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Abstract: Services a system delivers are called dependable when it is trustworthy enough that 
reliance can be placed on them because they are available, reliable, safe and secure. In the 
contribution, overview of methods for reliability enhancement of embedded real-time systems is 
presented with focus on mechanisms related to fault and error diagnosis and on fault tolerancy of the 
systems. It presents actual trends as well as possible directions of further research activities related to 
corresponding areas. 
 
1. Introduction 

Our previous research activities [9] [13] [14] [15] were focused on topics related to diagnosis and 
testing of digital systems. Primarily, we have dealt with testability analysis (TA) and its application to 
design/synthesis for testability (D/SFT) of digital systems. Our TA method was successfully taken as a 
basis of a cost/quality trade-off measure of solutions from a design search space. Principle of a D/SFT 
method based on our TA method could be described as follows: for a given digital system (given in a 
form of net-list and library of components), design constraints (e.g., maximal area and pin overheads, 
maximal power consumption for test application purposes) and set of techniques applicable for 
testability enhancement (partial/full scan, test-point insertion, built-in self test), the measure was used 
to evaluate each modification of original system by means of particular configuration of techniques. 
Over a set of possible modifications, search-space exploration algorithm (e.g., genetic algorithm) was 
used to find the highly-evaluated modification fulfilling design constraints maximally and having 
maximal testability value.  

In the paper, the above-mentioned activities are put into a wider dependability context with focus to 
dependability of embedded systems controlled by a real-time operating system (RTOS). At the 
beginning, basic terms are explained together with state of the art in related areas. Then, principle of 
our approach and future research perspective are presented. 
 
1.1 Dependability 
Services a system delivers are called dependable when it is trustworthy enough that reliance can be 
placed on them because they are available, reliable, safe, secure etc. Because of width of the 
dependability related problems, the paper is focused only on mechanisms related to fault/error 
diagnosis and on fault-tolerancy. Further, the paper is restricted to real-time embedded systems. 
 
1.2 Embedded Systems 
According to [16] an embedded system is “a data processing system which is built-in or embedded 
within a machine or a system. It partly or wholly controls the functionality and the operation of the 
machine. The data processing system and the enclosing system are dependent on each other in such a 
way that one cannot function without the other”. In previous two decades, the number of embedded 
systems in usage has grown at an enormous rate; this has been especially evident with the rise of cell 
phones, handheld computers, network and intelligent (e.g., automotive, home-appliance) devices. 
Flexible embedded systems are based on microcontroller (MCU) or FPGA technology. Many 
producers of those technologies exists (e.g., Freescale, Texas Instruments, Atmel, Xilinx, Altera) and 
offer their products in a wide range of parameters and architectures. 
 
1.3 Real-Time Systems 
On top of the above-mentioned, the paper is restricted to systems, whose logical correctness is based 
on both the correctness of outputs and timeliness of the outputs [3] [4] [5] [6] [7] . Such a system, i.e., 
that is able to produce a right response to given stimuli and the response is produced on time, is called 



a real-time (RT) system. Because also the class of embedded RT systems is too wide, we will focus 
only to systems driven by RTOS. Actually, many RTOSes of various parameters are available – e.g., 
LynxOS, OSEK/VDX, QNX, uC/OS-II, VxWorks, Windows CE. Also, many interfaces or 
modifications of existing, originally not-RT, products exist – e.g., POSIX, CORBA or Java RT 
extensions, Windows RTX extension etc. 
 
2. Faults, Errors and Failures 

A fault is a deviation in hardware (HW) or software (SW) component from its intended function [1] 
[7] . Faults can be classified in several ways, e.g., they can be classified by their duration (permanent, 
transient, intermittent faults), nature of output (malicious faults leading to Byzantine failure, non-
malicious faults) or correlation to other faults (independent, correlated faults).  

An error is a manifestation of a fault in a system, in which the logical state of an element differs 
from its intended value. If not detected, error is latent or it can disappear before it is detected. In many 
times, error propagates and creates other (new) errors. Usually, related faults manifest themselves as 
similar errors and lead to common-mode failures, whereas independent faults cause distinct errors and 
separate failures.  

The time between fault occurrence and the first appearance of an error is called fault latency. The 
time between occurrence of an error and its detection is called error latency. 

 

 
Fig. 1 – Illustration to Fault, Error and Latency terms 

 
Many mechanisms exist for achieving dependability. Basically, they can be divided into following 

groups: fault avoidance (typically by construction), fault removal (t. by verification), fault tolerance (t. 
by redundancy) and fault forecasting (t. by estimation).  

E.g., when a fault-tolerance mechanism detects an error, it may initiate several actions to handle the 
fault and contain its errors. Recovery occurs if these actions are successful; otherwise, the system 
eventually malfunctions and failure occurs.  

In general, system can react in several ways to failures – e.g., fail-safe (system transits to a safe 
state), fail-operational (only subset of expected service is delivered by the system), fail-stop (system 
produces no output rather than incorrect one), or no single point of failure (it is ensured that a failure 
of a single component will not cause a failure of the system) approaches can be utilized during system 
design cycle. 
 
3. Reliability Improvement Mechanisms: General Principles 

It is evident that above-mentioned latencies can cause a significant problem if they are involved in 
RT systems because efforts of error recovery mechanisms can result in situation system reaction time 
is out of accepted interval because of the latencies. Thus, for RT systems, special mechanisms have to 
be designed able to perform recovery on time; otherwise, they can result in more or less serious system 
failure in spite of recovery itself was successful. In general, recovery mechanisms can be divided into 
two groups: forward (errors are corrected/masked without any computations to be redone) and 
backward recovery (system is rolled back to a believed pre-error state and performs all subsequent 
actions again) [5] [7] . Also, the mechanisms can be classified according to redundancy type they are 
based on: HW/SW (also called spatial) redundancy, time redundancy, information redundancy.  
 
3.1 Information Redundancy 

Methods belonging to this group are well known in general, so let us mention at least some of them: 
data duplicity, parity, checksums and cyclic redundancy codes (CRCs). This paper will not focus on 
those methods anymore. 



 
3.2 Spatial Redundancy 

Let spatial (HW/SW) redundancy techniques be presented in brief now. HW redundancy is usually 
realized by means of N-modular redundancy (NMR) and voters. Because it is very expensive (in the 
simplest case, supposing maximally m errors can appear in a component, (m+1) copies of the 
components must be implemented in the system), it is recommended to use it in extreme cases only. 
SW redundancy is usually based on one of following approaches [7] : N-version programming 
(concurrently running SW blocks, equivalent in functionality, but differing in implementation are used 
to detect an error, i.e.,  NMR analogy), checkpoints (immediate results of SW blocks are written to 
fixed memory places for diagnostics purposes) – see Fig. 2a, recovery blocks (at the end of each 
recovery block, checkpoints are tested for “reasonableness”. If the result is not reasonable, the 
processing resumes with prior recovery block) – see Fig. 2b. Another approach to recovery blocks is 
presented in [5] – each recovery block is supposed to have recovery memory at its input and is able to 
process one of its code-variants (one of them is called primary, the others are called secondary or 
backups). Result of each variant (starting with the primary one) is checked by acceptance test. If the 
test fails, another variant is executed. If a correct result is produced by at least of one variant, it can be 
used by subsequent block(s). Otherwise, i.e., if all variants fail to produce a correct result, recovery 
attempt within the block fails (all recovery attempts are exhausted), which could be a signal to start the 
recovery in corresponding superior block.  

 

 
Fig. 2 – Illustration to Checkpoints and Recovery blocks  

 
Reliability can be also increased by means of software black boxes (used to record in-system 

transitions for further analysis) or built-in-test software (BITS, used e.g. for ongoing diagnostics of 
underlying HW an embedded system runs on; for example, it can detect incorrectly working I/O 
channel, shut off it and redirect I/O to the properly working one).  Because those methods, together 
with CPU, memory, internal block etc. diagnosis can consume much time than it is desired, it is 
recommended to process them in a background mode of an RT system. 
 
3.3 Time Redundancy 

Methods belonging to this group try to minimize price of spatial redundancy by moving recovery 
techniques to higher levels within system architecture – usually to system control layers. In principle, 
the methods are based on (re)scheduling computational units (HW/SW blocks) of the system (typically 
called tasks, each responsible for timely reaction to corresponding stimuli) in such a way the response 
to the stimuli is produced both in a correct way and on time. Each RT task can be described by means 
of several static (r: release time, C: worst-case execution time, T: invocation period, D: deadline etc.) 
and/or dynamic parameters (R(t): response time, L(t): laxity time etc.) used to evaluate task priority P, 
which can be static or dynamic depending on scheduling approach. So-called scheduler is responsible 
for those actions. It is a crucial part of an RTOS kernel and is responsible for assigning system 
resources (CPU, memory etc.) to particular tasks. Some of the approaches belonging to the group will 
be described in the next, as well as other approaches typically utilized for RT systems. 
 
4. Reliability Improvement Mechanisms Applicable to Embedded RT Systems 

According to [17] there are 3 kinds of errors that can appear during task execution: the task 1) enters 
a dead-lock state, in which it does not take any action, 2) produces incorrect data and 3) enters a live-
lock state in which it fails to produce any result. 



 
4.1 Watchdog Timers and Processors 

Error 1) could be detected, e.g., by a watchdog timer (in correct function, task resets timer before it 
overflows; e.g., if task is in a dead-lock state, timer is not reset on time, so it overflows which is a 
signal for error detection mechanism) or watchdog processor (each task produces flags informing 
about actual position in its code; watchdog processor guards whether the control flow is correct or not 
and if it is incorrect, error is detected). After the error is detected, incorrectly functioning task could be 
reset and (re)scheduled again (of course, only if its reaction time will not exceed required limits).  

 

 
Fig. 3 – Illustration to Watchdog timers and processors  

 
In case of errors 2) and 3) watchdog timers are serviced properly, so the errors remain undetected by 

means of them; thus, further techniques need to be utilized for their detection. E.g., to detect the error 
3), each task can be designed in the following way: after a task invocation, output variables are set to 
“uninitialized value”, so it can be recognized at the end of task execution (or inner task observation 
points) that output value(s) were not changed by the task. In such a case, the error is detected. Thus, an 
omission fault can be converted to a value fault by the mechanism. Error 2) can be detected, e.g., by 
means of voter(s). 
 
4.2 Scheduling Mechanisms 

Any system has a finite processing power. If we intend to guarantee by design that certain 
performance requirements can be met, then we have to postulate a set of assumptions about the 
behavior of the environment: load hypothesis (defines the peak load that is assumed to be generated by 
the environment) and fault hypothesis (defines the types and frequency of faults that a system must be 
capable to handle). If a specified fault scenario develops, a system must still provide a specified level 
of service. If more faults are generated than what is specified in the fault hypothesis, then, sometimes, 
the performance of the system must degrade gracefully, i.e., the system must not suddenly collapse as 
the size of faults increases, rather it should continue to execute part of its workload. 

Because classical RT scheduling approaches (RM/A, DM, EDF, LLF etc. [4] ) are not designed to 
work in overload conditions, special scheduling mechanisms exist which are able to ensure a time-
limited graceful degradation of an overloaded system in order to get its load U (defined as a sum of 
partial loads of particular tasks from a set τ of RT tasks) to normal limits. E.g., if U >= 100 % for a 1-
CPU system, the system laxity is zero (i.e., the system is fully occupied with computations related to 
tasks actually present in the system), so if a new task arrives in this situation (i.e., stimuli from further 
input is to be processed by the system), 1) some of the less important task(s) could be suspended to let 
more important (application critical) tasks running (e.g., Dover, RED, DASA, LBESA mechanisms – 
see Fig. 4 for block schema) or 2) computations of some less important tasks could be switched, e.g., 
to a less-precise/fast-estimation mode (e.g., Statistical RM scheduling, Multi-frame, Elastic and On-
line adaptive models, Deadline manipulation and Imprecise computation mechanisms [4] ).  

 



 
Fig. 4 – Illustration to selected scheduling mechanisms for overload conditions  

 
5. Proposed Solution to Reliability of RT Systems  

We have decided to take advantage of most of above-mentioned dependability improving 
mechanisms and to modify an existing wide-spread RTOS about those mechanisms. For practical 
implementation of the concepts, uC/OS-II that is available for more than 30 various embedded target 
platforms was selected [8] . Block schema of the proposed solution is depicted in Fig. 5.  
 

 
Fig. 5 – Illustration to proposed dependable RT architecture 

 
Each task within a user-task space is assigned its own separately configurable watchdog (with a 

value stored in the user/kernel space controlled by a superior SW watchdog placed in the kernel space) 
able to detect a deadlock within the task. If the number of errors exceeds the acceptable level, HW 
watchdog is not serviced by SW watchdog properly, which could leads to reset of a whole RT system 
or switching the system e.g. to a fail-stop/fail-safe state. If the number of errors is in acceptable limits, 
error detection unit will try to (re)schedule malfunctioning tasks in order to mask or tolerate the errors 
in a fail-operational state of the system (including recovery block approach). Besides watchdog, each 
task contains a code able to update checkpoint data related to the task. The data is read and checked by 
a diagnostic unit (periodically in the ideal case) in order to detect a live-lock state of tasks. If detected, 
corresponding task can be (re)scheduled. Incorrect data produced by a task could be detected by 
means of a voter memory implemented in the kernel space and voter(s) explicitly implemented as a 
special task(s) or task portions in the user-task space or diagnostic unit part in the kernel space. The 
voter will produce a result after all data are prepared to make a decision. After done, the decision is 
processed by the error detection module. In order to be able to evaluate parameters like system load, 
task queue utilization, error frequency/type, special tasks (diagnostics, error statistics, system 
statistics, maintenance etc.) can be implemented in the background section of the user-task space.  
Because the tasks will be processed in system laxity time, they will not affect RT parameters of the 
system, but will contribute to dependability of the system. 
 
6. Conclusion and Future Research Perspectives 

In the paper, 1-CPU solution to the problem was discussed for simplicity reasons. However, the 
solution can be extended about more advanced concepts able to improve system dependability in a 
significant way. Essentially, there are two areas we plan to focus on: distributed and network system 
area [4]  [6] [12] [16] (which is studied for a longer time) and partial dynamic reconfiguration area 
[10] (which belongs one of the most perspective nowadays research and engineering areas). Using the 
principles, malfunctioning computational units could migrate to different network/CPU node(s) or 
could, e.g., to repair or clone themselves in order to increase dependability of the system. But, this 



could probably lead to change of RT parameters of the system, so techniques like special buses 
presented in [11]  should be used in order to minimize such unneeded changes. 
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