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Abstract 

 
This paper proposes a technique of firmware 

development based on Multi-valued Decision 
Diagrams (MDDs). Evaluation of multiple-output 
Boolean functions is faster than the one using Binary 
Decision Diagrams (BDDs) and has a small memory 
footprint often required in embedded systems. A micro-
programmed controller that firmware runs on is 
supposed to support multi-way branching in hardware, 
whose implementation is known. A novel heuristic 
technique of a sub-optimal multivalued MDD synthesis 
is presented and a specific condition for spatial 
efficiency of MDD-based firmware is derived. The 
method is illustrated on practical examples. It may be 
quite useful for development of embedded 
microcontroller firmware as well as for fast digital 
system simulation. 
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1. Introduction 
 
Fast and efficient embedded systems are being built 

with micro-programmed controllers on FPGA in order 
to reduce time to market. Small amount of memory, 
low power consumption and low cost are obvious 
requirements, so that development of firmware with a 
limited microcode size is gaining importance.  

If the micro-program scans Boolean expressions one 
variable at a time and uses binary logic operations like 
PLC [1], reading/testing of input variables is redundant 
and multiple Boolean functions are evaluated 
sequentially one after another, which is not too 
efficient. In case of Reduced Ordered Binary Decision 
Diagrams (ROBDDs) [2], redundancy is implied by 
repeated testing of variables in each ROBDD if several 
functions of the same variables are evaluated. A BDD 
variant known as MTBDD (Multi-Terminal BDD) can 
remove this redundancy. It represents an integer 

function of Boolean variables. Nonetheless, if we do 
care for performance and memory space, testing of two 
or more binary variables at a time can provide a 
sufficient speedup. Generally testing m binary variables 
at a time can be considered as testing a single M = 2m 
valued variable and a multi-valued MDD can serve as a 
suitable representation [3]. 
      The main contribution of the paper is a heuristic 
method of MDD synthesis of multi-terminal MDDs that 
can be directly rewritten to firmware. Code generation 
for embedded systems appeared also in [4], but has 
been limited to single-output Boolean functions only. 
The used heuristics optimized an average evaluation 
time with less regard to memory space.  The ordering 
of variables in the ROBDD was assumed, whereas in 
our method we derive ordering of multi-valued 
variables directly. 

The paper is structured as follows. In the following 
Section 2 we will review definitions and representation 
of Boolean functions with the use of decision diagrams 
(DDs). Our heuristic approach to construction of sub-
optimal MDDs representing Boolean functions is 
explained in Section 3. Section 4 analyzes efficiency of 
micro-programs obtained from these MDDs. Some 
examples are included in Section 5. Results are 
commented on in Conclusion. 

 

2.  Basic definitions and notions 
 
To begin our discussion, we define the following 

terminology. A system of m Boolean functions of n 
Boolean variables (also known as a multiple-output 
Boolean function), 

            fn
(i)

 : (Z2)
n → Z2 ,  i = 1, 2, ..., m                          (1)                                                         

will be simply referred to as a multiple-output Boolean  
function Fn. Equivalently, integer (R-valued) function 
of n Boolean variables can be used,  

Fn: (Z2)
n → ZR .                                                              (2) 

with output values from ZR = {0, 1, 2, …, R-1}, R ≤ 2m. 
Function Fn is incomplete if it is defined only on set  
X ⊂ (Z2)

n ;   (Z2)
n \ X = D is then the don’t care set. 

The above function (2) is a special case of a discrete 



R-valued function of n M-valued (or M-ary) variables 
 Fn: (ZM) 

n → ZR ;                                 (3) 
a compact representation of (2) is obtained if integers 
from ZM and ZR  are interpreted as log2M  and log2R 
binary values. If M < 2log

2
M, unused combinations of 

binary input values are in fact don’t cares in (2). 
Machine representation of Boolean functions uses   

binary decision diagrams (BDDs), which can have 
many forms. Ordered BDDs (OBDDs) use the same 
order of variables along all paths, whereas free DDs 
relax this restriction. For a specific variable order and 
the given function can be the size of OBDD reduced to 
a canonical form of ROBDD [2] with a minimum 
number of decision nodes (i.e. BDD size). The same is 
true for multi-terminal binary decision diagrams 
(MTBDDs) representing binary-input, integer-valued 
output functions [5].  

The DD size is the important parameter as it directly 
influences the size of data structure needed to store  the 
DD. However, the size of a DD is very sensitive to 
variable ordering and finding a good order even for 
BDDs is an NP-complete problem [5]; there are n! 
possible orderings of n variables. We will refer to 
ROBDD or MTBDD with the best variable ordering as 
to the optimal DD. The term “sub-optimal DD” will 
denote a DD with the size near to the optimal DD. Such 
DDs result from heuristic synthesis techniques [6].  The 
size of DDs for random functions grows exponentially 
with number of variables n for any ordering, but 
functions used in digital systems design with few 
exceptions do have a reasonable DD size. The average 
path length (APL) of a DD, that relates to the average 
evaluation time, is another parameter subject to 
optimization [7 ]. 

M-ary MDDs are straightforward generalization of 
BDDs. They have two types of nodes: decision and 
terminal nodes. Decision node L is testing M-ary 
variable var(L) and its outgoing edges are marked  by 
its values 0, 1, …, M-1.  The terminal node assigns a 
single value from ZR , (generally R ≠ M) to the function 
value y = Fn(x1, x2,…, xn). Ordered MDDs are better 
suited to evaluation of Boolean functions as the 
traversal from the root to a leaf can be much shorter 
than for OBDDs, depending on the value of M. If the 
M-ary variables are coded in m bits, evaluation process 
can be up to m-times faster with the MDD than with a 
BDD.   

Def.1. The M-ary program associated with a MDD 
of function Fn consists of finite number of labeled 
instructions of the type 

Lu  xi  S0 S1 … SM-1 
where Lu is instruction label, xi is M-ary variable and Sk 
are symbols of two kinds of commands: 

- go to label Lh (a non-terminal command) 
- the value of the function is v (a terminal command).  

Apparently, there is one-to-one correspondence 
between instructions of the M-ary program and MDD 
nodes. Each of M fields reserved for symbols Sk 

contains a tag specifying whether the content of the 
field is to be interpreted as a label of a next instruction 
or as a value of the function and the command stop. 
The ordering of instructions is not important, only the 
initial instruction must be specified. Instructions are 
interpreted this way: if the value of the variable xi under 
the test is xi = q, execute command Sq. 

Def. 2. The ordered DD is redundant, if each test 
variable is used at one and only one level of the DD. 

In what follows only irredundant ordered DDs will 
be considered, even though redundant testing may 
sometimes lead to a lower DD size. 

Each of N nodes in OMDD is described by a table 
with M ≤ 2m items. Each item has a format indicator 
(decision/ terminal node) followed either by a pointer 
to a successor node log2 N bits wide or by the output 
value r = log2 R bits. The size of the data structure is 
therefore in the worst case  

 space = NM [1+ max ( log2 N , r)]  bits.          (4) 
         

3.  Construction of sub-optimal MDDs 
 
Evaluation of Boolean functions in firmware could 

rely on the full function map stored in the memory. 
This approach is in embedded systems acceptable for 
about less than 10 binary variables. For a larger 
number of variables we have to use a more compact 
data structure – a network of LUTs corresponding to 
MDD nodes. In this section we will present a heuristic 
technique of a suboptimal MDD construction. It is 
generalization of the approach taken in BDD 
construction [6], when we do iterative disjunctive 
decomposition of the original function, removing one 
input variable after another. 

 We prefer to explain the synthesis technique on an 
Example 1. The ternary function of three ternary 
variables F(x1, x2, x3) is specified by a map in Fig.1. 
The construction of the MDD starts from terminal 
nodes (leaves); 3 function values can be seen as “sub-
functions” of zero variables and create the lowest level 
of the MDD. A next level are decision nodes that 
correspond to distinct triplets of ternary values of F 
(“output triplets”) associated with values 0, 1, 2 of a 
certain input variable (“an input triplet”). If the output 
triplet consists of the same values, no decision node is 
needed. The distinct output triplets are in fact all 
single-variable sub-functions of F. 

The question is which variable should be used in 



any given step. Our heuristics selects the variable with 
a minimum number of sub-functions (and thus decision 
nodes). In case of ties the variable with the lowest 
number of non-constant sub-functions is taken. In case 
of ties again, one variable is selected randomly. In our 
example 1 we have the following numbers of sub-
functions associated with 3 variables: 

x1: 3,  x2: 5,  x3: 6. 
The choice is clear, and the distinct output triplets 
generated by variable x1 are 222, 210, and 000. To 
remove x1 from input variables of F, it is sufficient to 
replace output triplets by new id codes resulting from 
their enumeration. The decomposition step can then be 
visualized as tiling a map of F with a smallest possible 
assortment of tiles (id codes), Fig.1. 
   

x3 x2 x1
00 01 02 10 11 12 20 21 22

0 2 2 2 0 0 0 2 2 2
1 2 2 2 2 1 0 2 x x
2 2 1 0 2 x x x 1 0

x3 x2
x1 0 1 2

222 :=  0   1. 0 0 2 0
210 :=  1 1 0 1 0,1
000 :=  2 2 1 0,1 1

x2 x3
020 :=  0 2. 0 0 3.
011 :=  1 1 1 0
111 :=  2 2 2 root   

 
Fig.1. Disjunctive decomposition of ternary   
function F of 3 ternary variables (Example 1) 

  
 Since there are don’t cares in the map at Fig.1, we 

have some choices in the second decomposition step. 
Variable x2 is chosen, because with suitable cover of 
don’t cares only two decision nodes are sufficient, 
whereas x3 would need three. The top level of the 
MDD consists of one decision node, the root. The 
MDD is obtained by reversing the decomposition 
procedure and reversing assignments, Fig.2. 

There are other heuristic techniques to obtain sub-
optimal MDDs. E.g. the algorithm [4] can convert the 
BDD with the given order of variables into a MDD in 
which the average path length (APL) is minimized. 
Another technique for minimizing the BDD cost is 
known as sifting [5]. These techniques could probably 
be generalized for MDDs. 

Let us note that in our technique incomplete 
functions can be decomposed the same way. However, 
the enumeration process must be done more carefully, 

because sub-functions can also be incomplete and can 
be combined with complete constant or non-constant 
sub-functions in different ways to reduce the total count 
as much as possible.  

 
 

x3 

x2 x2 x2 

x1 

2 0 

1 

0 

1 

0,2 0 1,2 0,1,2 

0,1,2 0,1,2 0 
2 1 

1 1 2 

 
 

Fig.2. Ternary DD of function F of 3 ternary 
variables (Example 1) 

 

4.  Spatial efficiency of MDD-based 
micro-programs   

 
 To produce space-efficient MDD-based micro-

programs, we will require that the memory capacity for 
storing the micro-program be less than the size of a full 
function table. In this section we will derive a   
necessary condition ensuring this property. 

Theorem 1. Let discrete function F: (ZM)n → ZR be 
specified by the MDD with C(F) decision nodes. Then 
the M-ary program evaluating this function is space 
efficient if C(F) fulfills the condition 

 

Z log2Z < U                                          (5) 
where 

    )2/(log2

,2)(

2
log2 MnRU

nFCZ
MMn

M

=

=
 

Proof. 
The M-ary program, as defined previously, will consist 
of C(F) instructions, each w bits long, where 
    1)(log(log 22 ++= FCMnw  . 

The size of the full function table with the use of binary 
coding will be 
 

  Rs Mn
2

log log2 2= . 

The condition of space efficiency is thus wC(F)< s. 
When we remove rounding to nearest integer from 
expression wC(F), the upper bound can be increased to 
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The original inequality will be certainly fulfilled when 
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what can be written in a form 
 

,)2/(2log2 UMnsZZ M =<  

where ),(2 FCnZ M=  

Q.E.D. 
 

Example. 
Let us have function F: Fn: (Z2) 

8 → (Z2) 
8, so that M=2, 

R=256. The value of U becomes U = 211  and 
                  Z log2 Z < 211, i.e. Z < 28. 
As 

              ,2)(4)(2 8<== FCFCnZ M  

the result is C(F) ≤ 64. 
End of example. 
 

5. Micro-program synthesis examples 
        
Two typical examples will be solved in this section,   

combinational and sequential logic circuits.  
 
Example 2. The task is to detect a number of days in a 
month and a year from the state of binary counters for 
months (m3 m2 m1 m0) and years (y1 y0). (The fact 
that once in 400 years we do not have the leap year is 
not taken into account). 
     In this case we have the 4-valued function of 5 
binary variables because it turns out that the number of 
days in a month does not depend on bit m1. The map of 
the function is shown in Fig.3. 

 
 y1  y0 m3  m2  m0

000 001 010 011 100 101 110 111
00 29 31 30 31 31 30 31 x
01 28 31 30 31 31 30 31 x
10 28 31 30 31 31 30 31 x
11 28 31 30 31 31 30 31 x

y1y0
0 1 2 1 2 1 2 x

m2
02:= 0 11:= 1 22:= 2 1x:= 1

0 1 2 1
m3m0

0  
 

Fig.3. Decomposition of the sample 4-valued 
function (Example 2) 

 

m3 m0 

y1 y0 

m2 

N0 

N2 

N3 
0 

00 
1 0 11 01 

1 

00 01 10 11 

29 28 28 28 30 31 31 30 

N1 

 
a) 

 

 
 
 
 
 
 
 
 
 
 

b) 
Fig.4. Example 2. a) a heterogeneous MDD  

b) a symbolic micro-program 
 

There are only 3 sub-functions of variables y1, y0 
(three distinct columns), and only one of them different 
from a constant (the first column).  A group y1, y0 is 
thus the best choice, because only one 4-way decision 
node results. 

In the second decomposition step we can remove 
one or two variables simultaneously. The choice of m2 
leads to only one binary decision node and m2 is 
therefore selected. Finally two remaining variables m3 
and m0 are used to decide one of 4 ways. The resulting 
heterogeneous MDD mixes binary and quaternary 
nodes, Fig.4a.   

 To run effectively our M-ary program on a 
hardware micro-engine, faster than general purpose 
CPU core, a support for multi-way branching must be 
provided.  A suitable architecture of a micro-engine, a 
modified version of the one in [8], is depicted in Fig.5.   

Instead of an M-ary program, we will use more 
practical formats of shorter micro-instructions. The 
format of a microinstruction is specified by format 
indicator (FI) bits. These bits are decoded and then 
control internal components of a controller. The basic 
format gives a state output (control signals) and 

N0 exit N1@m3m4 
N1@00  exit N2@m2 
N1@01  S31 exit N31 
N1@10  S31 exit N31 
N1@11 S30 exit N30 
N2@ 0  exitN3@y0y1 
N2@ 1  S30 exit N30 
N3@00 S29 exit N29 
N3@01 S28 exit N28 
N3@10 S28 exit N28 
N3@11 S28 exit N28 

 



increments the microinstruction pointer (µIP := µIP+1). 
For multi-way branching two microinstructions formats 
should be supported: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Micro-programmed controller 
architecture with multi-way branching 

 

1) jump to an address specified in micro-instruction 
modified by BCU; MXs and BCU control,  

2) conditional output, jump to an address specified 
in micro-instruction (no modification). 

The first format includes jumps to the target address 
obtained from the address specified in the micro-
instruction; this latter address is modified by external 
variables, by up to 4 variables at a time, including 0 
variable (no modification), by means of 16-way Branch 
Control Unit (BCU). The task of this unit (such as Am 
29803A) is to shift active inputs, selected by a 4-bit 
mask, to the lowest positions of the 4-bit output vector. 
This vector is then wire-ORed with the address 
obtained from the micro-instruction.   

The symbolic micro-program targeted for the micro-
engine in Fig. 5 is shown in Fig. 4b. Replacement of up 
to 4 bits in the address is denoted by operator “@”. If 
wired-OR is used for replacement, the bits being 
replaced must be reset to 0. 

 
Example 3. The sequential circuit with 2 state variables 
and 4 binary inputs with the state diagram at Fig.6 is to 
be implemented on the micro-engine of Fig.5.  

The new state is given by equations 
next Q1 = !w(Q1Q2+Q1!Q2!x+!Q2xy!z)+!Q1!Q2xy!z 
next Q2 = xQ2+(x!yz+xy!z)(!Q1+!w)+Q1Q2w, 
 

the state transition table and iterative decomposition 
are shown in Fig.7. We do testing input and state 
variables in groups of two in two steps. The lowest 
level of MDD degenerates to only a single node, other 
nodes (in dark) do not decide anything. The next MDD 
level up consists of 4 nodes and corresponds to 4 states 
of the state machine. The whole MDD is in Fig. 8a. 

 

x 
!x 

x!yz 

w x!yz!w 

xy!z!w 

!x!w 
x!w !x!w 

!x+x(!y!z+yz) 

xy!z 

x!y!z+w+ 
      +xyz 

00 01 

11 10 

 Fig.6. Example 3. State transition graph.  
 

  Implementation of a state machine is different from 
the combinational circuit in that the MDD has 4 roots. 
The state of the machine is kept in a next-address part 
of µIR and the variables x, y, z, w are available for 
inspection via multiplexers and BCU. The next state is 
“computed” in 2 steps, as shown by 4-ary program in 
Fig.8b. The real vertical micro-program with 
reasonably short micro-instructions is at Fig. 8c. Four 
states are given by addresses N1 to N3; state N4 does 
not generate any output since N4 fields in the 4-ary 
program of Fig.8b (in dark) are marked as pointers.  
The marker bit can be used to disable the output.   
 

xyz
0 0 0 0 0 1 3 0
0 0 0 0 0 1 3 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
2 2 2 2 0 1 3 0
0 0 0 0 0 0 0 0
2 2 2 2 3 3 3 3
1 1 1 1 1 1 1 1
Q1 Q2 w

yz 0 3
0000 := 0 0 3
2222 := 1 0 2
1111 := 2 0 2
0130 := 3 1 3
3333 := 4 0 0

1 4
2 2

wx Q1Q2
0303 := 0 0
0202 := 1 1
1300 := 2 2
1422 := 3 3  
 

Fig.7. Example 3. The state transition table and 
iterative decomposition  
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Seqencer 
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FI 
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0 1 2 3 

0 2 1 3 4 
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wx→ 

yz→ 

N0 N1 N2 N3 

N4 

 
a) 

 
0 1 2 3

N0 wx N0 N4 N0 N4
N1 wx N0 N1 N0 N1
N2 wx N2 N4 N0 N0
N3 wx N2 N3 N1 N1
N4 yz N0 N1 N3 N0  

b) 
 
 
 
 
 
 
 
 
 
 
 
 

c) 
 

Fig.8. Example 3. a) MDD with multiple roots 
b) 4-ary micro-program c) the symbolic micro-

program 
 

6. Conclusions 
 
Complexity of functions that can appear in 

embedded systems varies a great deal and so do their 
space and time requirements in various evaluation 
techniques. There is no single optimal method for 
evaluation of all Boolean functions. Firmware 
evaluation of M-valued functions is faster than 
evaluation in software or on universal microprocessors, 
especially if hardware support for multi-way branching 
is provided. Also memory size to store micro-programs 
is sufficiently small. Binary programs due to fine 
granularity take indeed little less amount of memory 
than M-ary programs, but are almost M-times slower.  

      The presented synthesis of sub-optimal MDDs, 
when completely automated, will now be compared to   
other techniques (APL optimization [4], MDD cost 
minimization by sifting [5], etc). Future research 
should look also at non-disjunctive decompositions, 
redundant MDDs and free MDDs. Also an efficient 
procedure for finding sub-optimal MDDs for a set of 
Boolean functions given by expressions would be very 
valuable and is still missing.   
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N0@00 exit N0 @wx 
N0@01 exit N4 @yz 
N0@10 exit N0 @wx 
N0@11 exit N4 @yz 
N1@00 exit N0 @wx 
N1@01 exit N1 @wx 
N1@10 exit N0 @wx 
N1@11 exit N1 @wx 
N2@00 exit N2 @wx 
N2@01 exit N4 @yz 
 

N2@10 exit N0 @wx 
N2@11 exit N0 @wx 
N3@00 exit N2 @wx 
N3@01 exit N3 @wx 
N3@10 exit N1 @wx 
N3@11 exit N1 @wx 
N4@00 exit N0 @wx 
N4@01 exit N1 @wx 
N4@10 exit N3 @wx 
N4@11 exit N0 @wx 
 


