
Hardware Accelerators for Cartesian
Genetic Programming

Zdenek Vasicek and Lukas Sekanina

Faculty of Information Technology, Brno University of Technology
Božetěchova 2, 612 66 Brno, Czech Republic

vasicek@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract. A new class of FPGA-based accelerators is presented for
Cartesian Genetic Programming (CGP). The accelerators contain a ge-
netic engine which is reused in all applications. Candidate programs
(circuits) are evaluated using application-specific virtual reconfigurable
circuit (VRC) and fitness unit. Two types of VRCs are proposed. The
first one is devoted for symbolic regression problems over the fixed point
representation. The second one is designed for evolution of logic circuits.
In both cases a significant speedup of evolution (30–40 times) was ob-
tained in comparison with a highly optimized software implementation
of CGP. This speedup can be increased by creating multiple fitness units.

1 Introduction

According to John Koza, genetic programming (GP) can routinely deliver high-
return human-competitive machine intelligence [1]. Its competitiveness and
performance has been demonstrated in many tasks and design areas. Simul-
taneously, the computational power which GP needs for obtaining innovative
results is enormous for most applications. GP usually spends most of time by
running domain-specific simulators which evaluate candidate individuals using
large training sets. In order to reduce the computational time, various methods
have been employed. In general, they can be divided into four classes: (1) algo-
rithmic – the use of smart search strategies, genetic operators and fitness eval-
uation strategies, (2) source code optimization for a given platform, (3) parallel
GP implementations on clusters of workstations and (4) hardware accelerators.
However, even with a parallel GP, the evolution is very time consuming. For
example, Koza’s team has utilized two clusters of workstations, 1000 x Pentium
II/350 MHz processor and 70 x DEC Alpha/533 MHz processor. For 36 tasks
solved using GP on the clusters, the average population size is 3,350,000 individ-
uals, 128.7 generations are produced in average and the average time to reaching
a solution is 81.9 hours [1].

This paper is focused on the acceleration of GP using a suitable digital hard-
ware. For genetic algorithms, FPGA (Field Programmable Gate Arrays) based
implementations have been created for a long time [2, 3]. As the fitness evalua-
tion of a candidate program is the most time consuming part of GP, hardware

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 230–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Hardware Accelerators for Cartesian Genetic Programming 231

acceleration should primarily be devoted to the fitness calculation. A straigh-
forward implementation involves multiple fitness calculation units which work
concurrently. Another key issue in hardware is whether the particular prob-
lem requires the floating-point (FP) operations or fixed-point (FX) operations.
The fixed-point arithmetic circuits or even logic circuits can be accelerated in a
much easier way than floating-point operations on a commonly accessible hard-
ware such as FPGA. Martin implemented a complete linear genetic programming
system in an FPGA. It operates with FX expressions encoded as linear programs.
Depending on the number of hardware fitness evaluation units, he reported the
speedup 18 (for 2 fitness units) - 419 (64 fitness units) for the even 6-parity
problem and 13 (2 fitness units) - 107 (32 fitness units) for the artificial ant
problem in comparison with the PowePC processor running at 200 MHz [4].

Recently, Graphics Processing Units (GPUs) that are available in common
desktop computers have been used to parallelize the fitness evaluation (also for
the FP domain) [5, 6, 7]. The CPU converts arrays of test cases to textures on
the GPU and loads a shader program into the shader processors. According to a
GP expression, a shader program is created. The program is then executed, and
the resulting texture is converted back in to an array. The fitness is determined
from this output array [6]. Chitty [7] reports the speedup 0,4 – 30 depend-
ing on target problem (two symbolic regressions, Iris classification and 8-input
multiplexer tested) for NVidia GeForce 6400 GO graphic card in comparison
with a 1.7 GHz Pentium 4 processor. Harding and Banzhaf have shown how the
speedup of candidate individual evaluation depends on the expression length for
various problems. With the growing expression length and growing number of
test cases, GPU becomes more effective than CPU. The maximum speedup is
approx. 1000 for Boolean expressions and 14 for a protein classification problem.
Note that these results only show the number of times faster evaluating evolved
GP expressions is on the GPU (NVidia GeForce 7300 GO) compared to CPU
implementation (Intel Centrino T2400 running at 1.83 GHz). I.e., the speedup
of evolution was not reported. Unfortunately, for training sets of a common size,
the overhead of transferring data to the GPU and for constructing shaders leads
to a worse performance than CPU.

In the recent years, human-competitive results were obtained using Cartesian
Genetic Programming (CGP) [8]. CGP is a sort of genetic programming which
represents candidate programs as graphs consisting of an array of programmable
nodes. This representation is natural for hardware implementation. In this pa-
per, we propose an approach to building CGP accelerators in an FPGA. The
accelerator consists of genetic unit, fitness unit and the so-called virtual reconfig-
urable circuit (VRC) which is utilized to evaluate candidate programs. We will
show that even if only a single fitness unit operating at 100 MHz is utilized, the
evolution is 30–40 times faster than a highly optimized software implementation
running at a GHz processor. This approach is well suited especially for integer-
level symbolic regression problems and evolution of logic expressions. The imple-
mentation utilizes a commercial off-the-shelf FPGA Virtex II Pro which contains
sufficient logic resources and on-chip PowerPC processors. As genetic operations

232 Z. Vasicek and L. Sekanina

are implemented in the PowerPC processor, the designer can define a new target
problem and change various parameters of CGP very quickly.

The proposed solution was originally intended for evolution of image filters.
In this particular problem, human competitive results were obtained because
“the result (i.e. image filters presented in [9]) is publishable in its own right as a
new scientific result – independent of the fact that the result was mechanically
created” (criterion D from [10]). The goal of this paper is to demonstrate that
the method can be extended to be considered as a general CGP accelerator for
those problems which utilize FX operators or logic operators. The VRCs for
typical target domains will be presented together with an analysis of the impact
of their parameters on the performance. In particular, we will investigate the
effect of setting the level of interconnectivity (the L-back parameter of CGP).
A new hardware approach will be presented which allows optimizing not only
for function but also for the size of a candidate program (not reported so far in
literature). In addition to the use of multiple fitness units and pipelining, we will
also introduce a new parallel approach to the evaluation of candidate programs.
The accelerators will be evaluated using benchmark problems commonly used in
this area.

2 Cartesian Genetic Programming

In CGP, a candidate program is modeled as an array of u (columns) × v (rows)
of programmable elements (gates). The number of inputs, ni, and outputs, no,
is fixed. Feedback is not allowed. Each node input can be connected either to
the output of a node placed in the previous L columns or to some of program
inputs. The L-back parameter, in fact, defines the level of connectivity and
thus reduces/extends the search space. For example, if L=1 only neighboring
columns may be connected; if L = u, the full connectivity is enabled. Each node
is programmed to perform one of functions defined in the set Γ (nf denotes |Γ |).
As Figure 1 shows, while the size of chromosome is fixed, the size of phenotype
is variable (i.e. some nodes are not used). Every individual is encoded using
u × v × 3 + no integers.

1 0

1 0

0 0

1 0

0

1

2

3

4

5

6

7

8

9

10

1

2

0

0

2 1 1

0

Fig. 1. An example of a candidate program. CGP parameters are as follows: L = 3,
u = 4, v = 2, Γ = {AND (0), OR (1)}. Nodes 5 and 9 are not utilized. Chromosome:
1,2,1, 0,0,1, 2,3,0, 3,4,0 1,6,0, 0,6,1, 1,7,0, 6,8,0, 6, 10. The last two integers indicate
the outputs of the program.

Hardware Accelerators for Cartesian Genetic Programming 233

CGP operates with the population of λ individuals (typically, λ = 5 − 20).
The initial population is randomly generated. Every new population consists of
the best individual and its mutants. In case when two or more individuals have
received the same fitness score in the previous population, the individual which
did not serve as a parent in the previous population will be selected as a new
parent. This strategy is used to ensure the diversity of population.

The fitness function usually takes one of two forms. For the symbolic regres-
sion problems, a training set is used. The goal is to minimize the difference
between the output of a candidate program and required output. For evolution
of logic circuits, all possible input combinations are applied at the candidate
circuit inputs, the outputs are collected and the goal to minimize the differ-
ence between obtained truth table and required truth table. In case when the
evolution has found a solution which produces correct outputs for all possible
input combinations, other parameters, such the number of components or delay
are getting to minimize. The evolution is stopped when the best fitness value
stagnates or the maximum number of generations is exhausted.

& 1

1 &

4

5 7

x0=1010101010101010

x1=1100110011001100

x2=1111000011110000

x3=1111111100000000

0

1

2

3

6 8

9

16x

16x

16x

16x

1000100010001000

1111111111110000

y1=1000100010001000

y2=1000100010000000

r1=1100111111000000

r2=1100011111110000

fitness=10/16 + 8/16

Fig. 2. Parallel simulation of a combinational circuit. Values y1 and y2 are the results
of simulation, r1 and r2 are the required outputs.

Software implementations of CGP, which are intended for evolution of logic
circuits, strongly benefit from the so-called parallel simulation. In a circuit sim-
ulator working at the gate level, a single gate is usually modeled using a logic
function. The idea of parallel simulation is to utilize bitwise operators operating
on multiple bits in a high-level language (such as C) to perform more than one
evaluation of a gate in a single step. Therefore, when a combinational circuit un-
der simulation has four inputs and it is possible to concurrently perform bitwise
operations over 24 = 16 bits in the simulator then this circuit can completely
be simulated by applying a single 16-bit test vector at each input (see encoding
in Fig. 2). In contrast, when it is impossible then sixteen four-bit test vectors
must be applied sequentially. Practically, current processors allow us to operate
with 64 bit operands, i.e. it is possible to evaluate the truth table of a six-input
circuit by applying a single 64-bit test vector at each input. Therefore, the ob-
tained speedup is 64 against the sequential simulation. In case that a circuit
has more than 6 inputs then the speedup is constant, i.e. 64. This technique can
be also utilized in hardware. However, it is mainly useful for gate-level evolution.

234 Z. Vasicek and L. Sekanina

In case of function-level evolution, for example, over b-bit operators (such as
addition, subtraction, maximum etc.) the speedup is only c/b, where c is the
number of bits of the operators implemented in hardware.

3 Accelerators for CGP

The basic idea of proposed accelerator is that a given instance of CGP (i.e. a
reconfigurable graph consisting of u × v programmable nodes) is implemented
as a reconfigurable circuit on the FPGA. Its configuration is defined using a
bitstream which is stored in a configuration register implemented also in the
FPGA. This concept is called the virtual reconfigurable circuit [11]. In order
to evaluate a candidate chromosome, a controller has to store the chromosome
into the configuration register of VRC and activate the fitness unit (FU). FU
generates the input vectors for VRC, reads the output vectors from VRC and
compares them with required output vectors. The fitness value is sent to the on-
chip PowerPC processor where new candidate chromosomes are created. This
architecture was introduced in [12].

3.1 Architecture Overview

The proposed CGP accelerator is completely implemented in a single FPGA and
consists of Genetic unit (GU), Processor and Memory Interface (PMI), Fitness
Unit (FU), VRC and a Control Unit (CU) – a communication interface to a
common PC (see Fig. 3). The PC is used just to define parameters of CGP and
target data (the truth table or training set). External SRAM memories are used
to store large training sets (e.g. training images for designing of image filters),
while on-chip BlockRAM (BRAM) memories are used to store small training
sets.

PPC

VRC

PMI

FU

CU

Fitness
Computation

Part

Virtual Reconfigurable Circuit

Control
Unit

Processor
and

Memory
Interface

PowerPC
Processor

VRC_CONFBRAM_DOUT

PPC_IRQ

FIT_VALUE FIT_VALUE

Input
Generation

Part

BRAM

Population
Memory

FIT_VALUE_WE

VRC_OUT VRC_IN

SRAM SRAM

Fig. 3. Generic architecture of CGP accelerators in the FPGA Virtex 2 Pro

Hardware Accelerators for Cartesian Genetic Programming 235

All components (except the VRC) are connected to the internal bus called Lo-
calBus which provides an effective communication interface between FPGA and
PCI bus. In order to maximize the overall performance, the CU plays the role
of master, controls the entire system and provides an interface to the host PC.
The PowerPC generates a new candidate individual when a requirement is spec-
ified. The instruction memory of the PowerPC is implemented using BRAMs.
However, our search algorithm can completely be stored in an instruction cache.

The population of candidate configurations is also stored in on-chip BRAM
memories. The population memory is divided into banks; each of them contains a
single configuration bitstream of VRC. An additional bit (associated with every
bank) determines data validity; only valid configurations can be evaluated. In
order to overlap the evaluation of a candidate configuration with generating a
new candidate configuration, at least two memory banks have to be utilized.
While a circuit is evaluated, a new candidate configuration is generated. The
new configuration is used immediately after completing the evaluation of the
previous one.

The PMI component consists of two subcomponents working concurrently.
The first subcomponent, controlled by the CU, reconfigures the VRC using con-
figurations stored in the population memory. The second subcomponent is re-
sponsible for sending the fitness value to the PowerPC processor. As soon as the
fitness value is valid, it is sent (together with some additional data, such as the
size of phenotype) to the PowerPC. An interrupt (IRQ) is generated to activate
a service routine of the PowerPC. In this routine, a new candidate configuration
is generated for the given bank. The PowerPC processor acknowledges the inter-
rupt (IRQACK) and sets up the validity bit. This process is controlled by the
FU. The PMI component also provides an interface to the population memory
via LocalBus.

The proposed system allows the use of various search algorithms [12]. These al-
gorithms utilize a population of candidate solutions and a single genetic operator
— mutation, which inverts k bits of the chromosome (i.e. of the configuration).
No crossover operator is used. An analysis of various mutation operators and
pseudorandom number generators was presented in [12, 13].

3.2 VRC for Symbolic Regression Problems

Proposed CGP accelerators mainly differ in the VRC organization and fitness
unit. Fig. 4 shows the VRC implemented for the image filter design problem,
which is a kind of a symbolic regression problem over the FX representation [12].
Every candidate program (image filter) is considered as a digital circuit of nine
8-bit inputs and a single 8-bit output.

The VRC consists of 2-input Configurable Logic Blocks (CFBs), denoted as
Ei, placed in a grid of 8 columns and 4 rows. Any input of each CFB may be
connected either to a primary circuit input or to the output of a CFB, which is
placed anywhere in the preceding column. Any CFB can be programmed to im-
plement one of 16 function from Γ , where Γ includes addition, subtraction, shift,
minimum, maximum and logic functions. All these functions operate with 8-bit

236 Z. Vasicek and L. Sekanina

operands and produce 8-bit results. The reconfiguration is performed column by
column. The computation is pipelined; a column of CFBs represents a stage of
the pipeline. Registers (denoted D) are inserted between the columns in order
to synchronize the input pixels with CFB outputs. The configuration bitstream
of VRC, which is stored in a register array conf reg, consists of 384 bits. A sin-
gle CFB is configured by 12 bits, 4 bits are used to select the connection of a
single input, 4 bits are used to select one of the 16 functions. Evolutionary algo-
rithm directly operates with configurations of the VRC; simply, a configuration
is considered as a chromosome.

conf_reg 0

E0

col 0

conf_reg 1 conf_reg 2 conf_reg 7

conf

PEIN

CONF

OUT

MUXA

MUXB

A

B

Y

...

...

D

E1

E2

E3

D

E0

col 1

E1

E2

E3

D

E0

col 7

E1

E2

E3

E0

col 6

E1

E2

E3

D

...

F0

F1

Fk

...

A

B

Y

MUXY

conf

Fig. 4. VRC for symbolic regression problems

In tasks of symbolic regression, training data are stored in external SRAM
memories. Fitness unit loads training data from external SRAM1 memory and
forwards them to the inputs of VRC. The outputs of VRC, yi, are compared with
required outputs, ri, (which are loaded from another external memory, SRAM2)
and simultaneously stored into the third external memory, SRAM3. The FU
can be considered as an extension of the VRC pipeline because in each clock
cycle, a temporary fitness value is updated by a new difference, |yi − ri|. Due
to pipelined reconfiguration as well as execution of VRC, the evaluation of a
candidate program (circuit) requires k clock cycles, where k is the number of
training vectors.

3.3 VRC for Logic Expressions

The architecture of VRC is similar to the VRC for symbolic regression. There are
four main differences: PEs contain only logic functions, L-back=2 is supported,
the size of phenotype can be calculated and a data parallel operation of PEs (the
same as used in the software parallel simulation) is introduced. The size of data
is denoted as “data width”, dw, in the rest of paper. If PEs operate at dw bits
then the speedup against the bit-level execution is dw-times. In order to support
L-back=2, additional registers (D) have been used to store the results of stage

Hardware Accelerators for Cartesian Genetic Programming 237

i− 2 for stage i of the pipeline (see Fig. 5). The number of configuration bits for
a single column is 2∗ log2(ni +2u)+ log2(nf). In contrast to symbolic regression,
the training data (truth table) is stored in BRAMs. For example, if ni = 16
then 64 BRAMs are utilized. All possible input combinations are generated in
the process of fitness calculation. When the size of circuit is not optimized, the
maximum fitness value is 2nino.

conf_reg 0

E0

col 0

conf_reg 1 conf_reg m−1 conf_reg m

conf

PEIN

CONF

OUT

MUXA

MUXB

A

B

Y

...

...

D

E1

En

D

E0

col 1

En

D

E0

col m

En

E0

col m−1

En

D

...

F0

F1

Fk

...

A

B

Y

MUXY

conf

DD

E1

Om−2O0

O1

Om−1O0

Fig. 5. VRC for evolution of digital circuits

Figure 6 explains the calculation of the size of a candidate circuit. The method
assumes that a PE can implement a single wire. Once a functionally-perfect
solution is found, the size is optimized. The objective is to maximize the number
of PEs which operate as wires. The configuration of a single column of VRC is
analyzed using comparators. The comparator returns 1 in case that a particular
PE operates as a wire. These 1s are added using a tree of adders. This calculation
is performed when the column of PEs is configured. It costs no extra time. The
size of phenotype is stored to 8 the least significant bits of the fitness value.

COST

CONF col(i) f
E0

=

f
E1

=

f
E2

=

f
En−1

=

f
En

=...

+

+

+

+

+

Tree of adders

ACC+

...

Fig. 6. Calculation of the size of a phenotype

238 Z. Vasicek and L. Sekanina

4 Experimental Results

4.1 Evolution of Digital Circuits

Table 1 provides results of synthesis for various parameters of VRC. While the
size of VRC and the number of inputs and outputs are fixed, the number of
test vectors evaluated in parallel (i.e. dw) increases from 1 to 12. When no data
parallel execution is used, the whole design occupies approx. 10% resources;
when dw = 12 (i.e. 12 test vectors are evaluated in parallel by a PE) the design
occupies approx. 90% resources. Using this setup we can achieve 27 times faster
evaluation in comparison with a highly optimized SW implementation running
at a CPU Intel Xeon 3 GHz processor (and utilizing a parallel simulation at 32
bits), even if the VRC works at 100 MHz.

Table 1. Results of synthesis for VRC with 10x10 PEs, 9 inputs, 9 outputs and 4 logic
functions per PE (XC2VP50-ff1517 Xilinx FPGA). DFF is the number of flip-flops and
FG is the number of function generators.

of vectors evaluated in parallel (dw)
resource available 1 2 4 8 12
BRAMs 232 14 16 20 28 36

used 6.0% 6.9% 8.6% 12.1% 15.5%
DFFs 49788 2743 2993 3533 4709 5843

used 5.5% 6.0% 7.1% 9.5% 11.7%
FGs 47232 4836 7813 14164 26734 41281

used 10.2% 16.5% 30.0% 56.6% 87.4%

Table 2 contains the results of synthesis for various VRC sizes. The number
of inputs, outputs, logic functions and data width are fixed. The last row shows
the number of configuration bits of VRC.

Table 2. Results of synthesis for various VRCs of 9 inputs, 9 outputs, 4 logic functions
and dw = 2 (FPGA XC2VP50-ff1517)

VRC size
resource available 10 × 10 12 × 12 14 × 14 16 × 16
DFFs 49788 1644 2336 3634 4664

used 3.3% 4.7% 7.3% 9.4%
FGs 47232 6242 9012 26700 32352

used 13.2% 19.1% 56.5% 68.5%
of conf. bits 1200 2016 2744 3584

In order to investigate the impact of the L-back parameter, we created two
VRCs with L = 1 and L = 2. Proposed implementations were evaluated in
the task of multiplier evolution, a traditional hard benchmark problem for evo-
lutionary circuit design. A parallel version of Hill Climbing algorithm with
neighbourhood of two and population size of 8 individuals was used (see [13]).

Hardware Accelerators for Cartesian Genetic Programming 239

Table 3 summarizes results of 10 independent experiments for each problem. We
can see that the increasing value of L-back parameter has the positive effect
on the average number of generations and the success rate. Obtained results
are comparable to the best-known results [14] (where the authors allowed the
maximum value of L-back parameter).

Table 3. Results for evolution of multipliers (Γ = {wire, and, xor, ā and b})

.

Parameters of evolution
multiplier 2 × 2 2 × 3 3 × 3 3 × 4 4 × 4
l-back 1 2 1 2 1 2 1 2 1 2
VRC 8x8 8x8 10x10 10x10 10x10 10x10 10x10 10x10 16x16 16x16
inputs 4 4 5 5 6 6 7 7 8 8
gener. (max) 10k 10k 100k 100k 1M 1M 10M 10M 20M 20M
Results
success rate 91% 96% 92% 100% 72% 96% 18% 84% 0% 4%
gates (min) 7 7 13 13 29 24 60 45 - 125
gates (max) 19 13 20 21 45 47 67 68 - 156
gates (avg) 9 8 15 15 34 33 61 57 - 138
gener. (avg) 1.8k 1.5k 20k 13k 22k 284k 4.84M 3.84M - 14.2M

Table 4 compares the number of evaluated candidate circuits per one second
in a highly optimized SW implementation and proposed HW accelerator. In case
of the SW implementation, the time of circuit evaluation depends on the size
of the phenotype and the number of training vectors. On the other hand, in
hardware, this time depends only on the number of training vectors. Hence, the
accelerator becomes more useful for larger VRCs and larger sets of training data.

Table 4. The number of evaluations per second. VRC operates at 100 MHz (dw = 4),
SW is executed on the Intel(R) Xeon(TM) CPU 3.06 GHz (dw = 32).

VRC size (SW) VRC size (HW) evaluation
inputs 10 × 10 12 × 12 16 × 16 10 × 10 12 × 12 16 × 16 speedup

6 400 296 222 6250 6250 6250 15–28
7 250 173 89 3125 3125 3125 12–35
8 154 95 51 1563 1563 1563 10–30
9 85 50 25 781 781 781 9–31

4.2 Symbolic Regression Problems

Similarly to the accelerator for logic circuit synthesis, the CGP accelerator for
symbolic regression problems was implemented on the COMBO6X card equipped
with Virtex II Pro 2VP50ff1517 FPGA. Results of synthesis are summarized in
Table 5. While the PowerPC works at 300 MHz, the logic supporting the Pow-
erPC works at 150 MHz. The remaining FPGA logic (including VRC and FU)

240 Z. Vasicek and L. Sekanina

works at 100 MHz. Experimental results show that approximately 6,000 can-
didate programs can be evaluated per second when the training set consists of
15876 vectors which is 44 times faster than the same algorithm running at the
Celeron 2.4 GHz [12]. This accelerator was utilized to discover novel implemen-
tations of image filters [12, 9, 13].

Table 5. Results of synthesis for the symbolic regression problems

VRC IO blocks BRAM Slices DFF
Available 852 232 23 616 49 788
4 × 8 CFBs 602 12 4 591 3 638
used 70% 5% 20% 7%

5 Discussion

The obtained speedup (30–40 against a common PC) is significant although
only a single fitness unit was utilized. Note that the results reported in [6, 7, 4]
employed multiple fitness units. In order to exploit also this level of parallelism,
we can create up to 7 VRCs (depending on the number of PEs) on our FPGA.
It means that the FPGA which we are currently using is able to speed up the
evolution 100–200 times in comparison with a PC.

6 Conclusions

A new class of FPGA-based accelerators was presented for CGP. The accel-
erators contain a genetic engine which is reused in all applications. Candidate
programs (circuits) are evaluated in an application-specific virtual reconfigurable
circuit and fitness unit. Two types of VRCs are proposed. The first one is de-
voted for symbolic regression problems over the FX representation. The second
one is designed for evolution of logic circuits. In both cases a significant speedup
of evolution was obtained in comparison with a highly optimized software imple-
mentation of CGP. This speedup can be increased by creating multiple fitness
units. Moreover, as the system is implemented on a single chip, it will be useful
for online in-situ adaptive computing.

Acknowledgements

This research was partially supported by the Grant Agency of the Czech Republic
under No. 102/07/0850Design and hardware implementation of a patent-invention
machine and the Research Plan No. MSM 0021630528Security-Oriented Research
in Information Technology.

Hardware Accelerators for Cartesian Genetic Programming 241

References

[1] Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic
Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Aca-
demic Publishers, Dordrecht (2003)

[2] Shackleford, B.: A high-performance, pipelined, FPGA-based genetic algorithm
machine. Genetic Programming and Evolvable Machines 2(1), 33–60 (2001)

[3] Tufte, G., Haddow, P.: Prototyping a GA Pipeline for Complete Hardware Evolu-
tion. In: Stoica, A., Keymeulen, D., Lohn, J. (eds.) Proc. of the 1st NASA/DoD
Workshop on Evolvable Hardware, Pasadena, CA, USA, pp. 143–150. IEEE Com-
puter Society, Los Alamitos (1999)

[4] Martin, P.: Genetic Programming in Hardware. PhD thesis, University of Essex
(2003)

[5] Fok, K.L., Wong, T.T., Wong, M.L.: Evolutionary computing on consumer graph-
ics hardware. IEEE Intelligent Systems 22(2), 69–78 (2007)

[6] Harding, S., Banzhaf, W.: Fast genetic programming on GPUs. In: Ebner, M.,
O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007.
LNCS, vol. 4445, pp. 90–101. Springer, Heidelberg (2007)

[7] Chitty, D.M.: A data parallel approach to genetic programming using pro-
grammable graphics hardware. In: GECCO 2007: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, vol. 2, pp. 1566–1573. ACM
Press, New York (2007)

[8] Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

[9] Vasicek, Z., Sekanina, L.: An area-efficient alternative to adaptive median filtering
in fpgas. In: Proc. of 2007 Conf. on Field Programmable Logic and Applications,
pp. 216–221. IEEE Computer Society, Los Alamitos (2007)

[10] Koza, J.R., Bennett III F.H., Andre, D., Keane, M.A.: Genetic Programming III:
Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco
(1999)

[11] Sekanina, L.: Evolvable components: From Theory to Hardware Implementations.
In: Natural Computing, Springer, Berlin (2004)

[12] Vasicek, Z., Sekanina, L.: An evolvable hardware system in xilinx virtex ii pro
fpga. International Journal of Innovative Computing and Applications 1(1), 63–
73 (2007)

[13] Vasicek, Z., Sekanina, L.: Evaluation of a new platform for image filter evolution.
In: Proc. of the 2007 NASA/ESA Conference on Adaptive Hardware and Systems,
pp. 577–584. IEEE Computer Society, Los Alamitos (2007)

[14] Vassilev, V., Job, D., Miller, J.F.: Towards the automatic design of more efficient
digital circuits. In: Proc. of the 2nd NASA/DoD Workshop of Evolvable Hardware,
pp. 151–160. IEEE Computer Society, Los Alamitos, CA, US (2000)

	Hardware Accelerators for Cartesian Genetic Programming
	Introduction
	Cartesian Genetic Programming
	Accelerators for CGP
	Architecture Overview
	VRC for Symbolic Regression Problems
	VRC for Logic Expressions

	Experimental Results
	Evolution of Digital Circuits
	Symbolic Regression Problems

	Discussion
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

