algorithms can be 

seen. The best results were reached by sBMDA that 

succeeded in the nearly whole range of the problem sizes. 

The similar behavior can be observed even for aBMDA 

version that achieved 100 percent success rate up to 260 

variables. mBMDA and rBMDA versions are not so efficient 

as the sBMDA and aBMDA, see the drop of success rate for 

about 120 variables. The worst results from all parallel 

versions were produced by classical iBMDA version. 
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Figure 6. Success rate for Quadratic problem 

 

Besides the success rate metric the mean±std statistics of 

the fitness function are presented in Table 1. It is evident that 

aBMDA version and sBMDA version provide the same 

results up to 260 variables. For higher number of variables 

sBMDA achieves better results. The highest value achieved 

for each problem size is written in bold. In Table 2, the 

mean±std statistics for the number of correctly recognized 

buildings blocks (BBs) are shown. 

E. 3-Deceptive Problem 

The problem was investigated for the variable range from 

21 to 120, see Fig. 7. For higher number of variables, the 

drop of success rate is significant for all proposed 

algorithms. It is caused by rather high complexity of the 3-

Deceptive problem that requires a more complex model and 

also larger population size for efficient performance. The 

best success rate was gained by aBMDA version. Very 

similar values were also gained by sBMDA. On the other 

hand, the worst results were obtained by rBMDA and 

iBMDA. The quality of the mBMDA version is somewhere 

in between. 
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Figure 7. Success rate for 3-Deceptive problem 

 

In Table 3 the mean±std statistics of the fitness function 

are presented. The best results were obtained by the aBMDA 

version and by sBMDA. Very good results were also 

achieved by mBMDA. The worst mean fitness values were 

gained by oBMDA algorithm followed by iBMDA. In Table 

4 the mean value and standard deviation of the discovered 

BBs are presented. Adaptive aBMDA version proves 

significant correlation between the mean value of fitness and 

the mean value of BBs. For the case of the 99–variable 

problem the mean number of BBs is 26.3 which is 80 percent 

of total 33 blocks. Note, that iBMDA discovered only 11.9 

BBs (36 percent). It is interesting comparison with the 

experimental results published for BOA algorithm in [17], 

where the achieved number of building blocks (BBs) for 99 

variables and the population size estimated to 250 equals to 

25 percent. 

F. Survey of resulting statistics 

The statistics including classic mean±std values of fitness 

function (FF) was processed only for two harder problems – 

the Quadratic problem in Tables 1, 3-Deceptive problem in 

Table 3. The best values are written in bold. From Table 1, it 

is evident that for Quadratic problem aBMDA and sBMDA 

have reached the global optima up to 260 variables and 

outperformed the other variants of algorithms. In the case of 

3-Deceptive problem aBMDA outperformed all other 

algorithms besides the sBMDA that is better for the problem 

size exceeding 90 variables. Note, that for the 120-variable 

problem the mean value of FF in case of aBMDA equals to 

38.6 which is near to global optimum represented by value 

40. In Table 2 and Table 4 the statistics results for BBs are 

shown for Quadratic and 3-Deceptive problems. From Table 

2 it is evident, that in case of Quadratic problem, aBMDA 

found all BBs up to 260 variables while iBMDA was 

successful up to 30 variables. In case of 3-Deceptive 

problems, see Table 4, aBMDA outperformed iBMDA in the 

whole range of problem size. Note that aBMDA achieved 

approximately two time higher mean value of BBs for the 

problem size exceeding 60 variables. 



 

 

 

G. Result Discussion 

In the first experiment, two groups of algorithms are 

compared: A) island-based BMDAs with probabilistic model 

learning in three modes, B) sequential sBMDA version with 

the full population size, reduced sequential oBMDA version 

and the traditional island-based iBMDA with individual 

migration. Both aBMDA and sBMDA versions are capable 

to find global optima with 100 percent success rate up to 500 

variables in case of OneMax and TwoMax problems and up 

to 260 variables in case of Quadratic problems. For difficult 

problems, like 3-Deceptive, the algorithms lack the ability 

repeatedly to find the optimal solution for problem size 

larger than 39. 

Both mBMDA and rBMDA versions provide worse 

results than aBMDA but better ones than iBMDA. It is 

evident that aBMDA is effective optimization tool 

outperforming iBMDA version based on the traditional 

individual migration. From these points of view the range of 

solvable problem size is at least two times larger in case of 

aBMDA version.  

The time complexity of all algorithms measured by the 

number of generation is comparable. For example, in case of 

Quadratic problem with 60 variables the average 

computational time is about 20 generations, see Fig. 8. Note, 

that oBMDA was able to find the global optima for this 

instance of Quadratic problem only in 66 percent of the 30 

runs. 
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Figure 8. Time complexity for Quadratic problem 

 

In real parallel implementation of aBMDA, it will be 

necessary to transport all contingency tables from the 

immigrant node to the resident node. The spatial complexity 

of these tables is 4n
2
 where n is the cardinality of the solved 

problem. In contrast to the model migration, the individual 

migration works with the spatial complexity nkN, where kN 

is the number of migrating individuals. Because the 

communication overhead in modern interconnection 

networks depends more strongly on start up latency of 

communication than on a transported message size, we can 

consider that the communication overhead will be nearly the 

same. If we used asynchronous type of migration [26] the 

communication overhead can be simply overlapped. 

VI. CONCLUSIONS 

In the paper we have proposed new island-based xBMDA 

algorithms with probability model migration. We have tested 

two basic strategies for combining probability distributions. 

Both of them work with graphical interpretation of the 

dependency graphs. The first strategy implemented in 

mBMDA and rBMDA uses the concept of mixed pairwise 

dependencies with two distinct evaluation operators. In the 

second strategy applied in aBMDA the only internal pairs of 

nodes of resident and immigrant subpopulation are 

investigated, but in addition the adaptive learning based on 

the quality of resident and immigrant subpopulation is used. 

Experimental results confirm our expectation that migration 

of the probabilistic model with adaptation can significantly 

obtain better results than the traditional concept of individual 

migration. The sequential sBMDA with full population size 

of 2048 individuals provides competitive results compared 

with the aBMDA but the time complexity of aBMDA 

version can be significantly reduce on the platform of 

multiprocessor system.  

The future work will be focused on more sophisticated 

testing of aBMDA algorithm and further modifications of 

learning techniques with limited size of parameter transfer. 

We also aim to parallelize the Bayesian Optimization 

Algorithm (BOA) using a modified concept of probabilistic 

model migration. 
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TABLE 1. STATISTICS RESULTS (MEAN±STD OF FF) FOR QUADRATIC PROBLEM 

 

Problem size 
Algorithm 

60 80 100 120 140 260 280 300 

1. aBMDA 30.0±0.00 40.0±0.00 50.0±0.00 60.0±0.00 70.0±0.00 130.0±0.00 139.9±0.24 149.7±0.46 

2. mBMDA 30.0±0.00 40.0±0.00 49.9±0.03 59.9±0.80 69.7±0.10 128.2±0.26 137.9±0.27 147.5±0.44 

3. rBMDA 30.0±0.00 40.0±0.00 50.0±0.00 59.9±0.09 69.7±0.13 127.4±0.24 137.2±0.32 146.7±0.37 

4. iBMDA 30.0±0.00 39.9±0.30 49.8±0.80 59.7±0.13 67.7±3.14 127.1±0.37 136.5±0.30 146.1±0.27 

5. sBMDA 30.0±0.00 40.0±0.00 50.0±0.00 60.0±0.00 70.0±0.00 130.0±0.00 139.9±0.02 149.9±0.02 

6. oBMDA 29.9±0.06 39.8±0.10 49.6±0.14 59.3±0.24 69.1±0.25 126.3±0.57 135.8±0.54 145.3±0.64 

Global optimum 30 40 50 60 70 130 140 150 

 

 
 

TABLE 2. STATISTICS RESULTS (MEAN±STD OF BBS) FOR QUADRATIC PROBLEM 

 

Problem size 
Algorithm 

60 80 100 120 140 260 280 300 

1. aBMDA 30.0±0.00 40.0±0.00 50.0±0.00 60.0±0.00 70.0±0.00 130±0.00 129±2.45 147±4.64 

2. mBMDA 30.0±0.00 40.0±0.00 49.9±0.34 58.9±0.84 67.0±1.06 112±2.55 119±2.71 124±4.40 

3. rBMDA 30.0±0.00 40.0±0.00 50.0±0.00 59.2±0.93 66.7±1.27 104±2.43 112±3.18 117±3.36 

4. iBMDA 30.0±0.00 39.8±0.37 48.7±0.78 56.7±1.26 64.5±1.36 101±3.71 105±3.27 111±2.77 

5. sBMDA 30.0±0.00 40.0±0.00 50.0±0.00 60.0±0.00 70.0±0.00 130±0.00 140±0.00 149.9±0.25 

6. oBMDA 29.6±0.61 38.8±1.02 46.5±1.41 53.8±2.48 60.8±2.38 93.4±5.86 98.0±5.15 104±4.93 

Global optimum 30 40 50 60 70 130 140 150 

 

 

 

 

 



 

 

 

TABLE 3. STATISTICS RESULTS (MEAN±STD OF FF) FOR 3-DECEPTIVE PROBLEM 

 

Problem size 
Algorithm 

21 30 39 51 60 72 81 90 99 120 

1. aBMDA 7.00±

0.00 

10.0±

0.00 

13.0±

0.00 

16.9±

0.04 

19.9±

0.06 

23.9±

0.15 

26.8±

0.15 

29.5±

0.20 

32.4±

0.35 

38.6±

0.29 

2. mBMDA 7.00±

0.00 

9.99±

0.02 

12.9±

0.03 

16.9±

0.12 

19.8±

0.12 

23.6±

0.17 

26.4±

0.23 

29.0±

0.31 

31.7±

0.26 

38.0±

0.28 

3. rBMDA 7.00±

0.00 

9.99±

0.03 

12.8±

0.09 

16.5±

0.13 

19.2±

0.19 

22.7±

0.13 

25.4±

0.1 

28.1±

0.17 

30.7±

0.15 

37.0±

0.23 

4. iBMDA 7.00±

0.00 

9,92±

0.06 

12,7±

0.11 

16.35

±0.09 

19.1±

0.13 

22.7±

0.14 

25.4±

0.16 

28.1±

0.15 

30.8±

0.15 

37.1±

0.14 

5. sBMDA 7.00±

0.00 

10.0±

0.00 

13.0±

0.00 

16.9±

0.03 

19.9±

0.06 

23.9±

0.09 

26.8±

0.1 

29.7±

0.16 

32.6±

0.18 

39.2±

0.2 

6. oBMDA 6.90±

0.05 

9.75±

0.12 

12.1±

1.99 

16.1±

0.16 

18.8±

0.22 

22.4±

0.24 

25.1±

0.23 

28.6±

0.57 

30.5±

0.22 

38.6±

0.59 

Global optimum 7 10 13 17 20 24 27 30 33 40 

 

 

 
TABLE 4. STATISTICS RESULTS (MEAN±STD OF BBS) FOR 3-DECEPTIVE PROBLEM 

 

Problem size 
Algorithm 

21 30 39 51 60 72 81 90 99 120 

1. aBMDA 7.00±

0.00 

10.0±

0.00 

13.0±

0.00 

16.8±

0.45 

19.7±

0.59 

23.1±

1.02 

25.0±

1.51 

25.8±

2.08 

26.3±

2.99 

26.2±

3.72 

2. mBMDA 7.00±

0.00 

9.97±

0.18 

12.9±

0.30 

16.3±

0.74 

18.4±

1.20 

20.3±

1.48 

21.6±

2.24 

21.9±

2.56 

21.2±

3.12 

21.4±

2.72 

3. rBMDA 7.00±

0.00 

9.90±

0.30 

11.7+

0.96 

12.3±

1.35 

12.8±

1.93 

12.7±

1.36 

11.8±

1.48 

11.1±

1.45 

10.9±

1.74 

10.8±

1.83 

4. iBMDA 7.00±

0.00 

9.23±

0.56 

10.6±

1.11 

10.6±

0.92 

11.3±

1.49 

11.5±

1.56 

11.5±

1.62 

11.3±

1.41 

11.9±

1.83 

11.6±

1.80 

5. sBMDA 7.00±

0.00 

10.0±

0.00 

13.0±

0.00 

16.9±

0.39 

19.6±

0.56 

23.0±

0.93 

25.3±

0.98 

27.8±

1.61 

29.4±

1.85 

32.1±

2.09 

6. oBMDA 6.47±

0.50 

7.60±

1.11 

7.33±

1.72 

8.27±

1.67 

7.23±

2.39 

8.23±

2.29 

7.92±

2.39 

8.50±

2.26 

8.67±

2.95 

9.03±

1.74 

Global optimum 7 10 13 17 20 24 27 30 33 40 

 


