MODELING OF SERVICE ORIENTED ARCHITECTURE:
FROM BUSINESS PROCESS TO SERVICE REALISATION

Marek Rychly and Petr Weiss
Faculty of Information Technology, Brno University of Technology, Czech Republic,
rychly@fit.vutbr.cz, weiss@fit.vutbr.cz

Keywords: Service-Oriented Architecture, Business Process Model, Service Specification, Composite Services.

Abstract: This paper deals with modeling of Service-Oriented Architecture (SOA). SOA is an architectural
style for analysis, design, maintaining and integration of enterprise applications that are based on
services. Services are autonomous platform-independent entities that enable access to one or more
capabilities, which are accessible by provided interfaces. The goal of SOA is to align business
and IT architectures. Hence, a new designed service has to meet business requirements that are
traditionally specified by a business process diagram. The approach, presented in this paper, helps
to bridge the semantic gap between business requirements and I'T architecture by using a method
for transformation of business processes diagrams into services diagrams. In particular, the method
deals with process realisation based on services and it describes choreographing of services towards

fulfilling business goals.

1 INTRODUCTION

Service-Oriented Architecture is an architectural
style for aligning business and IT architectures.
It is a complex solution for analyses, design,
maintaining and integration of enterprise
applications that are based on services. Services
are autonomous platform-independent entities
that enable access to one or more capabilities,
which are accessible by provided interfaces.
A new designed service has to meet business
requirements that are traditionally specified by a
Business Process Diagram (BPD).

This paper deals with modeling of business
process realisation. For this purpose, a method
based on service modeling is introduced. The aim
of the method is to transform business processes
modeled in the Business Process Modeling
Notation (Object Management Group, 2006a)
into UML service diagrams. Those diagrams
show how to choreograph services to fulfil
business goals. Furthermore, the transformation
method is designed considering fundamental SOA
principles (Erl, 2005) such as loose coupling,

service independence, stateless and reusability.
This approach leads to easy extensibility of the
proposed method, e.g. by using business services
templates (Constantinides and Roussos, 2005)),
and allows linking the services to underlaying
component-based systems with support of formal
specification (Rychly, 2007)).

The remainder of this paper is organised as
follows. In Section the exemplary business
process is introduced in more detail. The Sec-
tion |3| describes service specification according to
the mentioned business process. Section[d]focuses
on some issues related to modeling of composite
services, such as passing of data between services
and holding states of services that are participat-
ing in the choreography of a composite service.
Section [l finishes transformation of the exem-
plary business process into a service that pro-
vides requested business functionality. Section [6]
reviews main approaches that are relevant to our
subject and discuss advantages and disadvantages
of our approach compared with the reviewed ap-
proaches. To conclude, Section [7] summarises the

o | [Initiste Price Complete Price Process Invoice
gz "1 calculation Calculation
= .
£ R :
Customer Purchass
Oreler T
5 Receive Purchass >|} """" >|}
i ®
z H .
= Order : :
2] Shipping Shipping
E = \nfo Schedule Info
iz :
Ei =2 Custbmer '
7] . .
9 ' Update Shipping - _— §
2 ! Request : = R eguest Shipping Process Schedule =
=] '
: B B
Purchass Customer
Dreler
. [——
s 11ttt 4
s - —r = 7|} .
g Customer Purchass .
o
é Ordler Reguest Production Schedule Schedule R Send Shipping
Scheduling T Schedule

Figure 1: Business process model of the “Purchase Order” process.

presented approach, current results and outline
the future work.

2 BUSINESS PROCESS MODEL

It is evident that an input for the method of
transformation of BPD into service diagrams is a
business process (BP). Figure [I| shows an exem-
plary “Purchase Order” business process model
(BPM). This example is adopted from (Object
Management Group, 2006b)).

As we can see the Figure [1} there are three
roles that are responsible for realisation of the
“Purchase Order” process: “Invoicing”, “Ship-
ping” and “Scheduling”. Processing starts by
receiving a purchase order message. Afterwards,
the “Invoicing” role calculates an initial price.
This price is not yet complete, because the to-
tal price depends on where the products are pro-
duces and the amount of the shipping cost. In
parallel, the “Shipper” role determines when the
products will be available and from what loca-
tions. After the shipping information is known,
the complete price can be evaluated. At the same
time, the process requests shipping schedule from
the “Scheduler” role. Finally, when the complete
price, shipping info and shipping schedule are

available, the invoice can be completed and sent
to the customer.

The next section describes the transformation
of a BP diagram into service diagrams (BPD2SD
transformation) in details.

3 MODEL TRANSFORMATION

According to (Arsanjani, 2004), the initial ac-
tivity in the development of a new SOA-based
system is the service identification. It consists
of a combination of top-down, bottom-up, and
middle-out techniques of domain decomposition
of legacy systems, existing asset analysis, and
goal-service modeling. The result of the service
identification is a set of candidate services. More
details about service identification can be found
in (Inaganti and Behara, 2007)). In the context of
service oriented design, the service identification
is a prerequisite for the BP2SD transformation.
Since this paper presents basics of the transforma-
tion and uses a motivating example, the service
identification was omitted.

The BPD2SD transformation consists of
two basic steps. The first step is to identify
which tasks from the BPD represent service
invocations and therefore will be modeled as

seservices> $:| InitiatePriceCalculation ceservices> $:|
InitPrice Calculation CompletePrice Calculation

CompletePriceCalculation

ProcessPurchaseOrder

I <<semvices= $:|
ProcessPurchaseOrder -

RequestShipping

<<garvice=> $:|

ReguestShipping

fonsumer AsyncReply

provider

AsyncReply

<<SEIVICE=>
$:| o) Processscheduling
Process Scheduling

(? RequestProductionScheduling
«sservice== $:|

o} 1Py ion @chaduli

SendShippingSchedule

«zservice== $:|

Send Shipping Schedule

i)

Figure 2: An overview of identified services, their
interfaces and connections.

services in service diagrams. This decision is
closely associated with the service identification
and takes into account such aspects as which
service providers provide which services, Quality
of Service (QoS) requirements, security issues,
etc. (Arsanjani, 2004) Such an analysis is
beyond the scope of this paper. Here, we will
assume that following tasks (from Figure 1)) were
identified as service invocations: “Initiate Price
Calculation”, “Complete Price Calculation”,
“Request Shipping”, “Request Production
Scheduling” and “Send Shipping Schedule”.
These tasks will be modeled as business services
in the next step.

The second step, the transformation process
itself, is based on a technique, which is introduced
in (Amsden, 2005). The technique integrates
business process modeling and object modeling
by providing a Business Services Model (BSM)
that is a mediator between business requirements
and an implementation. This paper proposes an
extension of the above mentioned technique and
focuses more on service realisation.

The Figure shows an overview of iden-
tified services derived from the BPM (see
Figure [I). There are five primitive services:
InitPriceCalculation, CompletePriceCalculation,
RequestShipping, RequestProductionScheduling
and SendShippingSchedule and two composite
services: ProcessScheduling and ProcessPurchase-
Order. Primitive services are derived according
to service invocation tasks, and are responsible
for providing functional capabilities defined by
the task. The convention used in this paper is to
name a primitive service the same as the related
task. A composite service is an access point to
choreography of other primitive or composite
services.

In this case, the ProcessScheduling service
represents the business process itself and
choreographs the rest of above mentioned
services. The ProcessPurchaseOrder demon-
strates principle of composite services by
choreographing RequestProductionScheduling
and SendShippingSchedule. Behaviour of these
services is described later in the text.

Each service in Figure[2]is modeled as a stereo-
type service, which extends the UML class com-
ponent (Object Management Group, 2005). This
concept is introduced in (Weiss and Zendulka,
2007). Every service interacts with its environ-
ment via interfaces. During an interaction, ser-
vice can act two different roles: service provider
or service consumer. These two roles are dis-
tinguished in the service model by means of a
port. The provider port of a service implements
interfaces that specify functional capabilities pro-
vided to possible consumers of the service, while
the consumer port requires interfaces of defined
services to consume their functionality.

Each service provides at least one interface at
the consumer port (see Figure . Such an inter-
face involves service operations, which realise the
functional capability of the service. The parame-
ters of the service operations describe the format
of an incoming message. Details of all services
(denoted by stereotype service) including their
interfaces (stereotype interface) and relationships
are shown at Figure[§] The relationships between
services and interfaces are labelled by stereotype
use for interfaces of required services and by an
implementation relation for provided interfaces.

A service can be invoked in two modes:
synchronously and asynchronously. The mode,
which is used for a particular interaction,
depends on the format of incoming message that
is sent to the service (i.e. “a request”). For
example, if we want to use the InitPriceCalculation
service in synchronous mode, the message will
contain only basic service data (customerlnfo and
purchaseOrder). For the asynchronous mode, it
is necessary to add the message identification
information (replyToURL and requestID) that is
used to identify a destination service for a reply
to the asynchronous request.

4 COMPOSITE SERVICES

In our approach, we will prefer a flat model to a
hierarchical model of the service-oriented archi-
tecture. It means that a composite service does

T

Ny T TTTTTTTTTTTTTTTTTmmmmmmmmoommmmmmmmmmt AN hUNMPAYISUNINE0Ad) d
< <ANANAE S
pios (lapanaseyaang © aapagaseyoand W CJawogsng o opu)4aolsng upiunpayoguolonpoddisankal < < e auds s s pios {anpayas - anpayas upanpayag buddiyspuas << egoulss s
BRI YOOI S b3 5 - IppStuddy Spuas
< <adeLIRUL ansagampaipgbuddigpuag < <BTRLIAI >
2 EANANIE -

-w AN ¥

L proA {0 g)isankbad) Buuls L gnoLAdad u aspanaseying | aapan asegaand W CIRW0gEnT ¢ g 2W03sng URunpagas sea00ad < g audses

ceaTeLIaus >

A010AL 1 {4900 ASEYLING | 480J08SRUYXNG L) AA0LSNT) | OQULIAWIOLST LapI08seandSsa0dd < < |[RDOUAS: >

o o gpisanbag wBuuls | ynoLAdad w Jepanaseyaind | spdpeseyaind LI TISWolEnT - OpU]JaWI01Ena uidapa0aseyaindssaondd < <egaudses

................ ANMICIIPAIQISR YN ESIT0N]

PIoa CaRpADasenng ¢ JapA0Esegaand W W0 En ¢ o]0 REnd upBunpauas seaaad < e audss
ANAISHWINPAYIGESII0NG ansaghmddygyeanby| £ —mm7F8¢—mMmM—m—m————————————— ———————————————— - - - -
<LAAIEES > CcaalAIaE s > BUP IS SIS CRFENE >,
T T < cBTRpaLLs !
AR, €<agyy - _
S T, -
S A o o gpieantas i Buuls - qynopAdad usaguepy o o Buiddigs w iswoisng - ogupdawolena upbuddige jeanbal < e audses s ,
proa {3 giieanbad u ereg Aday audsy | elep upddayaudse < qeaudss s proa {peanepy o oguBuiddigs w swogens - ogupsawolsnd upbuddiysesnbal < e aufss > 1
...... -
djapIuhsy Surddwsrsanday < (AEMs > m
< <aTelIal > £ {ATRLAIL '
I 1
- ,,.imm:vv uoipenafE D aadddwa) ¢ {IBpI0EERUaINg | R0 SERL2ANG L ISI0LENT | OYULISUIOLEND WDUOEINIED S AP < <R IUAE: - |
P UL] (asankaad L RS YN oLAdEd u apdnaseyaing | ASpA0 aseyaang L T IRW0LEnT | uA01ENg WLORINaR 0 a3l < o2 auAse ¢ L_
_q\ AAIAGUOIPR NI I JATeIIu] .V LI NINE M el << aEn: v
<<BENE Y C<BIAJAE > < ATl aTL: !
i pioa (o g 3eanbad i Buys L g ol Aicad wfsaguey oo Buicddigs w fuoenae sauddua) o uoipenaeq s dua) unuorenaeqaauaiadun ¢ e oudses - H
o (saduey o Buicdigs wuoirenoedauddua) @ uorenae e dusl uiuorenoedsaudataduns < eq b - |
anaaguoIe IR audaiaidues - ----- - -——h—— — - .
£eallAEg: s YOLENNE DN TNOT ceaEn >

ARTAPFERYINIFE S TN <<AANMIAE >

< <amepaUls . T

Pocasny

10ns.

s of all services and their relat

ion

Specification of interfaces and implementat

Figure 3

not enclose its “internal” services participating in
the choreography and does not delegate its inter-
faces to them. It only represents a controller of
these services, i.e. the composite service commu-
nicates with its neighbouring services at the same
level of hierarchy in the “producer-consumer” re-
lationship (see service ProcessScheduling in our
example, which can be viewed as a composite
service consisting of services RequestProduction-
Scheduling and SendShippingSchedule). The flat
model provides better reusability of services, be-
cause the context of a service is defined only by its
implemented (i.e. provided) and required inter-
faces, not by its position in the hierarchy. How-
ever, there are some problems we must cope with,
especially the issue of passing of data between ser-
vices that are participating in the choreography
of a composite service.

The other characteristic feature of our ap-
proach is the restriction on services’ interfaces
to provide only one functionality. Regardless, it
is possible to implement service with more in-
terfaces (i.e. with more functional capabilities),
but the interfaces must provide independent func-
tionality. It means, services are not allowed to
hold any state information between two indepen-
dent incoming requests, in spite of which interface
the service was invoked on. Although “stateless
services” provide better reusability we must cope
with the issue of holding states of services that are
participating in the choreography in relation with
the state of the composite service (e.g. passing
of states between services InitiatePriceCalculation
and CompletePriceCalculation in our example).

The solution of both issues, the issue of
passing of data between services and the issue of
holding states of services that are participating
in the choreography, can be demonstrated on
behaviour of the services ProcessPurchaseOrder,
InitiatePriceCalculation and CompletePriceCalcu-
lation in our example (see Figure [3). At first
the ProcessPurchaseOrder service requests the
service InitiatePriceCalculation. Consequently,
the service |InitiatePriceCalculation prepares
a price calculation (the initial calculation)
and stores it for later use, i.e. the service
changes a state of the price calculation
process (see Figure [I) implemented by the
composite service ProcessPurchaseOrder. This
state must be transformed into an initial
state of the service CompletePriceCalculation,
which is requested subsequently by the service
ProcessPurchaseOrder and which completes price
calculation based on the initial calculation. The

service ProcessPurchaseOrder forwards returning
data (encoded state) of the first service to
the other one. The merit of such design is
independence of requested services, although
they share data and the state.

5 THE SERVICE
ProcessPurchaseOrder

In previous sections, we have described specifica-
tions of individual services that are participating
in the business process (see Figure . More
precisely, the services InitiatePriceCalculation,
CompletePriceCalculation, RequestShipping and
ProcessScheduling were described. This section
deals with composing those services into a single
service ProcessPurchaseOrder representing the
business process in its entirety. Specification of
the ProcessPurchaseOrder service has to include
description of its structure (i.e. an architecture
of the service) and its internal behaviour (i.e.
collaboration of involved services and the
“orchestration” of the ProcessPurchaseOrder
service).

The architecture of the ProcessPurchaseOrder
service is described in Figure [B] The service
provides ProcessPurchaseOrder interface, which
allows synchronous and asynchronous calls of
the service, and auxiliary AsyncReply interface
for accepting replies to asynchronous calls from
required services. These required services are
represented by their interfaces InitiatePriceCalcu-
lation, CompletePriceCalculation, RequestShipping
and ProcessScheduling. Connection of the
services is noticeable also in Figure

The behaviour of the ProcessPurchaseOrder
service is described in Figure [dl After receiving
a request from a Consumer, the service asyn-
chronously calls services InitiatePriceCalculation,
RequestShipping and ProcessScheduling. When
both InitiatePriceCalculation and RequestShipping
notify (via the AsyncReply interface, see Figure
they have finished processing the requests,
the CompletePriceCalculation service is called
asynchronously with the result received from
InitiatePriceCalculation.

While the CompletePriceCalculation is running;,
ProcessPurchaseOrder computes the “Process
Schedule” internal process in parallel (see Figure
). After CompletePriceCalculation notifies it
had finished the computation, the “Process
Invoice” internal process is being computed
parallel to the “Process Schedule” process.

—
|
o
Fat
|
i)
=
=
b=
|
A
[
| _— _—
z -—
i=l
=
=
o
o
b=t
[
&
7
by
=)
|
[ra
|
=
=
bt
|
i)
=
p=l
=
=)
=
= N
) = ;
o
o = 1
= =
o} H
= | o
B T @
| = =
o 5|z
[}
s |2
(=
8] = 2
L= o |
[— = fay)
a T | £
o 2=
= | =
pat =
5 =
o | @
w = =
=| £
£ |3
=
= —_— o
|
A
=
i)
o
)
B
[
=
|
— —— —
a T
= '
= H
bt H
o H
W) H
= H
o '
= H
k= H
= H
=) 1 I I
= [F—
8 HE .
= .
o) o 7
£ = ' oS
= = =
o = . b}
- = = =2 =
ki o =2 o o
k= = =) [=
= o | m| = @
=1 A E o, -]
= = D
— R AR = z
| o | =| = =] =
& 21| 2 = o
Fa R Eo z
o o | 2| & = o
E=1 ar
2 (3|2 ! =
@ E|T| o ' =
E = |2 = o
) - .
o e e
o — —
Hl = =z
O oL
= a =
= = =
o =] =
| o :
| o '
O] '
2 = H
[=t :
L= 5 :
[H
@ H
@ H
a '
) H
=1 '
=4 H
= w
| '

Caonsumer

Figure 4: Behaviour of ProcessPurchaseOrder service
as a sequence of service calls.

As soon as both internal processes “Process
Schedule” and “Process Invoice” are done and
ProcessScheduling service notifies it is finished,
ProcessPurchaseOrder finishes its processing

Process Purchase Order 9

1
Al e
Initiate Price i
Reguest Shippin
Calculation 1 PRing
Complete Price
Calculation

Process Invoice

Process
Scheduling

Process Schedule

Figure 5: Behaviour of service ProcessPurchaseOrder
in the context of used services and internal processes.

by sending a result (the invoice) back to the
consumer. The result is returned instantly if
the service has been called synchronously or
it is returned via the AsyncReply consumer’s
providing interface to the address, which has
been included in the asynchronous call.

6 DISCUSSION AND RELATED
WORK

The work presented in this paper has been in-
fluenced by several different proposals. First of
all, we should mention UML profiles for SOA.
(Amir and Zeid, 2004) introduces a simple UML
profile that is intended to use for modeling of web
services. (Johnston, 2005|) provides a well-defined
profile for modeling of service-oriented solutions.
(Ortiz and Herndndez, 2006) shows how services
and their extra-functional properties can be mod-
eled by using UML.

The ideas presented in those approaches are
a good starting point to model both the struc-
tural and the behavioural properties of services
by means of UML. However, modeling of ser-
vices needs to take into account some additional
aspects. Primarily, we have to know the con-
nection between business requirements and func-
tional capabilities of modeled services. (Murzek
and Kramler, 2007) addresses this as a prob-
lem of transformation between several BPM lan-
guages. Particularly, ADONIS Standard Model-
ing Language, Business Process Modeling Nota-
tion (BPMN), Event-driven Process Chains and
UML 2.0 Activity Diagrams are mentioned.

The relationship between BPMN and UML is
also introduced in (Amsden, 2005). The author
describes a high-level mapping of a BPM to UML
2.0 BSM that represents service specification be-
tween business clients and information technology
implementers. For the purpose of service model-
ing, the BSM is too general. Hence, our approach
follows the one presented in (Amsden, 2005)) while
considering SOA principles. It focuses especially
on modeling of process realisation and service
choreography.

(Object Management Group, 2006b)) proposes
a similar concept to our approach. However, that
concept contains a number of incorrectness that
solves our approach. First, one of the funda-
mental SOA principles, the stateless of services,
is ignored. Services are designed in such a way
that they store data affecting their functionality
between two single incoming requests. Our ap-
proach solves this problem by using a composite
service (the principle of using of composite ser-
vices is described in Section [4)).

Next, only synchronous communication
is supposed in (Object Management Group,
2006b). We suppose both the synchronous
and asynchronous invoking of a service, in our
approach. In which way is the service invoked
depends on the format of the incoming request
(see Section [3).

And finally, in our approach, service’s func-
tional capabilities can be easily extend by adding
a new provided interface to the consumer port
without affecting the previous service specifica-
tion.

7 CONCLUSION AND FUTURE
WORK

In this paper we outlined a method for modeling
of service oriented systems. The method defines
how a business process should be transformed
into services and how these services should col-
laborate to fulfil business goals. Furthermore, we
have proposed how to model fundamental SOA
principles by means of UML, such as service
stateless and reusability. Some of those features
are novel and have not been integrated into the
existing methods of modeling SOA.

The presented research is a part of a greater
project, which deals with modeling and formal
specification of SOA and underlaying component-
based systems. The approach, which is presented
in this paper, is aimed at the modeling of the top

layer of several layers. Those layers spread from
business-oriented abstraction (represented by a
system’s business process diagram) to implemen-
tation of individual primitive components at the
bottom level.

Future work is mainly related to integration of
the presented approach with formal component
models. The integration allows formal verifica-
tion of a whole modeled system (e.g. tracing
of changes in a business process model to the
changes in components’ structure and behaviour
related to known security issues). Ongoing re-
search includes also automation of business pro-
cess transformation into services by using busi-
ness service patterns.

ACKNOWLEDGEMENTS

This research has been supported by the Research
Plan No. MSM 0021630528 “Security-Oriented
Research in Information Technology”.

REFERENCES

Amir, R. and Zeid, A. (2004). A UML profile
for service oriented architectures. In Vlissides,
J. M. and Schmidt, D. C., editors, OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming sys-
tems, languages, and applications, pages 192—
193. ACM.

Amsden, J. (2005). Business services modeling: Inte-
grating WebSphere business modeler and ratio-
nal software modeler. IBM developer Works.

Arsanjani, A. (2004). Service-oriented modeling and
architecture: How to identify, specify, and real-
ize services for your SOA. IBM developer Works.

Constantinides, C. and Roussos, G. (2005). Service-
Oriented Software System FEngineering: Chal-
lenges and Practices, chapter Service Patterns

for Enterprise Information Systems, pages 201—
225. IGI Global, Hershey, PA, USA.

Erl, T. (2005). Service-Oriented Architecture: Con-
cepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA.

Inaganti, S. and Behara, G. K. (2007). Service identi-
fication: BPM and SOA handshake. BP Trends.

Johnston, S. (2005). UML 2.0 profile for software
services. IBM developerWorks.

Murzek, M. and Kramler, G. (2007). Business process
model transformation issues. In Proceedings of
the 9th International Conference on Enterprise
Information System.

Object Management Group (2005). UML super-
structure specification, version 2.0. OMG Docu-
ment formal/05-07-04, The Object Management
Group. Also available as ISO/IEC 19501:2005
standard.

Object Management Group (2006a). Business process
modeling notation (BPMN) specification. OMG
Final Adopted Specification dtc/06-02-01, The
Object Management Group.

Object Management Group (2006b). UML profile
and metamodel for services (UPMS), request
for proposal. OMG Document soa/2006-09-09,
The Object Management Group, 140 Kendrick
Street, Building A Suite 300, Needham, MA
02494, USA.

Ortiz, G. and Herndndez, J. (2006). Toward
UML profiles for web services and their extra-
functional properties. In IEEE International
Conference on Web Services (ICWS’06), pages
889-892. IEEE Computer Society.

Rychly, M. (2007). Component model with support
of mobile architectures. In Information Systems
and Formal Models, pages 55—62. Faculty of Phi-
losophy and Science in Opava, Silesian university
in Opava.

Weiss, P. and Zendulka, J. (2007). Modeling of ser-
vices and service collaboration in UML 2.0. In
Information Systems and Formal Models, pages
29-36. Faculty of Philosophy and Science in
Opava, Silesian University in Opava.

	Introduction
	Business Process Model
	Model transformation
	Composite Services
	The Service ProcessPurchaseOrder
	Discussion and Related Work
	Conclusion and Future Work

