
Embedded Firmware Development with Multi-Way Branching

Václav Dvořák
Brno University of Technology, CZ

dvorak@fit.vutbr.cz

Abstract

This paper proposes a technique of firmware

development based on Multi-valued Decision
Diagrams (MDDs). Evaluation of multiple-output
Boolean functions is faster than the one using Binary
Decision Diagrams (BDDs) and has a small memory
footprint often required in embedded systems. A micro-
programmed controller that firmware runs on is
supposed to support multi-way branching in hardware,
whose implementation is known. A novel heuristic
technique of a sub-optimal multivalued MDD synthesis
is presented and a specific condition for spatial
efficiency of MDD-based firmware is derived. The
method is illustrated on practical examples. It may be
quite useful for development of embedded
microcontroller firmware as well as for fast digital
system simulation.

Keywords: Embedded firmware, decision diagrams,
iterative disjunctive decomposition, multi-valued
functions, space complexity

1. Introduction

Fast and efficient embedded systems are being built

with micro-programmed controllers on FPGA in order
to reduce time to market. Small amount of memory,
low power consumption and low cost are obvious
requirements, so that development of firmware with a
limited microcode size is gaining importance.

If the micro-program scans Boolean expressions one
variable at a time and uses binary logic operations like
PLC [1], reading/testing of input variables is redundant
and multiple Boolean functions are evaluated
sequentially one after another, which is not too
efficient. In case of Reduced Ordered Binary Decision
Diagrams (ROBDDs) [2], redundancy is implied by
repeated testing of variables in each ROBDD if several
functions of the same variables are evaluated. A BDD
variant known as MTBDD (Multi-Terminal BDD) can
remove this redundancy. It represents an integer

function of Boolean variables. Nonetheless, if we do
care for performance and memory space, testing of two
or more binary variables at a time can provide a
sufficient speedup. Generally testing m binary variables
at a time can be considered as testing a single M = 2m
valued variable and a multi-valued MDD can serve as a
suitable representation [3].
 The main contribution of the paper is a heuristic
method of MDD synthesis of multi-terminal MDDs that
can be directly rewritten to firmware. Code generation
for embedded systems appeared also in [4], but has
been limited to single-output Boolean functions only.
The used heuristics optimized an average evaluation
time with less regard to memory space. The ordering
of variables in the ROBDD was assumed, whereas in
our method we derive ordering of multi-valued
variables directly.

The paper is structured as follows. In the following
Section 2 we will review definitions and representation
of Boolean functions with the use of decision diagrams
(DDs). Our heuristic approach to construction of sub-
optimal MDDs representing Boolean functions is
explained in Section 3. Section 4 analyzes efficiency of
micro-programs obtained from these MDDs. Some
examples are included in Section 5. Results are
commented on in Conclusion.

2. Basic definitions and notions

To begin our discussion, we define the following

terminology. A system of m Boolean functions of n
Boolean variables (also known as a multiple-output
Boolean function),

 fn
(i)

 : (Z2)
n → Z2 , i = 1, 2, ..., m (1)

will be simply referred to as a multiple-output Boolean
function Fn. Equivalently, integer (R-valued) function
of n Boolean variables can be used,

Fn: (Z2)
n → ZR . (2)

with output values from ZR = {0, 1, 2, …, R-1}, R ≤ 2m.
Function Fn is incomplete if it is defined only on set
X ⊂ (Z2)

n ; (Z2)
n \ X = D is then the don’t care set.

The above function (2) is a special case of a discrete

R-valued function of n M-valued (or M-ary) variables
 Fn: (ZM)

n → ZR ; (3)
a compact representation of (2) is obtained if integers
from ZM and ZR are interpreted as log2M and log2R
binary values. If M < 2log

2
M, unused combinations of

binary input values are in fact don’t cares in (2).
Machine representation of Boolean functions uses

binary decision diagrams (BDDs), which can have
many forms. Ordered BDDs (OBDDs) use the same
order of variables along all paths, whereas free DDs
relax this restriction. For a specific variable order and
the given function can be the size of OBDD reduced to
a canonical form of ROBDD [2] with a minimum
number of decision nodes (i.e. BDD size). The same is
true for multi-terminal binary decision diagrams
(MTBDDs) representing binary-input, integer-valued
output functions [5].

The DD size is the important parameter as it directly
influences the size of data structure needed to store the
DD. However, the size of a DD is very sensitive to
variable ordering and finding a good order even for
BDDs is an NP-complete problem [5]; there are n!
possible orderings of n variables. We will refer to
ROBDD or MTBDD with the best variable ordering as
to the optimal DD. The term “sub-optimal DD” will
denote a DD with the size near to the optimal DD. Such
DDs result from heuristic synthesis techniques [6]. The
size of DDs for random functions grows exponentially
with number of variables n for any ordering, but
functions used in digital systems design with few
exceptions do have a reasonable DD size. The average
path length (APL) of a DD, that relates to the average
evaluation time, is another parameter subject to
optimization [7].

M-ary MDDs are straightforward generalization of
BDDs. They have two types of nodes: decision and
terminal nodes. Decision node L is testing M-ary
variable var(L) and its outgoing edges are marked by
its values 0, 1, …, M-1. The terminal node assigns a
single value from ZR , (generally R ≠ M) to the function
value y = Fn(x1, x2,…, xn). Ordered MDDs are better
suited to evaluation of Boolean functions as the
traversal from the root to a leaf can be much shorter
than for OBDDs, depending on the value of M. If the
M-ary variables are coded in m bits, evaluation process
can be up to m-times faster with the MDD than with a
BDD.

Def.1. The M-ary program associated with a MDD
of function Fn consists of finite number of labeled
instructions of the type

Lu xi S0 S1 … SM-1
where Lu is instruction label, xi is M-ary variable and Sk
are symbols of two kinds of commands:

- go to label Lh (a non-terminal command)
- the value of the function is v (a terminal command).

Apparently, there is one-to-one correspondence
between instructions of the M-ary program and MDD
nodes. Each of M fields reserved for symbols Sk

contains a tag specifying whether the content of the
field is to be interpreted as a label of a next instruction
or as a value of the function and the command stop.
The ordering of instructions is not important, only the
initial instruction must be specified. Instructions are
interpreted this way: if the value of the variable xi under
the test is xi = q, execute command Sq.

Def. 2. The ordered DD is redundant, if each test
variable is used at one and only one level of the DD.

In what follows only irredundant ordered DDs will
be considered, even though redundant testing may
sometimes lead to a lower DD size.

Each of N nodes in OMDD is described by a table
with M ≤ 2m items. Each item has a format indicator
(decision/ terminal node) followed either by a pointer
to a successor node log2 N bits wide or by the output
value r = log2 R bits. The size of the data structure is
therefore in the worst case

 space = NM [1+ max (log2 N , r)] bits. (4)

3. Construction of sub-optimal MDDs

Evaluation of Boolean functions in firmware could

rely on the full function map stored in the memory.
This approach is in embedded systems acceptable for
about less than 10 binary variables. For a larger
number of variables we have to use a more compact
data structure – a network of LUTs corresponding to
MDD nodes. In this section we will present a heuristic
technique of a suboptimal MDD construction. It is
generalization of the approach taken in BDD
construction [6], when we do iterative disjunctive
decomposition of the original function, removing one
input variable after another.

 We prefer to explain the synthesis technique on an
Example 1. The ternary function of three ternary
variables F(x1, x2, x3) is specified by a map in Fig.1.
The construction of the MDD starts from terminal
nodes (leaves); 3 function values can be seen as “sub-
functions” of zero variables and create the lowest level
of the MDD. A next level are decision nodes that
correspond to distinct triplets of ternary values of F
(“output triplets”) associated with values 0, 1, 2 of a
certain input variable (“an input triplet”). If the output
triplet consists of the same values, no decision node is
needed. The distinct output triplets are in fact all
single-variable sub-functions of F.

The question is which variable should be used in

any given step. Our heuristics selects the variable with
a minimum number of sub-functions (and thus decision
nodes). In case of ties the variable with the lowest
number of non-constant sub-functions is taken. In case
of ties again, one variable is selected randomly. In our
example 1 we have the following numbers of sub-
functions associated with 3 variables:

x1: 3, x2: 5, x3: 6.
The choice is clear, and the distinct output triplets
generated by variable x1 are 222, 210, and 000. To
remove x1 from input variables of F, it is sufficient to
replace output triplets by new id codes resulting from
their enumeration. The decomposition step can then be
visualized as tiling a map of F with a smallest possible
assortment of tiles (id codes), Fig.1.

x3 x2 x1
00 01 02 10 11 12 20 21 22

0 2 2 2 0 0 0 2 2 2
1 2 2 2 2 1 0 2 x x
2 2 1 0 2 x x x 1 0

x3 x2
x1 0 1 2

222 := 0 1. 0 0 2 0
210 := 1 1 0 1 0,1
000 := 2 2 1 0,1 1

x2 x3
020 := 0 2. 0 0 3.
011 := 1 1 1 0
111 := 2 2 2 root

Fig.1. Disjunctive decomposition of ternary
function F of 3 ternary variables (Example 1)

 Since there are don’t cares in the map at Fig.1, we

have some choices in the second decomposition step.
Variable x2 is chosen, because with suitable cover of
don’t cares only two decision nodes are sufficient,
whereas x3 would need three. The top level of the
MDD consists of one decision node, the root. The
MDD is obtained by reversing the decomposition
procedure and reversing assignments, Fig.2.

There are other heuristic techniques to obtain sub-
optimal MDDs. E.g. the algorithm [4] can convert the
BDD with the given order of variables into a MDD in
which the average path length (APL) is minimized.
Another technique for minimizing the BDD cost is
known as sifting [5]. These techniques could probably
be generalized for MDDs.

Let us note that in our technique incomplete
functions can be decomposed the same way. However,
the enumeration process must be done more carefully,

because sub-functions can also be incomplete and can
be combined with complete constant or non-constant
sub-functions in different ways to reduce the total count
as much as possible.

x3

x2 x2 x2

x1

2 0

1

0

1

0,2 0 1,2 0,1,2

0,1,2 0,1,2 0
2 1

1 1 2

Fig.2. Ternary DD of function F of 3 ternary
variables (Example 1)

4. Spatial efficiency of MDD-based
micro-programs

 To produce space-efficient MDD-based micro-

programs, we will require that the memory capacity for
storing the micro-program be less than the size of a full
function table. In this section we will derive a
necessary condition ensuring this property.

Theorem 1. Let discrete function F: (ZM)n → ZR be
specified by the MDD with C(F) decision nodes. Then
the M-ary program evaluating this function is space
efficient if C(F) fulfills the condition

Z log2Z < U (5)
where

   )2/(log2

,2)(

2
log2 MnRU

nFCZ
MMn

M

=

=

Proof.
The M-ary program, as defined previously, will consist
of C(F) instructions, each w bits long, where
    1)(log(log 22 ++= FCMnw .

The size of the full function table with the use of binary
coding will be

  Rs Mn
2

log log2 2= .

The condition of space efficiency is thus wC(F)< s.
When we remove rounding to nearest integer from
expression wC(F), the upper bound can be increased to

[] =++<)1)(log2(log2)(22 FCMnFwC

[] =++= MMFCnFC 2log)(loglog)(2
2

2
2

2

[].2)(log)(2 2 FCnFMC M=

The original inequality will be certainly fulfilled when

[]
[]() ,22)(log)(22

or2)(log)(2

2

2

MMM

M

nsFCnFMCn

sFCnFMC

<

<

what can be written in a form

,)2/(2log2 UMnsZZ M =<

where),(2 FCnZ M=

Q.E.D.

Example.
Let us have function F: Fn: (Z2)

8 → (Z2)
8, so that M=2,

R=256. The value of U becomes U = 211 and
 Z log2 Z < 211, i.e. Z < 28.
As

 ,2)(4)(2 8<== FCFCnZ M

the result is C(F) ≤ 64.
End of example.

5. Micro-program synthesis examples

Two typical examples will be solved in this section,

combinational and sequential logic circuits.

Example 2. The task is to detect a number of days in a
month and a year from the state of binary counters for
months (m3 m2 m1 m0) and years (y1 y0). (The fact
that once in 400 years we do not have the leap year is
not taken into account).
 In this case we have the 4-valued function of 5
binary variables because it turns out that the number of
days in a month does not depend on bit m1. The map of
the function is shown in Fig.3.

 y1 y0 m3 m2 m0

000 001 010 011 100 101 110 111
00 29 31 30 31 31 30 31 x
01 28 31 30 31 31 30 31 x
10 28 31 30 31 31 30 31 x
11 28 31 30 31 31 30 31 x

y1y0
0 1 2 1 2 1 2 x

m2
02:= 0 11:= 1 22:= 2 1x:= 1

0 1 2 1
m3m0

0

Fig.3. Decomposition of the sample 4-valued
function (Example 2)

m3 m0

y1 y0

m2

N0

N2

N3
0

00
1 0 11 01

1

00 01 10 11

29 28 28 28 30 31 31 30

N1

a)

b)
Fig.4. Example 2. a) a heterogeneous MDD

b) a symbolic micro-program

There are only 3 sub-functions of variables y1, y0
(three distinct columns), and only one of them different
from a constant (the first column). A group y1, y0 is
thus the best choice, because only one 4-way decision
node results.

In the second decomposition step we can remove
one or two variables simultaneously. The choice of m2
leads to only one binary decision node and m2 is
therefore selected. Finally two remaining variables m3
and m0 are used to decide one of 4 ways. The resulting
heterogeneous MDD mixes binary and quaternary
nodes, Fig.4a.

 To run effectively our M-ary program on a
hardware micro-engine, faster than general purpose
CPU core, a support for multi-way branching must be
provided. A suitable architecture of a micro-engine, a
modified version of the one in [8], is depicted in Fig.5.

Instead of an M-ary program, we will use more
practical formats of shorter micro-instructions. The
format of a microinstruction is specified by format
indicator (FI) bits. These bits are decoded and then
control internal components of a controller. The basic
format gives a state output (control signals) and

N0 exit N1@m3m4
N1@00 exit N2@m2
N1@01 S31 exit N31
N1@10 S31 exit N31
N1@11 S30 exit N30
N2@ 0 exitN3@y0y1
N2@ 1 S30 exit N30
N3@00 S29 exit N29
N3@01 S28 exit N28
N3@10 S28 exit N28
N3@11 S28 exit N28

increments the microinstruction pointer (µIP := µIP+1).
For multi-way branching two microinstructions formats
should be supported:

Fig.5. Micro-programmed controller
architecture with multi-way branching

1) jump to an address specified in micro-instruction
modified by BCU; MXs and BCU control,

2) conditional output, jump to an address specified
in micro-instruction (no modification).

The first format includes jumps to the target address
obtained from the address specified in the micro-
instruction; this latter address is modified by external
variables, by up to 4 variables at a time, including 0
variable (no modification), by means of 16-way Branch
Control Unit (BCU). The task of this unit (such as Am
29803A) is to shift active inputs, selected by a 4-bit
mask, to the lowest positions of the 4-bit output vector.
This vector is then wire-ORed with the address
obtained from the micro-instruction.

The symbolic micro-program targeted for the micro-
engine in Fig. 5 is shown in Fig. 4b. Replacement of up
to 4 bits in the address is denoted by operator “@”. If
wired-OR is used for replacement, the bits being
replaced must be reset to 0.

Example 3. The sequential circuit with 2 state variables
and 4 binary inputs with the state diagram at Fig.6 is to
be implemented on the micro-engine of Fig.5.

The new state is given by equations
next Q1 = !w(Q1Q2+Q1!Q2!x+!Q2xy!z)+!Q1!Q2xy!z
next Q2 = xQ2+(x!yz+xy!z)(!Q1+!w)+Q1Q2w,

the state transition table and iterative decomposition
are shown in Fig.7. We do testing input and state
variables in groups of two in two steps. The lowest
level of MDD degenerates to only a single node, other
nodes (in dark) do not decide anything. The next MDD
level up consists of 4 nodes and corresponds to 4 states
of the state machine. The whole MDD is in Fig. 8a.

x
!x

x!yz

w x!yz!w

xy!z!w

!x!w
x!w !x!w

!x+x(!y!z+yz)

xy!z

x!y!z+w+
 +xyz

00 01

11 10

 Fig.6. Example 3. State transition graph.

 Implementation of a state machine is different from
the combinational circuit in that the MDD has 4 roots.
The state of the machine is kept in a next-address part
of µIR and the variables x, y, z, w are available for
inspection via multiplexers and BCU. The next state is
“computed” in 2 steps, as shown by 4-ary program in
Fig.8b. The real vertical micro-program with
reasonably short micro-instructions is at Fig. 8c. Four
states are given by addresses N1 to N3; state N4 does
not generate any output since N4 fields in the 4-ary
program of Fig.8b (in dark) are marked as pointers.
The marker bit can be used to disable the output.

xyz
0 0 0 0 0 1 3 0
0 0 0 0 0 1 3 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
2 2 2 2 0 1 3 0
0 0 0 0 0 0 0 0
2 2 2 2 3 3 3 3
1 1 1 1 1 1 1 1
Q1 Q2 w

yz 0 3
0000 := 0 0 3
2222 := 1 0 2
1111 := 2 0 2
0130 := 3 1 3
3333 := 4 0 0

1 4
2 2

wx Q1Q2
0303 := 0 0
0202 := 1 1
1300 := 2 2
1422 := 3 3

Fig.7. Example 3. The state transition table and
iterative decomposition

x1
x2

xn

M
X

ROM

M
X
s

16-way
Branch
Ctrl Unit

µ
I
P

address
sources

+1
Decoder/
Seqencer

µ
I
R

m =4

Wired
OR

FI

 4

`

0 1 2 3

0 2 1 3 4

0 1 2 3

wx→

yz→

N0 N1 N2 N3

N4

a)

0 1 2 3

N0 wx N0 N4 N0 N4
N1 wx N0 N1 N0 N1
N2 wx N2 N4 N0 N0
N3 wx N2 N3 N1 N1
N4 yz N0 N1 N3 N0

b)

c)

Fig.8. Example 3. a) MDD with multiple roots
b) 4-ary micro-program c) the symbolic micro-

program

6. Conclusions

Complexity of functions that can appear in

embedded systems varies a great deal and so do their
space and time requirements in various evaluation
techniques. There is no single optimal method for
evaluation of all Boolean functions. Firmware
evaluation of M-valued functions is faster than
evaluation in software or on universal microprocessors,
especially if hardware support for multi-way branching
is provided. Also memory size to store micro-programs
is sufficiently small. Binary programs due to fine
granularity take indeed little less amount of memory
than M-ary programs, but are almost M-times slower.

 The presented synthesis of sub-optimal MDDs,
when completely automated, will now be compared to
other techniques (APL optimization [4], MDD cost
minimization by sifting [5], etc). Future research
should look also at non-disjunctive decompositions,
redundant MDDs and free MDDs. Also an efficient
procedure for finding sub-optimal MDDs for a set of
Boolean functions given by expressions would be very
valuable and is still missing.

6. References

[1] F. D. Petruzella: Programmable Logic Controllers,
McGraw Hill Science/Engineering/Math, 2004.

[2] H.R Andersen, An Introduction to Binary Decision

Diagrams. Lecture notes for 49285 Advanced Algorithms
E97, http://www.itu.dk/~hra/notes-index.html

[3] T.Kam, T.Villa, R.K.Brayton, and A.L. Sagiovanni-

Vincentelli, “Multi-valued decision diagrams: Theory and
Applications,” Proc. of the Multiple-Valued Logic, 1988,
Vol. 4, No. 1-2, pp. 9–62, 1998.

[4] S. Nagayama and T. Sasao, "Code generation for

embedded systems using heterogeneous MDDs," Proc. of
the 11th Coference Synthesis And System Integration of
Mixed Information technologies (SASIMI 2003),
Hiroshima, April 3-4, 2003, pp.258-264.

[5] R. Drechsler, B. Becker, Binary Decision Diagrams -

Theory and Implementation. Springer 1998

[6] V. Dvořák: An optimization technique for ordered

(binary) decision diagrams, Proceedings of the 6th
Annual European Computer Conference CompEuro' 92,
Hague, NL, 1992, pp. 1-4.

[7] J. Butler and T. Sasao, "On the average path length in

decision diagrams of multiple-valued functions," Proc. of
the 33rd International Symposium on Multiple-Valued
Logic, Tokyo, May 16-19, 2003. pp.383-390.

[8] V. Dvořák: Microsequencer architecture supporting

arbitrary branching up to 2^m targets, Computer
Architecture News, IEEE Publ., US, March 1990, pp. 9-
16.

Acknowledgement
This research has been carried out under the financial
support of the research grants “Design and hardware
implementation of a patent-invention machine”, Grant
Agency of Czech Republic GA102/07/0850 (2007-
2009) and “Security-Oriented Research in Information
Technology”, MSM 0021630528 (2007-2013).

N0@00 exit N0 @wx
N0@01 exit N4 @yz
N0@10 exit N0 @wx
N0@11 exit N4 @yz
N1@00 exit N0 @wx
N1@01 exit N1 @wx
N1@10 exit N0 @wx
N1@11 exit N1 @wx
N2@00 exit N2 @wx
N2@01 exit N4 @yz

N2@10 exit N0 @wx
N2@11 exit N0 @wx
N3@00 exit N2 @wx
N3@01 exit N3 @wx
N3@10 exit N1 @wx
N3@11 exit N1 @wx
N4@00 exit N0 @wx
N4@01 exit N1 @wx
N4@10 exit N3 @wx
N4@11 exit N0 @wx

