Porting SIMLIB/C++ to 64-bit Platform

Peringer Petr
peringer@fit.vutbr.cz

Abstract: This article deals with porting of SIMLIB/C++ (SIMulationIBrary for C++) from
32-bit to 64-bit environment. SIMLIB/C++ is a freely avdile open source simulation software
tool usable for education and research. Main problem ofimpthe code was the non-portable
implementation of cooperative threads (sometimes caltedoutines”), which we use for par-
allel process modelling. The article contains basic perforce comparison of 32-bit and 64-bit
code using simple discrete and continuous simulation nsodéie results show we can achieve
significantly better performance of simulation tools int@itenvironment.

Keywords: simulation tool, SIMLIB/C++, process, coroutine, userdkthread, setjmp, longjmp,
x86-64, 64-bit code performance

1 Introduction

The modelling and simulation practice depends on avaitgluf suitable simulation software.
There is a place not only for complex simulation environmsgike DYMOLA or SIMULINK,
but also for simple simulation tools. Our small tool is SINBLC++ — simple simulation library
usable for discrete and continuous simulation with someresibns for simulation of special
kinds of models (3D, fuzzy).

In this article we describe the implementation changes eedor using SIMLIB/C++ in
64-bit environment. We also show the results of basic peréorce testing in 32-bit and 64-bit
environments.

2 Moaotivation and Current State of Development

The development of SIMLIB/C++ started in 1991 on 16-bit fdath (MSDOS); later it was
ported to 32-bit (Linux, Windows 95) environment. The onigli code designed during early
90’s (before C++ standard was published) is now outdatedwde to improve overall library
design, bring some new concepts of C++ programming, an@seleew version of library,
which will solve most of the problems accumulated over time.

The 64 bit computers are becoming the main line of persomapcting. Almost all cur-
rently sold PCs are equipped with 64-bit processors. Becatisot very good 32-bit processor
architecture traditionally used in PCs36) there are performance advantages gained by mov-
ing to 64-bit code. The main advantages of 64 bit platfox®6(64 , also calledAMDG64or
EM64T) from scientific computing point of view are:

e X86-64 processor has more registers available (16 general purpgsgers and 16 SSE
registers). This allows the compiler to do better optima@abf code.

* Department of Intelligent Systems, Faculty of Informatidachnology, Brno University of Technology,
Bozetéchova 2, 612 66 Brno—Kralovo Pole, Czech Republic

e Program can access more memory directly (pointers aret6gdssible address space is up
to 2% bytes in comparison witk3? in 32-bit systems).

The process of porting to 64 bit architecture is describedamy publications (for example [1]
or [5]). Basically we should:

e check all data types which changed size (for example pamteC++ programs are 32-bit
in old code and 64-bit now) and alignment rules in the newremmnent,

e usesize t insteadnt orlong for storing the size of objects in bytes,

e rewrite all processor dependent code (for example inliserably code),

e test and debug the new code.

Porting of clean code written in high level languages is ngtdsoblem — only small parts of
specialized code should be corrected or rewritten, whitthei€ase of process switching code in
SIMLIB/C++. This part of code is not portable, because itsus@me inline assembly language
code and direct access to stack contents.

There are many implementations of user-level threads [8ilae as libraries. They use
various methods of switching the stack, but all are more dexngand use more memory per
thread than our implementation.

3 Class Process | mplementation

The implementation of specialized threads for simulatiorppses can be simpler than general
user-level threads implementations. Simulation procesae be implemented using coopera-
tive multi-threading, which eliminates many problems. ®hing process context in simulation
software can be done in three possible ways:

e Stack switching — usually usirggtcontext /getcontext family of system calls which
conforms to theSingle Unix Specificatiostandard [7]. More information can be found in
[3]. This approach is currently not used in SIMLIB, but wemplka use this as alternative
implementation for improving portability.

e Use operating system provided threads — this approach istst portable, but slower
and less memory efficient. This implementation can allovalp@rexecution of simulation
models on multiprocessor machines, but the implementafieimulation tools this way is
complex. We plan to try boost::threads [2] in SIMLIB in theute because it is possible,
that boost::threads will be part of the next C++ standard.

e Save/restore stack — copy stack contents of interrupteddhinto heap-allocated storage and
restore it back before it will continue. Processor contaxt oe read/changed using standard
setimp /longjmp functions. This approach is not portable because we neell isifivze
assembly code for getting and setting of stack pointer. iBhlse main problem of porting
SIMLIB/C++ to 64-bit platform.

Current version of SIMLIB/C++ uses "save/restore stackira@ach. It was used in initial MS-
DOS version because of small memory requirements. Thealpmount of memory needed
for storing the stack contents is hundreds of bytes per ngnimstance of class Process. Low
memory overhead is the main advantage of this approach —ose ably currently used data
on stack, which is different from all other methods which tised stack size for each thread.
The main disadvantages of this approach are:

e Non-portable implementation — we need stack manipulatises Fig. 1), which can cause
implementation problems on some platforms.

STACK HEAP

p3
p2
p4 pl

copy

StackBase

SP

l

Fig. 1: Save/Restore stack contents of threads

e Speed - this implementation can be slower, because of meocoprying. The amount of
memory depends on amount of local variables in metBeldavior() . It is not recom-
mended to use big local variables, best is to store such ditabjects as attributes. The
benchmark results later in this article show the dependeisgeed on the size of local data.

3.1 Processdispatcher

The code of simulation system consists of simulation-adratigorithm (we use Next-Event)
and special function for process dispatch, which stantdficoes behavior of active processes.
The pseudo-code explains the function:

Dispatch:
1 Stack_Base = SP; /I savelcheck current stack pointer
2 if(setjimp(Base_context)==0)

if(Current process has non-empty process context)

3 Restore stack contents
4 longjmp(Proc_context, 1); // go back to Behavior()
else
5 Behavior(); // start of process behavior description
else
6 /I after Behavior() was interrupted

The only place, which can start/continue process behasitne dispatcher. The reason for
this is theStack_Base variable, which should be constant during simulation. Maigable
contains (1) start of stack area to save/restore (stacklygmaws down, see figure 1).

First call ofsetimp(Base_context) stores (2) the processor contéiito global vari-
ableBase_context andreturns zero. After setting tBase_context we test whether cur-

! Behavior() s pure virtual method of clas®rocess , which should be defined in each derived class. The
method defines behavior of processes used in discrete siamula

2 The stored context is important for jump back fr@ehavior() as we will show later. After this jump it
seems likesetimp returned again, but now it returns non-zero value, and welistimguish those two returns.

rent process has the stored context. If not (5), it should B&havior() , if there is the stored
context (3) we should restore stack usmgmcpyand processor context (4) usilangjmp .
There are some implementation problems:

1. We should shift stack pointer (SP) outside overwrittezadyefore copying the stored data
back into stack, because the call of functimemcpyuses stack for arguments and return
address, and those should not be overwritten.

2. We can not use local variables in this area of code, bedheyecan be referenced using
stack pointer we change (it depends on compiler, level afropation, and platform).

Call of longimp never returns back — it continues with new context. If the aaketjmp
returns with non-zero value (6) it is the case of process\iehenterrupted by calling a special
method.

3.2 Interrupting the Behavior () method

The Behavior() method can call other special methods abietéorupt running function and
later come back. We show the implementatioMddit() method as the typical example:

Wait(dt):
1 Calendar.Schedule(this process, at Time + dt);

Compute size of stack data (from current SP to Stack Base)
Allocate new process context
Save stack (from current SP to Stack Base)
if(setjimp(Proc_context)==0)

longjmp(Base_context,1); // go back to dispatcher
else // coming back from dispatcher

delete process context

OO, WN

\l

The code for storing process context (2-7) is the same inualttfons which can interrupt
runningBehavior() . First it reads the stack point&P and computes (2) size of stack area
to save §ize = Stack Base - SP). Then (3) it allocates memory and does the copy (4)
of stack contents to allocated memory. The pointer to tha Basaved into process context in
the object attributes.

Then thesetjmp is called (5) and processor context saved. This cadletipmp returns
zero. Then (6) the call ttongjmp jumps back to dispatcher usiBase context . The
process state is stored and can be used for restoring tieea$tptocess at the time of its re-
activation by dispatcher. The call tdngjmp by dispatcher leads to second return (5) from
setjimp in Wait() , but now with non-zero return value. Then is the current essacontext
removed (7), because is not valid anymore. The temporartiéyiuptedBehavior() method
continues after return frotwait()

This implementation is simple and works well at PC architesitbut there are other archi-
tectures, on which this implementation can be a problemréltseroom for improvements and
optimizations — for example frequent allocation and dealtimn of process context can be im-
proved by caching allocated blocks and reusing suitablditocks instead of new allocation.

4 Experimental results

We measured performance of the code in various benchmaoksalFbenchmarks we used
the PC class computer with Athlon64/3000+ and 512MiB of memath Debian/GNU Linux
version 4.0/Etch (Linux kernel 2.6.18-4-amd64). The cderpised is GCC version 4.1.2 with
optimization levelO2.

The methodology we used is very simple: run programs 10 tineesove two slowest and
two fastest measurements and average the remaining 6 valesbsolute numbers are not
very important, because we want only relative performarneeparison of 32-bit vs 64-bit en-
vironments.

4.1 Performance of process switching

First benchmark measures the time of one million contesxteti@s. Results of experiments are
in the table (lower time is better):

Local data size time [s] difference
[Bytes] 32-bit code| 64-bit code [%0]
0 1.02 0.71 -30
10 1.02 0.70 -31
100 1.08 0.76 -30
1000 1.57 1.05 -33
10000 7.31 4.14 -43
0 (Events) 0.14 0.08 -43

The table shows at least 30 percent improvement of proceshéwg and scheduling per-
formance in 64-bit environment. For comparison we measerwpdvalent code using events
(without process switching code overhead). The use of eveatls to more complex model
description, but as results show, it is significantly faster

4.2 Memory requirements

The amount of memory used by processes is tested by progrhroh wenerates and acti-
vates N simple processes without local variables at the $@nee Then each process starts its
Behavior() method, doedVait(1l) operation and ends. There is N interrupted processes
with saved context at once during this test. We estimategddaksible maximum number of pro-
cesses running simultaneously in memory limited to 400Migir{g commandlimit -v at
Linux). Then we measured run-time of simultaneous creafigtivation,Wait(1) and dele-

tion of half million processes:

Benchmark 32-bit code| 64-bit code| difference [%0]
Number of processes created in 400MiB | 1100000 880000 -20
Average amount of memory per process [B] 381 476 +24
Time [s] for running 500 000 processes 1.19 0.84 -29

The results show increased memory consumption and fasteugan of code in 64-bit envi-
ronment.

3 Process1 is interrupted, reactivation scheduled, cahsaxted, found next Process2 record in calendar, context2
restored, Process2 can continue.

4.3 Performance of numerical methods

The performance of numerical methods code used by contmsionulation also improved in
64-bit implementation. Our simple benchmark uses contiswgystem simulation solving the
differential equation,” = —y, with initial conditionsy = 0, ¥/ = 1 (so-called "circle test”).
In the table is the time spent by one million steps using warisumerical integration methods
(lower time is better):

Integration method time [s] difference
set using SetMethod(’name”) 32-bit code | 64-bit code [%0]
abm4 0.66 0.41 -38
euler 0.78 0.53 -32
rke (default) 1.70 1.12 -34
rkf8 2.43 1.56 -36

Table shows that our code compiled for 64-bit platform iseast 30 percent faster. The reason
is that 64-bit processor allows the compiler better optatian of code containing floating-point
instructions.

5 Conclusions

As we have seen in this article, there are some problemsiasswevith conversion of 32-bit
code to 64-bit computing environment, but we get betterqrarénce (at least with the code
used in simulation). The conversion of our codex86-64 architecture was simple, except
process switching code which needed some changes. Ouresmpthmarks show, that 64-bit
code can be up to 40 percent faster than 32-bit one on the satame.

All the work described here is only small part of bigger effghich should result in new ver-
sion of SIMLIB/C++. The process switching code will be implented in at least two ways in
final version to achieve better portability. We also plandpgonal use of GSL (GNU Scientific
Library [4]) as numerical methods backend, which shouldi§icantly improve the usability of
SIMLIB/C++.

This work has been supported by the Research Plan No. MSNB0328 "Security-Oriented
Research in Information Technology”.

Bibliography
1. 64-bit development resourcégip://www.viva64.com/links.php (Jun 2007)
2. Boost WWW pagehttp://www.boost.org/ (July 2007)

3. Engelschall, Ralf SPortable Multithreading-The Signal Stack Trick for UsgraSe Tliread Creation
In Proceedings of the USENIX Annual Technical Conferenes Biego, California, pages 239-250,
June 2000

4. GNU Scientific Library WWW pageéhttp://www.gnu.org/software/gsl/ (July 2007)

5. Porting Linux applications to 64-bit systems
http://www.ibm.com/developerworks/library/I-port64. html (Jun 2007)

6. SIMLIB/C++ WWW pagehttp://www fit.vutbr.cz/"peringer/SIMLIB/ (2007)

7. The Open Group: The Single UNIX Specification, Version 3,
http://www.unix.org/version3/ (Jun 2007)

