
Preprints of the 30th IFAC Workshop on Real-Time Programming and
4th International Workshop on Real-Time Software pp. 155�160
On the Implementation of State-spa
eExploration Pro
edure in a RelationalDatabase Management System⋆Jaroslav Rab Ondrej Rysavy Miroslav SvedaBrno University of Te
hnology, Bozete
hova 2612 66 Brno, Cze
h Republi
Abstra
t: An examination of dis
rete system's behavior
an be done by exhaustive explorationof the state spa
e that is generated a

ording to the assigned domain semanti
s. Model-
he
kingis the matured dis
ipline that allows to explore state spa
e as large as several millions ofstates. In this paper, we des
ribe a novel approa
h to the implementation of state explorationpro
edure using PL/SQL, the language of Ora
le relational database system. The high e�
ien
yof database systems when dealing with large amounts of data and relatively
heap hardwareavailable nowadays advo
ates the use of relational database as an implementation platform forpra
ti
al exhaustive state exploration algorithm with the hope that this platform may s
ale upthe model
he
king method to hundreds of millions of explorable states.Keywords: Formal Spe
i�
ation, Temporal Logi
 of A
tions, State exploration, Relationaldatabase systems1. INTRODUCTIONPra
ti
al veri�
ation of hardware and software systems isbased on algorithmi
 methods, whi
h are able to explorelarge state-spa
es that exhaustively des
ribes the behaviorof these systems. While algorithms for state spa
e explo-rations are rather simple and well explored the issue ofhandling very large state spa
es is a
tively resear
hing.The methods for e�
ient representation of data in mainmemory and various abstra
tion te
hniques allows explorethe systems
onsisting of hundreds of millions of states.Often the very sophisti
ated and
omplex methods areused to deal with storing and indexing the data des
ribingstates. In this paper, we present an idea to use relationaldatabase system to manipulate the data des
ribing statespa
e and to provide a system for the exploration ofthese data in order to verify the required properties ofa hardware or software system being modeled. Although,the layer manipulating with data is mu
h heavier than thatusually implemented in state of the art model
he
kingtools, we believe that the following statements provideenough sound arguments to justify the rationality thisidea.Virtually unlimited memory. Database systems aredesigned to a

ommodate a large amount of data. Thea
tive databases
an have hundreds of millions of rows intables, and their total size
an be hundreds of gigabytes.

⋆ The resear
h has been supported by the Cze
h Ministry ofEdu
ation in the frame of Resear
h Intention MSM 0021630528:Se
urity-Oriented Resear
h in Information Te
hnology and by theGrant Agen
y of the Cze
h Republi
 through the grants GACR102/08/1429: Safety and Se
urity of Networked Embedded SystemAppli
ations and GACR 201/07/P544: Framework for the dedu
tiveanalysis of embedded software.

Time to result. Various te
hniques have been imple-mented to speed up data pro
essing in the databasesystems. For example, indexes help to optimize variousoperations
ontaining sele
ting the data or merging twotables. Often the speed optimization requires to usemore spa
e. As �rst assumption
laims that we
an havea lot of spa
e for the database, the speed of pro
essingmay be in
reased. We assume that time required to getat least partial results is more important to users thanmemory requirement
onsiderations.Presisten
e. The database systems are primarily usedfor storing the data. The state spa
e generated for aspe
i�
ation whi
h is stored in the database is readyfor further exploration until someone expli
itly de
idesit should be erased from the database. The persisten
ebalan
e the overall
osts of model generation that maybe very high for a large models. Moreover as databasedata may be altered as needed, the te
hniques thatmodify or re�ne the model as spe
i�
ation evolves
anbe applied.We demonstrate the idea using a system des
ription givenin the formalism
alled Temporal Logi
 of A
tions devel-oped by Lamport (2003). In the rest of the se
tion, a briefdes
ription of this formalism is provided. Note that anadequate system des
ription as assumed in this paper
anbe provided by any state-based formalism employing someform of guard/a
tion predi
ates.1.1 TLA+Temporal Logi
 of A
tions (TLA) is a variant of linear-time temporal logi
. It was developed by Lamport (2003)primarily for spe
ifying distributed algorithms, but severalworks shown that the area of appli
ation is mu
h broader.The system of TLA+ extends TLA with data stru
tures155

156 Preprints of WRTP/RTS. Mr¡gowo, 2009allowing for easier des
ription of
omplex spe
i�
ationpatterns. TLA+ spe
i�
ations are organized into mod-ules. Modules
an
ontain de
larations, de�nitions, andassertions by means of logi
al formulas. The de
larations
onsist of
onstants and variables. Constants
an be unin-terpreted until an automated veri�
ation pro
edure is usedto verify the properties of the spe
i�
ation. Variables keepthe state of the system, they
an
hange in the systemand the spe
i�
ation is expressed in terms of transitionformulas that assert the values of the variables as observedin di�erent states of the system that are related by thesystem transitions. The overall spe
i�
ation is given bythe temporal formula de�ned as a
onjun
tion of the form
I∧�[N]v∧L, where I is the initial
ondition, N is the next-state relation (
omposed from transition formulas), andL is a
onjun
tion of fairness properties, ea
h
on
erninga disjun
t of the next-state relation. Transition formulas,also
alled a
tions, are ordinary formulas of untyped �rst-order logi
 de�ned on a denumerable set of variables,partitioned into sets of �exible and rigid variables. More-over, a set of primed �exible variables, in the form of
v′, is de�ned. Transition formulas then
an
ontain allthese kinds of variables to express a relation between two
onse
utive states. The generation of a transition systemfor the purpose of model
he
king veri�
ation or for thesimulation is governed by the enabled transition formulas.The formula �[N]v admits system transitions that leave aset of variables v un
hanged. This is known as stuttering,whi
h is a key
on
ept of TLA that enables the re�nementand
ompositional spe
i�
ations. The initial
ondition andnext-state relation spe
ify the possible behavior of thesystem. Fairness
onditions strengthen the spe
i�
ation byasserting that given a
tions must o

ur. The TLA+ doesnot formally distinguish between a system spe
i�
ationand a property. Both are expressed as formulas of temporallogi
 and
onne
ted by impli
ation S =⇒ F , where S is aspe
i�
ation and F is a property. Con�rming the validity ofthis impli
ation stands for showing that the spe
i�
ationS has the property F. The TLA+ is a

ompanied with aset of tools. One of su
h tool, the TLA+ model
he
ker,TLC, is state-of-the-art model analyzer that
an
omputeand explore the state spa
e of �nite instan
es of TLA+models. The input to TLC
onsists of spe
i�
ation �ledes
ribing the model and
on�guration �le, whi
h de�nesthe �nite-state instan
e of the model to be analyzed. Anexe
ution of TLC produ
es a result that gives answer tothe model
orre
tness. In
ase of �nding a problem, this isreported with a state-sequen
e demonstrating the tra
e inthe model that leads to the problemati
 state. Inevitably,the TLC su�ers the problem of state spa
e explosionthat is, nevertheless, partially addressed by a te
hniqueknown as symmetry redu
tion allowing for veri�
ation ofmoderate size system spe
i�
ations.2. MODEL CONSTRUCTIONThe state spa
e
onstru
tion demonstrated on an intro-du
tory example is shown in this se
tion. The exampleis taken from Lamport's book (see Lamport (2003)). Itrepresents a spe
i�
ation of
lo
ks enri
hed with minutes(variable mn) that makes the spe
i�
ation less trivial butstill small enough for
omplete presentation.

2.1 Table PreparationListing 1. Creating s-table and t-table:
reate table s_hour
lo
k (id integer primary key ,hr integer , mn integer) ;
reate table t_table (s r
 integer r e f e r e n
 e s s_hour
lo
k (id) ,t rg integer r e f e r e n
 e s s_hour
lo
k (id) ,a
t integer) ;
reate sequen
e seq_s_hour
lo
ks t a r t with 1 no
y
 le ;alter table s_hour
lo
k add
onstraints_hour
lo
k_unique unique (hr ,mn)2.2 Initial StatesTo enumerate and store all initial state in state table thePL/SQL pro
edure shown in listing 2 is exe
uted. It loopsover the variable hr and inserts ea
h value in state table,whi
h
orresponds to predi
ate Init of the spe
i�
ation.Listing 2. Generating initial states:f o r hr in 1 . . 1 2 loopinsert into s_hour
lo
k values (seq_s_hour
lo
k . nextval , hr , 0) ;end loop ;2.3 A
tion de�nitionAn a
tion
onsists of guard and
omputable expressionfor determination of values in a su

essive state. Thea
tion A3 is realized as a stored pro
edure as shown inlisting 3. The evaluation of a guard expression yields toresult set that is bound to
ursor
1. The sele
t statement
ontains where
lause expressing that minutes are ininterval (0..58). The inner sele
t prevents to get statesthat where already examined. This is a
hieved by testingthat there is not a transition (i.e. relation in transitiontable)
arried by the a
tion a3 that starts in the sele
tedstate.Listing 3. Pro
edure implementing A
tion 3:
reate pro
edure hour
lo
k_a3 asdupid s_hour
lo
k . id%type ;
u r so r
1 i ssele
t ∗ from s_hour
lo
kwhere mn>=0 and mn<=58and id not in(sele
t distin
t s r
from r_hour
lo
kwhere a
t =3);r e

1%rowtype ;beginloopopen
1 ;f e t
h
1 into r e
 ;e x i t when
1%notfound ;begin

Jaroslav Rab et. al: On the Implementation of State-spa
e Exploration Pro
edure 157
module HourClock

extends Naturals

variable hr , mn

Init
∆

= hr ∈ (1 . . 12) ∧ mn = 0
A1

∆

= hr ∈ (1 . . 11) ∧ mn = 59 ∧ hr ′ = hr + 1 ∧mn ′ = 0
A2

∆

= hr = 12 ∧ mn = 59 ∧ hr ′ = 1 ∧ mn ′ = 0
A3

∆

= mn ∈ (0 . . 58) ∧ mn ′ = mn + 1 ∧ unchanged 〈hr〉
Next

∆

= A1 ∨ A2 ∨A3

Spec
∆

= Init ∧ 2[Next]〈hr ,mn〉

1

Fig. 1. HourClo
k TLA Spe
i�
ationinsert into s_hour
lo
k values(seq_s_hour
lo
k . nextval ,r e
 . hr , r e
 .mn+1);insert into r_hour
lo
k values(r e
 . id , seq_s_hour
lo
k .
urrva l , 3) ;ex
eption when othe r s thensele
t id into dupid from s_hour
lo
kwhere hr=re
 . hr and mn=re
 .mn+1;insert into r_hour
lo
k values(r e
 . id , dupid , 3) ;end ;
 l o s e
1 ;end loop ;end ;The loop in the a
tion pro
edure inserts new states instate table and new transitions in transition table. A newstate is
omputed from the values of the
urrent state aspointed by the
ursor. If newly
omputed state alreadyexists in the state table an ex
eption is raised be
ause thevalue uniqueness
onstraint is violated. In this
ase onlythe transition is inserted in the transition table. Note thatthe transition is marked with identi�
ation of a
tion a3.2.4 Main LoopIn main loop, whi
h intuitively
orresponds to Next pred-i
ate, the a
tions are exe
uted until the set of statesstops growing. The implementation is straightforward inPL/SQL by the loop that
ompares the size of state tablebefore and after the exe
ution of a
tion pro
edures.Listing 4. Main Loop:d e
 l a r ei integer ;p i integer ;beginsele
t
ount (∗) into pi from s_hour
lo
k ;loophour
lo
k_a1 ;hour
lo
k_a2 ;hour
lo
k_a3 ;sele
t
ount (∗) into i from s_hour
lo
k ;e x i t when pi=i ;p i := i ;end loop ;end ;

By exe
uting the main loop, the s_hour
lo
k
ontainsall rea
hable states and r_hour
lo
k
ontains all possibletransitions of the hour
lo
k spe
i�
ation. These tables
anbe readily used for querying properties of the model, e.g.
he
king the type invariant amounts to sele
t all statesthat violates the type invariant property (see listing 5).Listing 5. Type Invariant Che
king:sele
t ∗ from s_hour
lo
k where not(hr >= 1 and hr <= 12andmn >= 0 and mn <= 59)Nevertheless for deeper analysis, if properties are givenas formulas fo temporal logi
, the state spa
e needs tobe
onsidered together with the transition graph to forma transition system. It allows for answering the questionof whether the given temporal logi
 formula holds in thistransition system.2.5 An Issue of Transitive ClosureBefore we pro
eed to de�ne a systemati
 method for statespa
e exploration, we examine the role of transitive
losure(TC) of transition table. Having pre
omputed TC wouldgreatly simplify algorithms for state exploration. The naiveiterative implementation is shown in listing 6.Listing 6. Transitive Closure of T-Table:
reate table t
_hour
lo
k assele
t ∗ from r_hour
lo
k ;loopinsert into t
_hour
lo
k(sele
t G. sr
 , TC. t rgfrom r_hour
lo
k G, t
_hour
lo
k TCwhere G. t rg = TC. s r
) ;e x i t when s q l%row
ount = 0 ;end loop ;The (time)
omplexity of this implementation is O(n3) for
n edges and if appropriate indexes are used the
omplexity
an be redu
ed to O(n2log n). These values seem notto be very optimisti
 if
onsidering large state tables.Although several improvements and alternative methods

158 Preprints of WRTP/RTS. Mr¡gowo, 2009were studied, e.g. by Libkin and Wong (1997) and Donget al. (1999), we attempt to avoid the
omputation of fullTC. Note that also exiting database management systemso�ers for limited implementation of re
ursive queries, forinstan
e, Ora
le's
onne
t by query.3. MODEL EXPLORATIONAlthough SQL-based querying over the state and transi-tion tables is possible, the usual way of validating rea
tivemodels is to
he
k properties de�ned by terms of a tem-poral logi
. The most straightforward algorithm adaptablefor SQL implementation is CTL model
he
king algorithmbased on state labeling.The algorithm for
he
king validity of CTL formula φin a (Kripke-style) model M operates by labeling statesa

ording to markers that
orrespond to subformulas of
φ. The state s is labeled, s ∈ labelψ , i� the subformula
ψ is true in that state. On
e the algorithm
ompletes the
M, s |= φ i� s ∈ labelφ. For further explanation see, e.g.Clarke et al. (1999).As any CTL formula
an be expressed in terms of atomi
expression, ¬, ∨, EX, EU and EG we provide the
orrespond-ing labeling pro
edures only for those
ases.The �rst three
ases are straightforward to implement. Anexample of labeling an atomi
 proposition or a proposition
onsisting of non-temporal subformula is shown on listing7. The idea is to
reate a new table that
onsists of indexesof states that satisfy the given proposition, in this
ase,
hr = 12 ∧mn ∈ (0..30).Listing 7. Labeling atomi
 expressions:
reate table l_hour
lo
k_1 assele
t id from s_hour
lo
k wherehr = 12 and mn >= 0 and mn <= 30Labeling disjun
tion
onsists of
reating a new table thatmerges rows of the two subtables that
orrespond to thesubformulas. We only need to guarantee that the resultingtable will not
ontain dupli
ities.Listing 8. Labeling g=f1 ∨ f2:
−− input : l_hour
 lo
k_f1 , l_hour
 lo
k_f2
−− output : l_hour
lo
k_g
reate table l_hour
lo
k_g as(sele
t id from l_hour
lo
k_f1unionsele
t id from l_hour
lo
k_f2)Also pro
edure for the labeling of EX f is easy to imple-ment. To do this we sele
t all states labeled with f andlabel their prede
essors with EX f . The listing 9 provide anexample of su
h labeling. Note that prede
essor is a

essedin transition table if we
onsider the
urrent state beingindexed by dst �eld.Listing 9. Labeling g=EX f expressions:
−− input : l_hour
 lo
k_f
−− output : l_hour
lo
k_g
reate table l_hour
lo
k_g as(sele
t s r

from r_hour
lo
k , l_hour
lo
k_fwhere dst = id)In the following subse
tions, we
on
entrate on non-trivial
ases that involves iterative
omputations.3.1 Pro
edure for E[f1Uf2]To handle formulas of the form g = E[f1Uf2], the algorithm�rst �nds all states labeled with f2 (these states areimmediately labeled with g). Then the algorithm goesba
kward, i.e. in the opposite way the transition relationis de�ned, to �nd all rea
hable states labeled with f1 andlabels them with g. The PL/SQL
ode is in listing 10.Listing 10. Labeling g=E[f1Uf2]:
−− input : l_hour
 lo
k_f1 , l_hour
 lo
k_f2
−− output : l_hour
lo
k_gbegin
reate table l_hour
lo
k_g assele
t id from l_hour
lo
k_f2loopinsert into l_hour
lo
k_g(sele
t r . s r
from r_hour
lo
k r ,l_hour
lo
k_g g ,l_hour
lo
k_f1 f1where r . t rg = g . idand f 1 . id = r . s r
and r . s r
 not in(sele
t id from l_hour
lo
k_g))e x i t when s q l%row
ount = 0 ;end loop ;end3.2 Pro
edure for EG fThe most
ompli
ated part is represented by the
ase EG fthat requires analyzing the graph to determinate nontrivialstrongly
onne
ted
omponents (SCC).First, we provide a PL/SQL
ode for
omputation of SCCadapting the algorithm devised by Tarjan (1971). Thealgorithm performs depth-�rst-sear
h traversal in order to�nd a sink node or a loop. The pro
edure visit (see listing11) is in the
ore of the algorithm. It works on s

 table,whi
h has four
olumn:id identi�es a node, it refers to state table.root identi�es the
andidate root node of a strongly
onne
ted
omponent of the given node.
omp identi�es the strongly
onne
ted
omponent.sta
k is a number that represents a sta
k index, i.e. theorder on the sta
k.The pro
edure pushes root node passed as the only argu-ment in the s

 table. In a main loop, it marks the topnode as visited and pushes all its
hildren on the sta
kof nodes waiting for the pro
essing. The pro
essed node isput into the other sta
k that determines an order, in whi
h

Jaroslav Rab et. al: On the Implementation of State-spa
e Exploration Pro
edure 159Listing 11. Visit pro
edure:
reate or r ep l a
 epro
edure v i s i t(vertex in number)v i s i t e d integer ;l e f t p t r integer := 1 ;r i gh tp t r integer := 2∗∗31 ;node integer ;
u r so r
1 (node integer) i s sele
t t rg from r_hour
lo
k where s r
 = node andt rg not in (sele
t id from s

) ;r e

1%rowtype ;begindelete from s

 ;
−− push (root)insert into s

 values (vertex , vertex , 0 , r i gh tp t r) ;loop
−− pop (node)beginsele
t id into node from s

 where s ta
k = r i gh tp t r ;ex
eption when no_data_found then e x i t ;end ;update s

 set s ta
k=l e f t p t r where s ta
k = r i gh tp t r ;r i gh tp t r := r i gh tp t r + 1 ;l e f t p t r := l e f t p t r + 1 ;open
1 (node) ;loopf e t
h
1 into r e
 ;e x i t when
1%notfound ;

−− push (
 h i l d)r i gh tp t r := r i gh tp t r − 1 ;insert into s

 values (r e
 . trg , r e
 . trg , 0 , r i gh tp t r) ;end loop ;
 l o s e
1 ;end loop ;end v i s i t ;the nodes were examined. To simulate two sta
ks, used byTarjan's algorithm, it is enough to have only one sta
k
olumn and two sets of indexes (leftptr, rightptr) asthe node
annot be in both sta
k simultaneously.The algorithm for g = EG f
onsiders that strongly
onne
ted
omponents were determined in the previousstep and attempts to �nd all paths that lead to theseSCCs. To do this it pro
eeds by in
rementally in
rease thelabeled set by adding in ea
h step states for those thereare transitions ending in the labeled set.Listing 12. Labeling g=EG f :
−− input : l_hour
 lo
k_f ,
−− output : l_hour
lo
k_gbeginSCC(f) −− i t produ
es l_hour
lo
k_g

−− with s t a t e s in SCC(f)loopinsert into l_hour
lo
k_g(sele
t r . s r
from r_hour
lo
k r ,l_hour
lo
k_g g ,l_hour
lo
k_f fwhere r . t rg = g . id

and f 1 . id = r . s r
and r . s r
 not in(sele
t id from l_hour
lo
k_g))e x i t when s q l%row
ount = 0 ;end loop ;end 4. DISCUSSION AND FURTHER WORKIn the present work we introdu
ed an idea of implement-ing state exploration pro
edure in the language of rela-tion database. In parti
ular, we demonstrated the ideaon examples given in PL/SQL that is the language ofOra
le database system. We showed that, in parti
ular,the full implementation of CTL model
he
king algorithmis straightforward. In the presentation, we did not
onsiderany optimization of state spa
e generation pro
edure northe model
he
king algorithm, although using a

ompa-nied pro�ling tools it is possible to �nd the performan
eproblems in SQL queries and
ome with optimization im-provements. As the experiments indi
ate the used under-laying database system o�ers promising pra
ti
al platformfor automated veri�
ation of large s
ale models. Although,

160 Preprints of WRTP/RTS. Mr¡gowo, 2009it is not possible to dire
tly
ompare this implementationwith other model
he
king tools, on several examples weobtain results in time similar to the TLC model-
he
kera

ompanied with TLA tool suite. We were also unableto pra
ti
e bigger
ase studies as the tool that wouldautomati
ally generate PL/SQL statements from TLAspe
i�
ation is not fully implemented yet, therefore for allthe experiments
ode was entered manually.The immediate observations
an be split to two
lasses.The �rst
lass
onsiders the pra
ti
al aspe
t on the use ofthe method. To gain advantages of the method one needsto be provided with a set of tools that allows to automati
generation of state spa
e models from spe
i�
ations, sys-tem for property des
ription and state spa
e analysis. Fore�
ien
y reasons, the advantage user should be allowedto see preliminary results or to modify generated SQLstatements. The se
ond
lass
onsiders the implementa-tion aspe
t of the method. The
ru
ial issue behind theimplementation of the state exploration method in theenvironment of relational database is e�
ient pro
edurefor re
ursive query evaluation, whi
h appears behind anyall non-trivial
omputations.As the resear
h done so far only points out the basi
ideas, there is a a huge room for further development andimprovements of the method. The following list
ontainsthe most appealing items for immediate resear
h:
• SQL optimization and DBS-spe
i�
 optimizationte
hniques should be applied as along the line
onsid-ered by the se
ond assumption. Currently, only theprin
iple was shown but the further improvements one�
ien
y need to be done in order to demonstratethat the method
an be really
onsidered as a pra
ti-
al tool for validation of industrial s
ale problems.
• Reusing auxiliary results of CTL model
he
kingpro
edure is possible as formulas may share samesubformulas. The te
hnique that allows to identifythe same labeling should be studied in order to usethis option transparently to the user. The mat
hingatomi
 formulas with respe
t to their logi
al equiv-

alen
y is a premise for implementation of e�
ientreusing te
hnique.
• In
remental model
onstru
tion or modi�
ation thatredu
es the
osts asso
iated with a re
omputationof
omplete state spa
e or sets of labeled states.The in
remental approa
h
an in
rease the methodse�
ien
y but requires more sophisti
ated approa
hin state spa
e generation and veri�
ation algorithmdesign. There are numerous work on in
remental
om-putation of views generated by re
ursive algorithmsfor relational database systems (e.g.), whi
h may helpin this
ourse of resear
h.
• Support for
omponent veri�
ation that exploits thenatural operation of relational databases, e.g. joinand interse
tion. A design
onsisting of
omponentsmay easier to treat as for ea
h individual
omponentthe state spa
e
an be generated and then the statespa
es
an be
ombined a

ording to
ompositionaloperation de�ned for a
ontaining
omponent. In thisphase, the native SQL operations, whi
h implemen-tations are optimized in relational database
an beexploited. REFERENCESClarke, E., Grumberg, O., and Peled, D. (1999). ModelChe
king. The MIT Press.Dong, G., Libkin, L., Su, J., and Wong, L. (1999). Main-taining the transitive
losure of graphs in sql. In Int. J.Information Te
hnology, 5.Lamport, L. (2003). Spe
ifying Systems: The TLA+ Lan-guage and Tools for Hardware and Software Engineers.Addison-Wesley Professional.Libkin, L. and Wong, L. (1997). In
remental re
omputa-tion of re
ursive queries with nested sets and aggregatefun
tions. In In LNCS 1369: Pro
eedings of 6th Interna-tional Workshop on Database Programming Languages,Estes Park, 222�238. Springer-Verlag.Tarjan, R. (1971). Depth-�rst sear
h and linear grajhalgorithms. In Swit
hing and Automata Theory,1971., 12th Annual Symposium on, 114�121. doi:10.1109/SWAT.1971.10.

