Preprints of the 30** IFAC Workshop on Real-Time Programming and

s
L 4" International Workshop on Real-Time Software pp. 155-160

On the Implementation of State-space
Exploration Procedure in a Relational
Database Management System™

Jaroslav Rab Ondrej Rysavy Miroslav Sveda

Brno University of Technology, Bozetechova 2
612 66 Brno, Czech Republic

Abstract: An examination of discrete system’s behavior can be done by exhaustive exploration
of the state space that is generated according to the assigned domain semantics. Model-checking
is the matured discipline that allows to explore state space as large as several millions of
states. In this paper, we describe a novel approach to the implementation of state exploration
procedure using PL/SQL, the language of Oracle relational database system. The high efficiency
of database systems when dealing with large amounts of data and relatively cheap hardware
available nowadays advocates the use of relational database as an implementation platform for
practical exhaustive state exploration algorithm with the hope that this platform may scale up
the model checking method to hundreds of millions of explorable states.

Keywords: Formal Specification, Temporal Logic of Actions, State exploration, Relational

database systems

1. INTRODUCTION

Practical verification of hardware and software systems is
based on algorithmic methods, which are able to explore
large state-spaces that exhaustively describes the behavior
of these systems. While algorithms for state space explo-
rations are rather simple and well explored the issue of
handling very large state spaces is actively researching.
The methods for efficient representation of data in main
memory and various abstraction techniques allows explore
the systems consisting of hundreds of millions of states.
Often the very sophisticated and complex methods are
used to deal with storing and indexing the data describing
states. In this paper, we present an idea to use relational
database system to manipulate the data describing state
space and to provide a system for the exploration of
these data in order to verify the required properties of
a hardware or software system being modeled. Although,
the layer manipulating with data is much heavier than that
usually implemented in state of the art model checking
tools, we believe that the following statements provide
enough sound arguments to justify the rationality this
idea.

Virtually unlimited memory. Database systems are
designed to accommodate a large amount of data. The
active databases can have hundreds of millions of rows in
tables, and their total size can be hundreds of gigabytes.

* The research has been supported by the Czech Ministry of
Education in the frame of Research Intention MSM 0021630528:
Security-Oriented Research in Information Technology and by the
Grant Agency of the Czech Republic through the grants GACR
102/08/1429: Safety and Security of Networked Embedded System
Applications and GACR 201/07/P544: Framework for the deductive
analysis of embedded software.

Time to result. Various techniques have been imple-
mented to speed up data processing in the database
systems. For example, indexes help to optimize various
operations containing selecting the data or merging two
tables. Often the speed optimization requires to use
more space. As first assumption claims that we can have
a lot of space for the database, the speed of processing
may be increased. We assume that time required to get
at least partial results is more important to users than
memory requirement considerations.

Presistence. The database systems are primarily used
for storing the data. The state space generated for a
specification which is stored in the database is ready
for further exploration until someone explicitly decides
it should be erased from the database. The persistence
balance the overall costs of model generation that may
be very high for a large models. Moreover as database
data may be altered as needed, the techniques that
modify or refine the model as specification evolves can
be applied.

We demonstrate the idea using a system description given
in the formalism called Temporal Logic of Actions devel-
oped by Lamport (2003). In the rest of the section, a brief
description of this formalism is provided. Note that an
adequate system description as assumed in this paper can
be provided by any state-based formalism employing some
form of guard/action predicates.

1.1 TLAT

Temporal Logic of Actions (TLA) is a variant of linear-
time temporal logic. It was developed by Lamport (2003)
primarily for specifying distributed algorithms, but several
works shown that the area of application is much broader.
The system of TLA+ extends TLA with data structures

155

156

allowing for easier description of complex specification
patterns. TLA+ specifications are organized into mod-
ules. Modules can contain declarations, definitions, and
assertions by means of logical formulas. The declarations
consist of constants and variables. Constants can be unin-
terpreted until an automated verification procedure is used
to verify the properties of the specification. Variables keep
the state of the system, they can change in the system
and the specification is expressed in terms of transition
formulas that assert the values of the variables as observed
in different states of the system that are related by the
system transitions. The overall specification is given by
the temporal formula defined as a conjunction of the form
INO[N], AL, where Iis the initial condition, N is the next-
state relation (composed from transition formulas), and
L is a conjunction of fairness properties, each concerning
a disjunct of the next-state relation. Transition formulas,
also called actions, are ordinary formulas of untyped first-
order logic defined on a denumerable set of variables,
partitioned into sets of flexible and rigid variables. More-
over, a set of primed flexible variables, in the form of
v’, is defined. Transition formulas then can contain all
these kinds of variables to express a relation between two
consecutive states. The generation of a transition system
for the purpose of model checking verification or for the
simulation is governed by the enabled transition formulas.
The formula O[N], admits system transitions that leave a
set, of variables v unchanged. This is known as stuttering,
which is a key concept of TLA that enables the refinement
and compositional specifications. The initial condition and
next-state relation specify the possible behavior of the
system. Fairness conditions strengthen the specification by
asserting that given actions must occur. The TLA+ does
not formally distinguish between a system specification
and a property. Both are expressed as formulas of temporal
logic and connected by implication S = F', where S is a
specification and F is a property. Confirming the validity of
this implication stands for showing that the specification
S has the property F. The TLA+ is accompanied with a
set of tools. One of such tool, the TLA+ model checker,
TLC, is state-of-the-art model analyzer that can compute
and explore the state space of finite instances of TLA+
models. The input to TLC consists of specification file
describing the model and configuration file, which defines
the finite-state instance of the model to be analyzed. An
execution of TLC produces a result that gives answer to
the model correctness. In case of finding a problem, this is
reported with a state-sequence demonstrating the trace in
the model that leads to the problematic state. Inevitably,
the TLC suffers the problem of state space explosion
that is, nevertheless, partially addressed by a technique
known as symmetry reduction allowing for verification of
moderate size system specifications.

2. MODEL CONSTRUCTION

The state space construction demonstrated on an intro-
ductory example is shown in this section. The example
is taken from Lamport’s book (see Lamport (2003)). It
represents a specification of clocks enriched with minutes
(variable mn) that makes the specification less trivial but
still small enough for complete presentation.

Preprints of WRTP/RTS. Mragowo, 2009

2.1 Table Preparation

Listing 1. Creating s-table and t-table:
create table s hourclock(

id integer primary key,

hr integer, mn integer);

create table t_ table(
src integer references s_hourclock(id),
trg integer references s_hourclock(id),
act integer);

create sequence seq_s_hourclock
start with 1 nocycle;

alter table s hourclock add constraint
s _hourclock unique unique(hr mn)

2.2 Initial States

To enumerate and store all initial state in state table the
PL/SQL procedure shown in listing 2 is executed. It loops
over the variable hr and inserts each value in state table,
which corresponds to predicate Init of the specification.

Listing 2. Generating initial states:

for hr in 1..12 loop

insert into s_hourclock values(
seq_s_ hourclock.nextval ,hr,0);

end loop;

2.8 Action definition

An action consists of guard and computable expression
for determination of values in a successive state. The
action A3 is realized as a stored procedure as shown in
listing 3. The evaluation of a guard expression yields to
result set that is bound to cursor c1. The select statement
contains where clause expressing that minutes are in
interval (0..58). The inner select prevents to get states
that where already examined. This is achieved by testing
that there is not a transition (i.e. relation in transition
table) carried by the action a3 that starts in the selected
state.

Listing 3. Procedure implementing Action 3:
create procedure hourclock a3 as
dupid s _hourclock.id%type;
cursor cl is
select x from s _ hourclock
where mn>=0 and mn<=58
and id not in
(select distinct
from r_ hourclock
where act=3);
rec cl%rowtype;
begin
loop
open cl;
fetch cl into rec;
exit when cl%notfound;
begin

src

Jaroslav Rab et. al: On the Implementation of State-space Exploration Procedure

I MODULE HourClock

EXTENDS Naturals
VARIABLE hr, mn

157

Amn=59Ahr'" =hr+1Amn =0

Init = hre(1..12)Amn=0

Al = hre(1..11)

A2 = hr=12Amn=59Ahr' =1 Amn' =0
A3 = mn € (0..58)

Next = A1V A2V A3

A mn’ = mn 4+ 1 A UNCHANGED (hr)

Spec =
[

Init A O[Next] (hr, mn)

Fig. 1. HourClock TLA Specification

insert into s hourclock values
(seq_s_ hourclock.nextval ,
rec.hr, rec.mn+1);
insert into r hourclock values
(rec.id ,seq s hourclock.currval ,3);
exception when others then
select id into dupid from s_ hourclock
where hr=rec.hr and mn=rec.mn+1;
insert into r_ hourclock values
(rec.id ,dupid,b3);
end;
close cl;
end loop;
end;

The loop in the action procedure inserts new states in
state table and new transitions in transition table. A new
state is computed from the values of the current state as
pointed by the cursor. If newly computed state already
exists in the state table an exception is raised because the
value uniqueness constraint is violated. In this case only
the transition is inserted in the transition table. Note that
the transition is marked with identification of action a3.

2.4 Main Loop

In main loop, which intuitively corresponds to Next pred-
icate, the actions are executed until the set of states
stops growing. The implementation is straightforward in
PL/SQL by the loop that compares the size of state table
before and after the execution of action procedures.

Listing 4. Main Loop:
declare
i integer;
pi integer;
begin
select count (x*)
loop
hourclock al;
hourclock a2;
hourclock a3;

into pi from s_hourclock;

select count(x) into i from s _ hourclock;

exit when pi=i;
pi:=i;
end loop;
end;

By executing the main loop, the s_hourclock contains
all reachable states and r_hourclock contains all possible
transitions of the hourclock specification. These tables can
be readily used for querying properties of the model, e.g.
checking the type invariant amounts to select all states
that violates the type invariant property (see listing 5).

Listing 5. Type Invariant Checking:
select x from s_hourclock where not

hr >= 1 and hr <= 12
and
mn >= 0 and mn <= 59

)

Nevertheless for deeper analysis, if properties are given
as formulas fo temporal logic, the state space needs to
be considered together with the transition graph to form
a transition system. It allows for answering the question
of whether the given temporal logic formula holds in this
transition system.

2.5 An Issue of Transitive Closure

Before we proceed to define a systematic method for state
space exploration, we examine the role of transitive closure
(TC) of transition table. Having precomputed TC would
greatly simplify algorithms for state exploration. The naive
iterative implementation is shown in listing 6.

Listing 6. Transitive Closure of T-Table:
create table tc_ hourclock as
select * from r_ hourclock;

loop
insert into tc_hourclock
(select G.src, TC.trg
from r hourclock G, tc_ hourclock TC
where G.trg = TC.src);
exit when sql%rowcount = 0;
end loop;

The (time) complexity of this implementation is O(n?) for
n edges and if appropriate indexes are used the complexity
can be reduced to O(n?log n). These values seem not
to be very optimistic if considering large state tables.
Although several improvements and alternative methods

158

were studied, e.g. by Libkin and Wong (1997) and Dong
et al. (1999), we attempt to avoid the computation of full
TC. Note that also exiting database management systems
offers for limited implementation of recursive queries, for
instance, Oracle’s connect by query.

3. MODEL EXPLORATION

Although SQL-based querying over the state and transi-
tion tables is possible, the usual way of validating reactive
models is to check properties defined by terms of a tem-
poral logic. The most straightforward algorithm adaptable
for SQL implementation is CTL model checking algorithm
based on state labeling.

The algorithm for checking validity of CTL formula ¢
in a (Kripke-style) model M operates by labeling states
according to markers that correspond to subformulas of
¢. The state s is labeled, s € labely, iff the subformula
1) is true in that state. Once the algorithm completes the
M,s |= ¢ iff s € labely. For further explanation see, e.g.
Clarke et al. (1999).

As any CTL formula can be expressed in terms of atomic
expression, =, V, EX, EU and EG we provide the correspond-
ing labeling procedures only for those cases.

The first three cases are straightforward to implement. An
example of labeling an atomic proposition or a proposition
consisting of non-temporal subformula is shown on listing
7. The idea is to create a new table that consists of indexes
of states that satisfy the given proposition, in this case,
hr =12 Amn € (0..30).

Listing 7. Labeling atomic expressions:
create table 1 hourclock 1 as
select id from s hourclock where
hr = 12 and mn >= 0 and mn <= 30

Labeling disjunction consists of creating a new table that
merges rows of the two subtables that correspond to the
subformulas. We only need to guarantee that the resulting
table will not contain duplicities.

Listing 8. Labeling g=f1 V fa:
—— input: |_hourclock_fI,
— output: |_hourclock g
create table 1 hourclock g as
(select id from 1 hourclock f1
union
select id from | _ hourclock {2)

I _hourclock f2

Also procedure for the labeling of EX f is easy to imple-
ment. To do this we select all states labeled with f and
label their predecessors with EX f. The listing 9 provide an
example of such labeling. Note that predecessor is accessed
in transition table if we consider the current state being
indexed by dst field.

Listing 9. Labeling g=EX f expressions:
— dnput: | _hourclock f

— output: |_hourclock g
create table 1 hourclock g as
(select src

Preprints of WRTP/RTS. Mragowo, 2009

from r_ hourclock,
where dst = id)

1 _hourclock f

In the following subsections, we concentrate on non-trivial
cases that involves iterative computations.

3.1 Procedure for E[f1Ufs]

To handle formulas of the form g = E[f1Ufs], the algorithm
first finds all states labeled with fo (these states are
immediately labeled with g¢). Then the algorithm goes
backward, i.e. in the opposite way the transition relation
is defined, to find all reachable states labeled with f; and
labels them with g. The PL/SQL code is in listing 10.

Listing 10. Labeling g=E[f1U f2]:
— dinput: l_hourclock_f1,
— output: | _hourclock g
begin
create table 1 hourclock g as
select id from 1 hourclock f2

I _hourclock f2

loop
insert into | hourclock g
(select r.src
from r_ hourclock r,
1 hourclock g g,
1 _hourclock f1 f1
where r.trg = g.id
and fl1.id = r.src
and r.src not in
(select id from 1 hourclock g)

)

exit when sql%rowcount = 0;

end loop;
end

3.2 Procedure for EG f

The most complicated part is represented by the case EG f
that requires analyzing the graph to determinate nontrivial
strongly connected components (SCC).

First, we provide a PL/SQL code for computation of SCC
adapting the algorithm devised by Tarjan (1971). The
algorithm performs depth-first-search traversal in order to
find a sink node or a loop. The procedure visit (see listing
11) is in the core of the algorithm. It works on scc table,
which has four column:

id identifies a node, it refers to state table.

root identifies the candidate root node of a strongly
connected component of the given node.

comp identifies the strongly connected component.

stack is a number that represents a stack index, i.e. the
order on the stack.

The procedure pushes root node passed as the only argu-
ment in the scc table. In a main loop, it marks the top
node as visited and pushes all its children on the stack
of nodes waiting for the processing. The processed node is
put into the other stack that determines an order, in which

Jaroslav Rab et. al: On the Implementation of State-space Exploration Procedure

Listing 11. Visit procedure:
create or replace
procedure visit

(vertex in number)

visited integer;
leftptr integer := 1;
rightptr integer := 2xx%31;
node integer;
cursor cl(node integer)
trg not in (select id from scc);
rec cl%rowtype;
begin
delete from scc;
— push(root)

159

is select trg from r hourclock where src = node and

insert into scc values (vertex, vertex, 0, rightptr);

loop
— pop(node)
begin
select id

into node from

end;

update scc set stack=leftptr where stack

rightptr := rightptr + 1;
leftptr := leftptr + 1;
open cl(node);

loop

fetch ¢l into rec;
exit when cl%notfound;

scc where stack =
exception when no data found then exit;

rightptr;

= rightptr;

— push(child)
rightptr := rightptr — 1;
insert into scc values (rec.trg, rec.trg, 0, rightptr);
end loop;
close cl;
end loop;

end visit ;

the nodes were examined. To simulate two stacks, used by
Tarjan’s algorithm, it is enough to have only one stack
column and two sets of indexes (leftptr, rightptr) as
the node cannot be in both stack simultaneously.

The algorithm for ¢ = EG f considers that strongly
connected components were determined in the previous
step and attempts to find all paths that lead to these
SCCs. To do this it proceeds by incrementally increase the
labeled set by adding in each step states for those there
are transitions ending in the labeled set.

Listing 12. Labeling g=EG f:
—— input: |_hourclock_f,
— output: |_hourclock g

begin
SCC(f) — it produces I_hourclock_g
— with states in SCC(f)
loop

insert into | hourclock g
(select r.src
from r_ hourclock r,
1 hourclock g g,
1 hourclock f f
where r.trg = g.id

and fl1.id = r.src
and r.src not in
(select id from 1 hourclock g)

exit when sql%rowcount = 0;
end loop;
end

4. DISCUSSION AND FURTHER WORK

In the present work we introduced an idea of implement-
ing state exploration procedure in the language of rela-
tion database. In particular, we demonstrated the idea
on examples given in PL/SQL that is the language of
Oracle database system. We showed that, in particular,
the full implementation of CTL model checking algorithm
is straightforward. In the presentation, we did not consider
any optimization of state space generation procedure nor
the model checking algorithm, although using accompa-
nied profiling tools it is possible to find the performance
problems in SQL queries and come with optimization im-
provements. As the experiments indicate the used under-
laying database system offers promising practical platform
for automated verification of large scale models. Although,

160

it is not possible to directly compare this implementation
with other model checking tools, on several examples we
obtain results in time similar to the TLC model-checker
accompanied with TLA tool suite. We were also unable
to practice bigger case studies as the tool that would
automatically generate PL/SQL statements from TLA
specification is not fully implemented yet, therefore for all
the experiments code was entered manually.

The immediate observations can be split to two classes.
The first class considers the practical aspect on the use of
the method. To gain advantages of the method one needs
to be provided with a set of tools that allows to automatic
generation of state space models from specifications, sys-
tem for property description and state space analysis. For
efficiency reasons, the advantage user should be allowed
to see preliminary results or to modify generated SQL
statements. The second class considers the implementa-
tion aspect of the method. The crucial issue behind the
implementation of the state exploration method in the
environment of relational database is efficient procedure
for recursive query evaluation, which appears behind any
all non-trivial computations.

As the research done so far only points out the basic
ideas, there is a a huge room for further development and
improvements of the method. The following list contains
the most appealing items for immediate research:

e SQL optimization and DBS-specific optimization
techniques should be applied as along the line consid-
ered by the second assumption. Currently, only the
principle was shown but the further improvements on
efficiency need to be done in order to demonstrate
that the method can be really considered as a practi-
cal tool for validation of industrial scale problems.

e Reusing auxiliary results of CTL model checking
procedure is possible as formulas may share same
subformulas. The technique that allows to identify
the same labeling should be studied in order to use
this option transparently to the user. The matching
atomic formulas with respect to their logical equiv-

Preprints of WRTP/RTS. Mragowo, 2009

alency is a premise for implementation of efficient
reusing technique.

e Incremental model construction or modification that
reduces the costs associated with a recomputation
of complete state space or sets of labeled states.
The incremental approach can increase the methods
efficiency but requires more sophisticated approach
in state space generation and verification algorithm
design. There are numerous work on incremental com-
putation of views generated by recursive algorithms
for relational database systems (e.g.), which may help
in this course of research.

e Support for component verification that exploits the
natural operation of relational databases, e.g. join
and intersection. A design consisting of components
may easier to treat as for each individual component
the state space can be generated and then the state
spaces can be combined according to compositional
operation defined for a containing component. In this
phase, the native SQL operations, which implemen-
tations are optimized in relational database can be
exploited.

REFERENCES

Clarke, E., Grumberg, O., and Peled, D. (1999). Model
Checking. The MIT Press.

Dong, G., Libkin, L., Su, J., and Wong, L. (1999). Main-
taining the transitive closure of graphs in sql. In Int. J.
Information Technology, 5.

Lamport, L. (2003). Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley Professional.

Libkin, L. and Wong, L. (1997). Incremental recomputa-
tion of recursive queries with nested sets and aggregate
functions. In In LNCS 1869: Proceedings of 6th Interna-
tional Workshop on Database Programming Languages,
Estes Park, 222-238. Springer-Verlag.

Tarjan, R. (1971). Depth-first search and linear grajh
algorithms. In Switching and Automata Theory,
1971., 12th Annual Symposium on, 114-121. doi:
10.1109/SWAT.1971.10.

