
On Encoding and Utilization of Diagnostic Information Extracted from
Design-Data for Testability Analysis Purposes

Josef Strnadel1

1Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
strnadel@fit.vutbr.cz

Abstract. Estimation of testability parameter of a digital circuit strongly depends on
quality of input information utilized for the estimation by a testability analysis method. In
the paper, it is illustrated how the information can be encoded, utilized and extracted from
design-related data. For each component from a library of basic design components, the
information can be stored in the library together with other data in order to be utilized for
analysis of any future design based on components from the library.

Keywords. boolean function, diagnostic information, encoding, horizontal line test,
injection, mapping, surjection, transparency extraction, testability analysis, truth table

I. Introduction
A lot of research efforts have been dedicated to the importance of modeling diagnostic data transfers

in digital circuit data-path for purposes of more precise analysis of circuit properties from diagnostic
point of view. Probably, the first (so-called I/T-Path) model was published in [1]. The model supposed
transfer of n-bit diagnostic data is possible in the direction from n-bit port x to n-bit port y in circuit
data-path iff one-to-one (i.e., bijective) mapping exists between x-data and y-data.

Other works tried to enhance properties of I/T-Path based model. For example, in conception
referred to as S/F-Path conception [3], it was shown I/T-Path conception is easy to understand and
implement, but it is too strict in definition of data-paths suitable for diagnostic data-transfer. I/T-Path’s
strict "bijective mapping" requirement leads to unneeded restriction of set of data-paths suitable for
transferring diagnostic data. The strict requirement can be soften by analyzing data-path separately for
transferring test vectors (responses) between ports x and y.

The idea of such a separate analysis is as follows: test vectors (responses) can be transferred from x
to y iff a surjective (injective) mapping exists between x-data and y-data. Using this less-strict
principle, much more data-paths can be considered suitable for transferring diagnostic data than in
case of I/T-Path conception. Also, several variations of above-mentioned surjective, injective, and
bijective approaches, including ambiguity sets [7], transparency modes [11], or transparency channels
[5, 6], have been used in the area of generating so-called hierarchical tests. All above-mentioned
approaches are often referred to as transparency conceptions, because they deal with modeling of
situations in which data-path portion is transparent to transported diagnostic data.

II. Our Previous Work
In our previous research activities, we tried to take advantage of existing transparency principles

utilized successfully for enhancement of hierarchical test-generation methods and utilize them for
enhancement of register-transfer level (RTL) testability analysis (TA) process. From all transparency
principles, it was S/F-Path conception that has been found as the most suitable for solving problems
dealt during our previous research activities like TA [9], design-for-testability (DFT) [10] and
synthetic benchmark-generation [8] problems solved over the class of RTL digital circuits. In [9], it
was shown testability can be estimated very precisely when S/F-Path conception is utilized for
modeling diagnostic data transfers through RTL data-path. In addition, it was shown there is a very
close relationship between testability values got by our academic TA tool (working in linear time,
which is general assumption posed on any TA algorithm [2]) and fault-coverage values got by

commercial ATPG tools (generally, working in exponential time) – in average, there was 5% deviation
between our testability values and fault-coverage values gained for FITTest_Bench06 benchmarks [4].

III. Motivation of Our Research
To be able to apply transparency conception by automated methods being developed at our faculty,

it was necessary to develop a method for automated extraction of transparency information first (in the
past, the information was being created manually, so it was very difficult to “generate” it for
components with I/O bit-widths equal or wider than 4). For each component from a library of basic
design components, the information can be stored in the library together with design-related data and
other data like test vectors, responses etc. in order to be utilized for analysis of any future design based
on components from the library – see Fig. 1 for illustration of the role transparency information plays
in our DFT system.

Fig 1 Flowchart illustrating a role of transparency information in our DFT system

IV. Principles Related to Proposed Transparency Extraction Method
In contrast to above-mentioned transparency-related papers forming complex transparency

information to be utilizable for (exponential-time complexity) test-generation methods, we dealt with
design of a method for extracting simple transparency information to be utilizable for (linear-time
complexity) TA methods.

A. Actual Inputs and Outputs of the Extraction Method
In our actual transparency-extraction approach, it is supposed function of each basic RTL

component is described by means of a truth table. For general case of k-bit output functions (k≥1), our
transparency-extraction method takes a set F = {fk-1,…, f0} of k n-input Boolean functions
fi: {0,1}n → {0,1}, i = k-1,…, 0 as its input (function fi is related to ith output bit) and generates
transparency information at its output (see Fig 2). Set F can be seen as a function f: {0, 1}n → {0, 1}k,
so our method takes F in this f-form representing classic truth-table (e.g., see Tab. I).

Fig 2 Input/outputs of our transparency extraction method

For illustration of principles presented in this paper simple 1-bit full-adder (FA) is utilized. Function
of FA module can be described by (3-input, 2-output) truth table (presented in Tab. I), which is an
input to our actual transparency extraction method.

For general function f: {0,1}n→{0,1}k, let INf = {fin(n-1),…, fin(0)} be the set of its n inputs and
OUTf = {fout(k-1),…, fout(0)} be the set of its k outputs. For FA, INf = {x, y, cin}, OUTf = {z, cin}. Also,
let ν: INf∪OUTf →{0,1} be a mapping assigning a bit-value appearing at particular input/output x∈
INf∪OUTf.

Tab. I. Truth table for a 1-bit full-adder circuit
FA inputs FA outputs

x y cin z cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Tab. II. Surjective/injective mappings found for FA

Member
of In Out Test Inner

Encoding
Information stored in the

library
Sf xycin zcout - (111,11,0) x(0)y(0)cin(0)|z(0)cout(0)| -

Sf, If x z ycin (100,10,011) x(0)|z(0)|y(0)cin(0)
Sf, If y z xcin (010,10,101) y(0)|z(0)|x(0)cin(0)
Sf, If cin z xy (001,10,110) cin(0)|z(0)|x(0)y(0)
Sf, If cin cout xy (001,01,110) cin(0)|cout(0)|x(0)y(0)
Sf, If y cout xcin (010,01,101) y(0)|cout(0)|xcin(0)
Sf, If x cout ycin (100,01,011) x(0)|cout(0)|y(0)cin(0)

B. Encoding of Transparency Information
For implementation purposes, mapping µINf:2INf → {0,1}n is defined, assigning a binary string

SINf = (sINf(n-1)…sINf(0)) to set I⊆INf in a following way:
fin(i)∈I ⇔ sINf(i)≠0 for i∈{n-1,…, 0}.

For FA, let us present only strings µINf({x, y, cin})=(111), µINf({x, y})=(110), µINf({x})=(100),
µINf({y})=(010), µINf({cin})=(001) and µINf({})=(000) for illustration. Alike, OUTf and µOUTf are
defined. Transparency information we are searching for given RTL component described by function
f, can be stored as a pair (Sf, If), where Sf is set of 3-tuples (in, out, test), each of them coupling µINf–
encoded and µOUTf–encoded information about inputs (in∈{0,1}n) and outputs (out∈{0,1}k) among
their data a surjection exists under condition of controlling other inputs (test∈{0,1}n). Alike, If is
defined for injection part. For FA, let us present as an example {(100,10,011)} ⊆ Sf informing, that a
surjection is possible between x-data (“100” on the left) and z-data (“10” in the middle) when
controlling y and cin (“011” on the right). For components of wider I/O bit-widths, it seems more
efficient to utilize a port names separated by symbol “|” instead of (1…1) notation in case all bits of
the port are involved in one of in, out, test members of corresponding 3-tuple. Alike, it is efficient to
store single 0 instead of all-zero string 0…0. µINf/µOUTf–encoded information is to be stored in the
library iff both in, out members in the 3-tuple are non-zero. For illustration, see Tab. II for all
information stored in Sf (contains 7 mappings), If (contains 6 mappings) sets.

Above-mentioned, binary-encoded transparency information is suitable for machine processing. To
be both practical and easy editable by a human operator, transparency information for each module-

type utilized in the circuit structure is stored in a text-file formatted library. For example, the
transparency information for FA stored in Tab. II is stored in the library in a following form:
MODULE_TYPE FA // template for module-type FA only
INTERFACE in@x(0) in@y(0) in@cin(0) out@z(0) out@cout(0)
SUR x(0)y(0)cin(0)|z(0)cout(0)|-
INJ
BIJ x(0)|z(0)|y(0)cin(0) y(0)|z(0)|x(0)cin(0) cin(0)|z(0)|x(0)y(0)
cin(0)|cout(0)|x(0)y(0) y(0)|cout(0)|x(0)cin(0) x(0)|cout(0)|y(0)cin(0)

In the similar way, transparency information of any digital module can be stored in the library. If
transparency information is common to all variants of particular module type (e.g., 1-bit, … n-bit
registers) it is possible to make a template for such information. As an example, portion of templatized
information for few generally-known module-types follows:
MODULE_TYPE REG_<n> // template for module-types REG_1, REG_2, …
INTERFACE in@d(n-1:0) in@clk(0) out@y(n-1:0)
SUR d(i)|y(i)|clk(0) // compacted version of d(n-1:0)|y(n-1:0)|clk(0)

MODULE_TYPE ADD_<n>cmb // template for module-types ADD_1cmb, ADD_2cmb, …
INTERFACE in@x[n] in@y[n] out@s(0:n-1)
SUR x(n-1:0)|s(n-1:0)|y(n-1:0)

Information for more complex sequential modules can be stored in the library as well – below, cutout
of the information for simple scan-register is presented:
MODULE_TYPE SREG_<n>
INTERFACE d[n] y[n] clk[1] mode[1] s_in[1] s_out[1] // a[n] = a(n-1:0)
d(i)|y(i)|clk(0) s_in(0)|y(i)|clk(0)^i

Also, special “pseudo-modules” can be constructed by means of the notation. Below, description of
pseudo-module JOIN (joining two wires-streams into one wire-strean) and FORK (splitting one wire-
stream into two wire-streams) are illustrated:
MODULE_TYPE JOIN_<n1_n2>
INTERFACE in@x1[n1] in@x2[n2] out@y(n1+n2:0)
x1(n1-1:0)|y(0:n1-1)|- x2(n2-1:0)|y(n1:n1+n2-1)|-

MODULE_TYPE FORK_<n1_n2>
INTERFACE in@x[n1+n2] in@y1[n1] out@y2(n2-1:0)
x(0:n1-1)|y1(0:n1-1)|- x(n1:n1+n2-1)|y2(0:n2-1)|-

All above-illustrated examples can be expressed by means of following BNF (Backus Naur Form):
<lib_element> ::= MODULE_TYPE <mt> INTERFACE <it> <info> <lib_element>
<mt> ::= <identifier> | <identifier>"<"<parameters>">" |
"<"<parameters>">"<identifier>
<parameters> ::= <identifier>|<identifier>_<parameters>
<it> ::= <identifier>@<it_range> |<identifier>@<it_range> <it>
<it_range> ::= [<number>]|(<number>:<number>)
<info> ::= SUR <sur> INJ <inj> BIJ <bij>
<sur> <identifier><map_range> | <identifier><map_range> <sur>
<inj> <identifier><map_range> | <identifier><map_range> <inj>
<bij> <identifier><map_range> | <identifier><map_range> <bij>
<map_range> ::= [<expression>]|(<expression>:<expression>)

C. Horizontal Line Test
Our transparency-extraction method is based on efficient implementation of so-called horizontal line

test utilized in mathematics to determine if a function is injective, surjective or bijective. The principle
of the test is as follows. For a graphical visualization of a function f: {0,1}n →{0,1}k, a horizontal line
is constructed for each y∈{0,1}k. If f is injective, its graph is never intersected by any horizontal line
more than once. If f is surjective, any horizontal line will intersect the graph at least at one point and
finally, if f is bijective, any horizontal line will intersect the graph at exactly one point.

Illustration to some of horizontal line tests for FA is presented in Fig 3a-c (hlxx are horizontal lines
needed for the test). Depicted mappings are found unconditionally surjective (Fig 3a) with
transparency information written as (111,11,0) or (x|y|cin, z|cout, 0), bijective when controlling y, cin
(Fig 3b), with transparency information written as (001,10,011) or (x, z, y|cin) and non-surjective/non-
injective (simple) mapping (Fig 3c) as an example of information not to be stored in the library.

Fig 3 Illustration to horizontal line test

D. Principle, Analysis and Results of Proposed Extraction Method
The space for the paper is limited. So, below the principles of the algorithm for extracting

transparency information from true table are presented only.
The idea of Sf –extraction is as follows. For selected constant c∈|T|, there are exactly r = 2n - 2|T|

rows with the constant c assigned to particular inputs from T. Because it is tested whether mapping
INf\T → O (where O ⊆ OUTf) is surjective, it is necessary to check, if all {0, 1}|O| combinations are
assigned to outputs from O. Surely, I → O is surjection iff |I| ≥ |O| and exactly 2|O|-1 “1”s and exactly
2|O|-1 “0”s exist for each output from O. If the condition is not fulfilled, it is necessary to find bits from
O making the condition false (i.e., causing some of 2O combination is missing), remove them from O
and test the condition again. This is done while condition is false and O is not empty. It is evident, that
up to |O|-1 elements can be removed from O for condition-test purposes.

Algorithm 1: Extracting surjections
Input: truth table
Set Sf = {}
Set O = {fout(k-1),…, fout(0)}
For each I: I∈2INf\{}, |I|≥|O| do
Begin
 Order elements in T=INf\I into |T|-tuple t=(tn-|I|-1,…,t0)
 Select constant c∈{0,1}|T|
 Do
 For each true-table row with c assigned to t do S = S ∪ row
 if S’elements represent all {0, 1}|O| combinations
 then
 set Sf = Sf ∪ {(µINf(I), µOUTf(O), µINf(T))}
 else remove problematic elements from O
 While O≠{}
End
Output: Sf

Alike, If –extraction algorithm can be constructed. Here, I → O is injection iff |I| ≤ |O| and each o∈O
is mapped-to at most once. If the condition is not fulfilled, it is necessary to find bits from O making
the condition false (i.e., causing some of output combinations are mapped-to more than once), remove
them from O and test the condition again. This is done while condition is false and O is not empty. It
is evident, that maximum of |O|-|I| elements can be removed from O, because removal of more
elements from O cause |I| ≤ |O| false.

V. Conclusions
In the paper, principle of an automated extraction of diagnostic information from design-related data

for testability analysis purposes is described in brief, together with principle of encoding the
information. We hope automation of the extraction will contribute to enhancement of digital-circuit
design-cycle significantly, especially when designing complex digital circuits. Because of text-file

based storing of the information in the library, both further manual correction (creation, addition,
deletion, modification) of the information by a designer is still possible. Because for testability
analysis purposes, it is not necessary to store so detail data as in case of test-generation purposes,
computational complexity of our extraction method is much better than complexity of test-generation
related extraction methods, especially in the area of area complexity. For the future research, it is
planned to accelerate the search process in a HW, to extend our approach about involving ambiguity
information, e.g., f: {0,1,X}n→{0,1}k and to deal with other forms of inputs (BDDs, and other
representations, which are more compact and thus more practical when comparing to truth-tables) to
our extraction method. For example, truth table from Tab. I can be represented by a BDD depicted in
Fig 4. We expect new form of inputs will make the extraction process more efficient.

Fig 4 Illustration of BDD for FA

VI. Acknowledgements
The work related to the paper has been financially supported by the Grant Agency of the Czech

Republic (GACR) under post-doctoral contract GP102/05/P193 "Optimizing Methods in Digital
Systems Diagnosis" and by the Research Plan No. MSM, 0021630528 – Security-Oriented Research in
Information Technology.

References
[1] Abadir, M. S., Breuer, M. A.: A Knowledge-Based System for Designing Testable VLSI Chips,

IEEE Design and Test of Computers, Vol. 2, No. 4, 1985, pp. 56-68.
[2] Bushnell, M L., Agrawal, V. D.: Esentials of Electronic Testing for Digital, Memory and Mixed

VLSI Circuits, Springer,Verlag, 2000, page 129.
[3] Freeman, S.: Test Generation for Data-Path Logic: The FPath Method, IEEE JSSC, Vol. 23, No.

2, 1998, pp. 421-427.
[4] Pečenka, T., Kotásek, Z., Sekanina, L.: FITTest_Bench06: A New Set of Benchmark Circuits

Reflecting Testability Properties, In: Proceedings of 9th IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop, Prague, 2006, pp. 285-289.

[5] Makris, Y., Orailoglu, A.: RTL Test Justification and Propagation Analysis for Modular Designs,
JETTA, Vol. 13, No. 2, 1998, pp. 105-120.

[6] Makris, Y., Patel, V., Orailoglu. A.: Efficient Transparency Extraction and Utilization in
Hierarchical Test. In: Proceedings of the IEEE VLSI Test Symposium, 2001, pp. 246-251.

[7] Murray, B. T., Hayes, J. P.: Test Propagation through Modules and Circuits, In: Proceedings of
International Test Conference, 1991, pp. 748-757.

[8] Pečenka, T., Kotásek, Z., Sekanina, L., Strnadel, J.: Automatic Discovery of RTL Benchmark
Circuits with Predefined Testability Properties, In: Proceedings of the 2005 NASA/DoD
Conference on Evolvable Hardware, Los Alamitos, ICSP, 2005, pp. 51-58.

[9] Pečenka, T., Strnadel, J., Kotásek, Z., Sekanina, L.: Testability Estimation Based on
Controllability and Observability Parameters, In: Proceedings of the 9th EUROMICRO
Conference on Digital System Design, Cavtat, IEEE CS, 2006, pp. 504-514.

[10] Strnadel, J.: Testability Analysis and Improvements of Register-Transfer Level Digital Circuits,
Computing and Informatics, Vol. 25, No. 5, Bratislava, 2006, pp. 441-464.

[11] Vishakantaiah, V., Abraham, J. A., Abadir, M. S. : Automatic Test Knowledge Extraction From
VHDL (ATKET), In: Proceedings of DAC, 1992, pp. 273-278.

