
A Concurrency Testing Tool and its Plug-ins for
Dynamic Analysis and Runtime Healing

Bohuslav Křena1, Zdeněk Letko1, Yarden Nir-Buchbinder2,
Rachel Tzoref-Brill2, Shmuel Ur2, and Tomáš Vojnar1

1 FIT, Brno University of Technology, Božetěchova 2, 61266, Brno, Czech Republic,
e-mail: {krena, iletko, vojnar}@fit.vutbr.cz

2 IBM, Haifa Research Lab, Haifa University Campus, Haifa, 31905, Israel,
e-mail: {yarden, rachelt, ur}@il.ibm.com

Abstract. This paper presents a tool for concurrency testing (abbre-
viated as ConTest) and some of its extensions. The extensions (called
plug-ins in this paper) are implemented through the listener architec-
ture of ConTest. Two plug-ins for runtime detection of common concur-
rent bugs are presented—the first (Eraser+) is able to detect data races
while the second (AtomRace) is able to detect not only data races but
also more general bugs caused by violation of atomicity presumptions.
A third plug-in presented in this paper is designed to hide bugs that
made it into the field so that when problems are detected they can be
circumvented. Several experiments demonstrate the capabilities of these
plug-ins.

1 Introduction

Concurrent programming is very popular nowadays despite its complexity and
the fact that it is error-prone. The crucial problem encountered when testing and
debugging concurrent programs is the huge number of possible execution inter-
leavings and the fact that they are selected nondeterministically at runtime. The
interleaving depends—among other factors—on the underlying hardware, with
the result that concurrent bugs hide until they manifest in a specific user configu-
ration. Applications of model checking in this area are limited by the state space
explosion problem, which is quite severe when considering large applications and
their huge interleaving space, while static analysis tools suffer from many false
alarms, and are also complicated by the need to analyse non-sequential code.

In this paper, we consider testing and runtime analysis (capable of catching
bugs even when they do not appear directly in the witnessed run) supported
by techniques that make concurrent bugs appear with a higher probability. In
particular, in Section 2, we present ConcurrentTesting (abbreviated as ConTest),
a tool for testing, debugging, and measuring test coverage for concurrent Java
programs, on top of which specialised plug-ins with various functionalities can
be built. In Section 3, we describe two ConTest plug-ins for runtime detection of
common concurrent bugs (data races and atomicity violations). In Section 4, we
describe a plug-in for healing bugs that escaped to the field. To evaluate these

plug-ins, we performed several experiments. Due to space limitations, we only
provide a short description of the experiments in Sections 3 and 4.

2 The ConTest Tool and Infrastructure

ConTest [4] is an advanced tool for testing, debugging, and measuring test cover-
age for concurrent Java programs. Its main goal is to expose concurrency-related
bugs in parallel and distributed programs, using random noise injection. ConTest
instruments the bytecode—either off-line or at runtime during class load—and
injects calls to ConTest runtime functions at selected places. These functions
sometimes try to cause a thread switch or a delay (generally referred to as
noise). The selected places are those whose relative order among the threads
can impact the result; such as entrances and exits from synchronised blocks, ac-
cesses to shared variables, and calls to various synchronisation primitives. Con-
text switches and delays are attempted by calling methods such as yield(),
sleep(), or wait(). The decisions are random, so that different interleavings
are attempted at each run, which increases the probability that a concurrency
bug will manifest. Heuristics are used to try to reveal typical bugs. No false
alarms are reported because all interleavings that occur with ConTest are legal
as far as the JVM rules are concerned. ConTest itself does not know that an
error occurred. This is left to the user or the test framework to discern, exactly
as they do without ConTest.

ConTest is implemented as a listener architecture [12], which enables writing
other tools easily using the ConTest infrastructure. These tools are referred as
ConTest plug-ins. Among the tools that can be written as ConTest plug-ins are
those for concurrency testing, analysis, verification, and healing. The ConTest
listener architecture provides an API for performing actions when some types
of events happen in the program under test. The events that can be listened to
include all events that ConTest instruments as described above. Each plug-in
that extends ConTest defines to which event types it listens. ConTest can run
any number of different plug-ins in a single execution.

A plug-in registers to ConTest through an XML mechanism. ConTest takes
care of the instrumentation and of the invocation of the plug-in code for a specific
event when this event occurs at runtime. ConTest also provides various utilities
that can be useful when writing plug-ins. ConTest supports partial instrumenta-
tion, i.e., it can be instructed to include (or exclude) specific program locations
in the instrumentation. This can be useful, for example, when concentrating on
specific bug patterns. The Noise class provides noise injection utilities, such as
the makeNoise() method that performs noise according to ConTest preferences,
and more specific methods that perform noise of certain types and strengths.
The noise injection utility is useful not only because it spares the developer the
need to implement noise injection, but also because it takes care of risks that
may arise when using more complicated types of noise. For example, if the noise
is implemented by sleep() or wait(), these calls can take interrupts invoked by
the target program, and this may interfere with the semantics of the program.

2

The ConTest API takes care of this scenario. ConTest’s own noise injection can
be disabled if it is not required or interferes with the plug-in function. Additional
utilities include methods for retrieving lock information, efficient random num-
ber generation, utilities for safe retrieval of target program threads and objects
names and values in the code of plug-ins, and a hash map suitable for storing
target program objects.

Eclipse is a popular IDE for Java. Eclipse itself has an open architecture so
that tools can be implemented as plug-ins and plug-ins can extend other plug-ins
through extension points. ConTest is available both as a stand-alone tool and
as an Eclipse plug-in. As an Eclipse plug-in, it defines an extension point, which
allows ConTest’s own plug-ins to be easily made into Eclipse plug-ins themselves.

3 Plug-ins for Detecting Synchronisation Errors

This section describes two plug-ins we implemented as ConTest extensions for
detecting common concurrency problems at runtime. Namely, the plug-ins are
targeted at detecting data races and atomicity violations.

3.1 The Eraser+ Plug-in for Data Race Detection

Our first plug-in uses a slightly enhanced version for the Java context of the
well-known Eraser algorithm [13] for data race detection (denoted Eraser+).
The plug-in registers to events beforeAccess(v, loc) and afterAccess(v, loc) gen-
erated by accesses to class fields v at program locations loc as well as to events
monitorExit(l) and monitorEnter(l) generated by acquire/release operations on
lock l. The detection of races is based on the consideration that every shared
variable (detected by ConTest at runtime) should be protected by a lock. Since
Eraser has no way to know which lock protects which variable, it deduces the
protection relation during execution. For each shared variable v, Eraser iden-
tifies the set C(v) of candidate locks. This set contains those locks that have
protected v during the computation so far. Initially, C(v) contains all locks. At
each beforeAccess(v, loc) caused by a thread t, C(v) is refined by intersecting it
with the set of locks held by t. The set of locks currently held by a thread t is
managed within the monitorEnter(l) and monitorExit(l) events. If C(v) becomes
empty, a race condition over v is reported. To reduce false alarms and optimise
the algorithm for Java, Eraser+ uses several improvements to the original al-
gorithm as described in [7]. However, despite the implemented support of join
synchronisation and variable initialisation by another thread, Eraser+ can still
produce false alarms, especially when synchronisation mechanisms other than
basic Java locks or the join synchronisation are used.

3.2 AtomRace: Detecting Data Races and Atomicity Violations

Our second plug-in uses the AtomRace algorithm [8], invented in consideration
of the needs (low overhead, no false alarms) of self-healing programs. AtomRace

3

can detect not only data races but also atomicity violations. In fact, data races
are viewed by AtomRace as a special case of atomicity violations. AtomRace
does not track the use of any concrete synchronisation mechanisms; instead, it
concentrates solely on the consequences of their absence or incorrect use. Thus,
AtomRace can deal with programs that use any kind of synchronisation (even
non-standard). AtomRace may miss data races or atomicity violations. On the
other hand, it does not produce any false alarms.

The plug-in registers to events generated by accesses to class fields (i.e. before-
Access(v, loc) and afterAccess(v, loc)) and by encountering method exit points
(denoted methodExit(loc)). AtomRace detects data races by making each access
to a shared variable v at a location loc a primitive atomic section delimited by
beforeAccess(v,loc) and afterAccess(v,loc). If execution of such a primitive atomic
section is interleaved by executing any other atomic section over v, and at least
one of the accesses is for writing, a data race is reported. Of course, such primi-
tive atomic sections are very short and the probability of spotting a race on them
is very low. Therefore, we make the execution of these atomic sections longer by
inserting some noise. In addition, AtomRace can deal with more general atomic
sections when appropriate. For a shared variable v, it views an atomic section
as a code fragment that is delimited by a single entry point and possibly sev-
eral end points in the control flow graph. When a thread t starts executing the
atomic section at some beforeAccess(v,loc), no other thread should access v in
a disallowed mode (read or write) before t reaches an end point of the atomic
section at some afterAccess(v,loc’) or methodExit(v,loc’). This way, AtomRace
is able to detect atomicity violations. AtomRace can also detect non-serialisable
accesses in the sense of [9] if atomic sections are defined over two subsequent
accesses to the same variable.

When AtomRace deals with general atomic sections, it must be provided with
their definition in advance, whether defined manually by the user or obtained au-
tomatically via static and/or dynamic analyses. We implemented a pattern-based
static analysis that looks for typical programming constructions that program-
mers usually expect to be executed atomically. Occurrences of such patterns
are detected in two steps. First, the PMD tool is used [3] to identify the lines
of code where critical patterns that use certain variables appear from the ab-
stract syntax tree of the Java code under test. Then, FindBugs [1] analyses
the ConTest-instrumented bytecode, and the occurrences of critical patterns de-
tected by PMD are mapped to the variable and program location identifiers used
by ConTest. Moreover, a dataflow framework implemented in FindBugs finds all
possible execution paths in the control flow graph, starting from a concrete loca-
tion denoting the start of an atomic section, and hence finds all possible exits of
the section (including those related to exceptions). Further, another static analy-
sis was implemented to support detection of non-serialisable accesses introduced
in [9]. FindBugs obtains the initial set of access interleaving (AI) invariants.
AtomRace then removes non-relevant AI invariants from the set during test-
ing (we assume that invariants broken when a test passes successfully are not
relevant).

4

public static void Service(int id, int sum) {

accounts[id].Balance += sum; // thread safe

BankTotal += sum; // data race

}

Fig. 1. A problematic method in a program simulating bank accounts

As noted above, the atomic sections monitored by AtomRace may be too
short to identify a conflict. However, we can profit from the ConTest noise injec-
tion mechanism to increase the length of their execution and hence to increase
the probability of spotting a bug—to the extent that the detection becomes par-
ticularly useful according to our experiments. We implemented three injection
schemes: First, the noise may be injected into the atomic sections randomly,
when no a-priori knowledge on what to concentrate is available. Second, if we
have already identified suspicious code sections or suspicious variables via previ-
ous analysis (e.g., using Eraser+ or static analysis), we may inject noise into the
appropriate code sections or into sections related to the suspicious variables only.
This way we significantly reduce the overhead and may confirm that a suspicion
raised by an algorithm such as Eraser+ is not a false alarm.

3.3 Experiments

We evaluated the Eraser+ and AtomRace plug-ins3 on the four case studies
listed in Table 1, with the results listed in Table 2. Below, we first describe the
case studies and explain the races that we identified in them. Then, we provide
experimental evidence of how our algorithms found the problems. Finally, we
discuss the influence of noise injection in more detail.

Case Studies. The first case study is a program that simulates a simple bank
system in which the total bank balance is accessed by several threads with-
out a proper synchronisation. The bug is related to the global balance variable
BankTotal, and the problematic method is depicted in Figure 1. The Balance
variable is unique for each thread simulating an account, and hence, there is no
race possible if a correct thread id is used as a parameter of the method. The
BankTotal variable is shared among all threads, and there occurs a bug following
the load-and-store bug pattern [7] on it. To see this, note that the += operation
is broken into a sequence of three operations on the bytecode level. Thus, two
threads may read the same value from BankTotal, modify it locally, and store
the resulting value back to BankTotal while overwriting each other’s result. The
data race causes the final balance to possibly be wrong. The problematic method
is called many times during execution of the test case.

Our second case study is the web crawler, which is a part of an older version of
a major IBM production software. The crawler creates a set of threads waiting for
a connection. If a connection simulated by a testing environment is established,
3 http://www.fit.vutbr.cz/research/groups/verifit/tools/racedetect/

5

public void finish() {

if (connection != null) connection.setStopFlag(); // data race

if (workerThread != null) workerThread.interrupt();

}

Fig. 2. A problematic method in the IBM web crawler program

a worker thread serves it. The method which causes problems in this case is
shown in Figure 2. This method is called when the crawler is being shut down.
If some worker thread is just serving a connection (connection != null), it is
only notified not to serve any further connection. This notification is done within
the finish() method by a thread performing the shutdown process. A problem
occurs if the connection variable is set to null by a worker thread (a connection
was served) between the check for null and an invocation of the setStopFlag()
method. This represents an occurrence of the test-and-use bug pattern [7], and
such a situation causes an unhandled NullPointerException. Contrary to the
previous race example, this race shows up only very rarely.

The third case study is a development version of an open-source FTP server
produced by Apache and mentioned in [6]. It contains several types of data races.
The server works as follows. When a new client connects to the server, a new
thread for serving the connection is constructed and enters the serving loop in
the run method which is depicted in Figure 3. The close method, also depicted
in Figure 3, can be run by another thread concurrently with the run method.
When the close method is executed during processing of the do-while loop
in the run method, the m request, m writer, m reader, and m controlSocket
variables are set to null but still remain accessible from the run loop. This
situation leads to an unhandled NullPointerException within the loop. The
problem corresponds to the repeated test-and-use bug pattern mentioned in [7],
but, in this case, more than one variable is involved. In the program there are also
present several further occurrences of the load-and-store bug pattern. However,
none of them were considered as harmful because they only influence values of
internal statistics values.

Our fourth and final case study is TIDorbJ developed by Telefónica I+D.
It is a CORBA 2.6 compliant ORB (Object Request Broker), which is avail-
able as open source software running on the MORFEO Community Middleware
Platform [14]. In particular, we used the basic echo concurrent test shipped
with TIDOrbJ. The test starts a server process for handling incoming requests
and a client process that constructs several client threads, each sending sev-
eral requests to the server. The server constructs several threads that serve the
requests. If there are not enough server threads available, the client threads pro-
duce a timeout exception and retry later. Using this test, we identified some
harmless data races in TIDorbJ as well as some races that led to a code modifi-
cation upon our reporting them to Telefónica. The most harmful and interesting
races are described in the following paragraphs.

The first data race that we identified in TIDOrbJ is depicted in Figure 4. In
this case, the problematic variable forwardReference can be set to null by one

6

public void run() {

...

// initialise m_request, m_writer, m_reader, and m_controlSocket

...

do {

String commandLine = m_reader.readLine();

if (commandLine == null)

break;

...

m_request.parse(commandLine);

if (!hasPermission()) {

m_writer.send(530, "permission", null);

continue;

}

service(m_request, m_writer);

} while (!m_isConnectionClosed);

}

public void close(){

synchronized(this){

if (m_isConnectionClosed)

return;

m_isConnectionClosed = true;

}

...

m_request = null; m_controlSocket = null; // still accessible from

m_reader = null; m_writer = null; // the run() method above

}

Fig. 3. Problematic methods in the Apache FTP server

thread in the catch branch while another thread is about to invoke a method
on forwardReference. An unhandled NullPointerException is caused if such
a situation occurs. This race is very rarely manifest, because it is yielded by an
exception produced within the try–catch block.

Another data race in TIDOrbJ has then been identified in the IIOPProfile
class on the variable m listen point. The variable is first tested for being null
and then set to a new value within a method defined as synchronized. However,
since the test for null is out of the synchronized method (and not repeated
inside the method), an instance of the test-and-use bug pattern from [7] appears
here.

Finally, several other data races that we identified in TIDOrbJ were classified
as not harmful since they do not lead to an exception. An example of these data
races is an instance of the load-and-store bug pattern from the IIOPCommLayer
class. The data race is on the recover count variable, which decreases by one
each time a catch block in the sendRequest method executes due to an excep-
tion produced while sending a data element. When the recover count variable
reaches zero, the algorithm does not try to recover by resending the data. The

7

class IIOPCommunicationDelegate extends CommunicationDelegate{

...

public void invoke(RequestImpl request) {

try {

if (this.forwardReference == null) {

...

} else {

this.forwardReference.invoke(request);

}

} catch (org.omg.CORBA.COMM_FAILURE cf) {

this.forwardReference = null;

throw cf;

}

}

}

Fig. 4. A data race in TIDorb Java

data race can cause the recovery process to be executed more times than re-
quired by the value of the recover count variable (hence the system does not
fail, yet its performance may be lowered unnecessarily).

Table 1 gives some more numerical data about the case studies under con-
sideration. In particular, the numbers of classes and lines of code that the case
studies consist of are given in columns two and three of the table. Then, the table
also gives the number of monitored atomic sections for each case study. Finally,
the last two columns give the average number of threads that arose during the
tests as well as the average number of monitored instances of shared variables
for each case study.

Results of Experiments. Table 2 summarises results of the tests that we
performed with both Eraser+ and AtomRace. In particular, we performed five
testing runs with approximately ten different noise settings for each case study.
Of course, more runs with different input values and different places where some
noise is injected could discover more bugs, but we chose to stay with constant
input values and a relatively small number of executions. The results were ob-
tained under Sun’s Java version 1.5 on a machine with 2 AMD Opteron 2220
processors at 2.8 GHz.

We see that Eraser+ produces false alarms while AtomRace does not. On the
other hand, Eraser+ was able to detect data races even when the problem did
not occur in a given execution. Interestingly, in repeated test runs, AtomRace
managed to identify all bugs found by Eraser+, and more. The table also gives
the time needed for one test run of the applications without ConTest, with
ConTest but without the plug-ins, and with the Eraser+ and AtomRace plug-
ins. The column marked as Data Races presents the number of data races we
found in the test cases during all tests presented in this paper (some of them
were already known, some not).

8

Table 1. Case studies on which the Eraser+ and AtomRace plug-ins have been tested

inst. of

Example Classes kLOC atom. sect. threads shared vars.

Bank 3 0.1 2 9 28

Web crawler 19 1.2 8 33 320

FTP server 120 12 14 304 23 123

TIDOrbJ 1120 84 310 49 438 014

Table 2. Data races detected by the Eraser+ and AtomRace plug-ins (Note: Two of
the Eraser+ warnings on TIDOrbJ have not yet been classified as true or false errors.)

Time Time Data Eraser+ AtomRace
Example appl. only ConTest Races Warn. True False Time Warn. True False Time

(sec.) (sec.) Races Alarms (sec.) Races Alarms (sec.)
Bank 1.005 1.007 1 1 1 0 1.009 1 1 0 1.008
Web crawler 3.01 3.02 1 1 0 1 3.04 1 1 0 3.03
FTP server 11.04 11.42 15 12 12 0 13.58 15 15 0 12.67
TIDOrbJ 3.51 5.28 5 15 5 8 10.80 5 5 0 9.29

Our further experimental results given in Table 3 illustrate the impact of
noise injection, which enforces different and still legal thread interleavings, on
both of the considered algorithms. The table shows average numbers of true
data races reported during one execution of a test case (out of 100 executions)
on a machine with 2 AMD Opteron 2220 processors at 2.8 GHz. The columns
CT 100 and CT 200 show results for test cases when the ConTest noise injection
was activated, and noise was inserted into particular locations of the bytecode
with probability of 0.1 and 0.2, respectively. The columns ARV 100 and ARV 200
show results for the AtomRace variable-based noise injection, where noise was
inserted into particular (primitive) atomic section with probability of 0.1 and
0.2, respectively. As can be seen, the efficiency of Eraser+—which even detects
data races not manifest during the execution—increases only a little. In the
case of AtomRace, the efficiency increases to values obtained by Eraser+ and
beyond—still without any false alarms. Again, one can increase the amount of
injected noise but then the number of detected races increases only a little or
even decreases. A higher amount of injected noise can also cause a different code
coverage, e.g., when a server application is not able to serve all incoming requests,
the code responsible for solving such a situation is executed and examined by
the detection algorithm.

A Brief Summary. To sum up the abilities of data race and atomicity violation
detection plug-ins, we can say that the Eraser+ algorithm is able to detect data
races even in many executions where the problem does not occur, because, in
fact, it does not detect data races but violations in a locking policy. On the other
hand, it produces false alarms, and it is problematic to suppress these warnings
without avoiding false negatives.

9

Table 3. The influence of noise injection on Eraser+ and AtomRace

Data Eraser+ AtomRace

races no noise CT 100 CT 200 no noise CT 100 CT 200 ARV 100 ARV 200

Bank 1 1 1 1 0.39 0.99 1 1 1

Web Crawler 1 0 0 0 0 0.01 0.03 0.04 0.04

FTP server 15 5.70 5.88 6.05 3.40 5.79 5.27 5.94 6.00

TIDOrbJ 5 1.80 1.96 2.23 0.37 2.38 2.39 3.63 3.82

On the other hand, AtomRace does not suffer from false alarms but only very
rarely reports data races that do not occur during the execution (e.g., when the
thread is interleaved between beforeAccess(v) and the immediate access to v).
Hence, to give useful results, AtomRace needs to see more different interleavings
than Eraser+. However, as our experiments indicate, this can be achieved using
suitable noise injection heuristics. In the end, judging from our experiments, in
practice, AtomRace seems to be able to detect all bugs detected by Eraser+, and
sometimes even more. Moreover, AtomRace is able to detect atomicity violations
that could not be detected by Eraser+.

4 Plug-in for Bug Healing at Runtime

When data races or atomicity violations are detected during software develop-
ment, they can be corrected manually by a programmer. Some bugs, however,
may (and often really do) remain in an application even when it is deployed.
This motivates another ConTest plug-in that we developed and that is able to
heal such bugs automatically at runtime [7]. This healing plug-in cannot remove
bugs from the code but it can prevent the code from failing on them.

Note that the healing techniques discussed in this section focus on healing
bugs that may be classified as occurrences of the test-and-use and load-and-
store bug patterns described as typical patterns of errors in atomicity in [7].
Other bugs than those corresponding to instances of these patterns cannot be
healed automatically by our plug-in. An example of such a bug is the problem
detected in the FTP server test case depicted in Figure 3. Fixing (or healing)
such problems is not trivial, and to make it acceptable, a significant amount of
information regarding the designer’s intent may be needed as was discussed, e.g.,
in [6].

Our first method of self-healing is based on affecting the scheduler. The sched-
uler is affected during execution of the beforeAccess(v, loc) listener for a prob-
lematic variable v, where loc is the beginning of an atomic section defined over
v. The scheduling may, for example, be affected by injecting a yield() call (al-
ternatively, wait() or sleep() with a minimum or zero waiting/sleeping time)
that causes the running thread to lose its time slice; but the next time it runs,
it has an entire time slice to run through the critical code. Another similar ap-
proach is to increase the priority of the critical thread. Yet another approach is
to inject yield() or wait() to a thread that is trying to enter a critical section

10

in which there is already another process. Such healing approaches, of course,
do not guarantee that a bug is always healed, but at least they significantly
decrease the probability of a manifestation of the bug. On the other hand, such
a healing is safe (i.e., it cannot introduce a new bug) as it does not change the
semantics of the application.

Our second self-healing method injects additional healing locks to the applica-
tion. A healing lock for a variable v is acquired at beforeAccess(v, loc) whenever
loc is a starting point of any atomic section related to v and then released at
afterAccess(v, loc) or methodExit(v, loc) at loc corresponding to the end point of
the entered atomic section. This approach guarantees that the detected problem
cannot manifest anymore. However, introducing a new lock can lead to a dead-
lock, which can be even more dangerous for the application than the original
problem. Moreover, frequent locking can cause a significant performance drop
in some cases. However, one can consider either using some light-weight static
analysis showing that adding locks is safe (as there is obviously no danger of
nested locking, which is often the case) and/or consider combining the healing
with a deadlock avoidance method as suggested in [11].

4.1 Experiments

We evaluated the healing plug-in on the same case studies as the detection plug-
ins. The healing efficiency was tested using assertions (oracles) introduced into
the original code of the test cases. These assertions allow one to detect whether
the known bug manifested, e.g., if a NullPointerException was thrown within
the problematic block of code. Manifestation of the bugs depends on timing and
the used hardware architecture. Therefore, all tests have been done on several
architectures that vary in the number of available processor cores. We used a
computer with (1) one core based on Intel Pentium 4 2,8 GHz (with hyper-
threading), (2) two cores based on Intel Core 2 Duo E8400, (3) four cores based
on two AMD Opteron 2220, and (4) eight cores based on two Intel Xeon 5355.
Our experiences show that data races described in the previous section can be
divided into two groups of problems from the healing point of view.

Frequently Manifesting Bugs. The first group includes data races and atom-
icity violations that occur often during an execution. An example of such a data
race is the bank account test case shown in Figure 1. We found a similar situation
also in the FTP server (in a module responsible for gathering server statistics)
and TIDOrbJ (in the exception handling block shown in Figure 4).

In the Bank test case, the problematic piece of code is called during each
operation with accounts. The healing efficiency for this test case on computers
with a different number of cores is shown in Table 4. The results were obtained
for eight account threads doing ten account operations each, without any com-
putation in between these operations. The first column of the table shows the
number of cores. The other columns of the table describe the ratio of runs in
which a problem gets manifested (i.e., Bank Total ends up with a wrong value)

11

Table 4. Efficiency of healing techniques in the Bank test case

Proc Orig Yield Prio YiPrio OTYield OTWait NewMut

1 0.908 0.734 0.821 0.735 0.711 0.598 0

2 0.297 0.094 0.705 0.444 0.068 0.041 0

4 0.545 0.673 0.648 0.658 0.415 0.242 0

8 0.710 0.681 0.783 0.755 0.651 0.573 0

out of 6000 executions of the test for a particular setting. The second column
of the table shows how often the bug manifests without any healing. The Yield
column refers to calling Thread.yield() when entering a problematic atomic
section, the Prio column refers to increasing the priority of the thread enter-
ing such a section, and the YiPrio column is a combination of both of these
techniques. The OTYiyeld (OTWait) columns refer to calling Thread.yield()
(or Thread.wait(0, 10), respectively) if a thread is inside a critical section
when another thread wants to enter it. The NewMut column shows the results
of adding healing locks.

As can be seen from the table, the probability of a race manifestation highly
depends on the used configuration. In most cases, healing by affecting the sched-
uler cannot be effectively used for suppressing such races. However, results given
in the second row show that some methods (e.g., Yield, OTYiled, and OTWait)
on some configurations can help. Some other methods (e.g., Prio) can, on the
other hand, make the problem even worse. In general, it can be said that meth-
ods based on influencing the scheduler are not suitable for healing frequently
occurring bugs. On the other hand, such bugs should be easy to find during de-
velopment, e.g., by testing. The last column of Table 4 shows that only additional
synchronisation can heal the problem in a satisfactory way.

Rarely Manifesting Bugs. The second group of data races and atomicity
violations are those that occur only very rarely. Such bugs depend on a very
special timing among the involved threads. An example of this kind of scenario is
the web crawler test case shown in Figure 2. Table 5 shows the results of applying
our healing plug-in in this test case when only 30 worker threads were used, and
so there were only 30 possible manifestations of the bug in one execution. In this
case, healing techniques that influence the scheduler can be successfully used to
avoid the bug, as shown in Table 5.

Table 5 shows the percentage of runs in which a problem manifested (meaning
that a NullPointerException occurred in the problematic piece of code) out
of 6000 executions of the test for a particular setting. It can be seen that the
techniques that influence threads that are about to access a variable when some
other thread is inside an atomic section defined for this variable (OTYiedl and
OTWait) provide a better healing efficiency than techniques influencing threads
that enter the problematic section first. Of course, additional synchronisation
again suppresses the bug completely.

12

Table 5. Efficiency of healing the web crawler

Proc Orig Yield Prio YiPrio OTYield OTWait NewMut

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

4 0.0195 0.0018 0.0018 0.0023 0.0003 0 0

8 0.0194 0.0022 0.0035 0.0035 0.0002 0 0

5 Related Work

For monitoring and influencing a concurrent Java program, one could consider
using AspectJ as an alternative to ConTest. However, as discussed in [12], Con-
Test differs from aspect-oriented programming in making a clear separation be-
tween a target program and tools, so that different tools can all target the same
target program without interfering with one another. Moreover, ConTest works
on the bytecode level and comes with various ready-to-use methods for noise
injection, test coverage measurement, etc. Another alternative that one could
think of is the JVM Tool Interface (JVMTI), which is a popular C program-
ming interface provided by JVM implementations in order to write monitoring
and development tools that inspect and control the execution of the applications
running in the JVM. Despite providing a rich interface, JVMTI lacks some of the
interface methods that are important for developing concurrency bugs detection
tools. For example, it does not provide a method for the event where a thread
takes a lock (it supports only the event of a contended lock when the thread has
to wait since another thread is holding the lock).

On top of ConTest, various other algorithms for dynamic detection of con-
currency-related bugs than Eraser+ or AtomRace could be implemented, such as
[2, 15, 5]. Such dynamic analysis algorithms differ in their detection power (abil-
ity to warn about unseen bugs), number of false alarms, and their overhead—
a deeper discussion of these algorithms is beyond the scope of this tool paper.
We have concentrated on Eraser+ and AtomRace because of their simplicity and
relatively low overhead (and in the case of AtomRace, absence of false alarms).
Experiments with other dynamic analyses implemented in the same framework
are, however, an interesting issue for future work.

Most existing works concentrate on detecting concurrency-relate bugs. There
are far fewer works on their self-healing. The approach closest to our healing
plug-in is probably that of ToleRace [10] healing asymmetric races (i.e., read-
write races, not write-write races) by using local copies of shared variables (which
cannot be variables referring to external resources, such as files, whose local copy
cannot be created).

6 Conclusions

We presented ConTest, a tool and infrastructure for testing concurrent programs,
and its plug-ins for detecting and healing data races and atomicity violations.

13

In the future, we plan to improve the efficiency of the methods (to decrease
the overhead and increase the ratio of bug finding), improve the static analyses
we use (e.g., for detecting occurrences of bug patterns), and consider additional
types of concurrency-related bugs.

Acknowledgement. This work is partially supported by the European Commu-
nity under the Information Society Technologies (IST) programme of the 6th
FP for RTD: project SHADOWS contract IST-035157. The authors are solely
responsible for the content of this paper. It does not represent the opinion of
the European Community, and the European Community is not responsible for
any use that might be made of data appearing therein. This work is partially
supported by the Czech Ministry of Education, Youth, and Sport under the
project Security-Oriented Research in Information Technology, contract CEZ
MSM 0021630528.

References

1. N. Ayewah, W. Pugh, D. Morgenthaler, J. Penix, and Y. Zhou. Using FindBugs
on Production Software. In Proc. of OOPSLA’07. ACM, 2007.

2. R. O’Callahan and J.-D. Choi. Hybrid Dynamic Data Race Detection. In Proc.of
PPoPP’03. ACM, 2003.

3. T. Copeland. PMD Applied. Centennial Books, 2005.
4. O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded Java Program

Test Generation. IBM Systems Journal, 41(1):111–125, 2002.
5. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and Transaction-aware

Java Runtime. In Proc. of PLDI’07. ACM, 2007.
6. M.E. Keremoglu, S. Tasiran, and T. Elmas. A Classification of Concurrency Bugs

in Java Benchmarks by Developer Intent. In Proc. of PADTAD’06. ACM, 2006.
7. B. Křena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Healing Data Races On-The-

Fly. In Proc. of PADTAD’07. ACM, 2007.
8. B. Křena, Z. Letko, and T. Vojnar. AtomRace: Data Race and Atomicity Violation

Detector and Healer. In Proc. of PADTAD’08. ACM, 2008.
9. S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Violations via

Access Interleaving Invariants. In Proc. of ASPLOS-XII. ACM, 2006.
10. R. Nagpaly, K. Pattabiramanz, D. Kirovski, and B. Zorn. ToleRace: Tolerating

and Detecting Races. In Proc. of STMCS’07, 2007.
11. Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: from Exhibiting to Healing.

In Proc. of RV’08, volume 5289 of LNCS. Springer, 2008.
12. Y. Nir-Buchbinder and S. Ur. ConTest Listeners: A Concurrency-Oriented Infras-

tructure for Java Test and Heal Tools. In Proc. of SOQUA’07. ACM, 2007.
13. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dy-

namic Data Race Detector for Multi-threaded Programs. In Proc. of SOSP’97.
ACM, 1997.

14. J. Soriano, M. Jimenez, J. Cantera, and J. Hierro. Delivering Mobile Enterprise
Services on Morfeo’s MC Open Source Platform. In Proc. of MDM’06. IEEE, 2006.

15. Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient Detection of Data Race
Conditions via Adaptive Tracking. SIGOPS Oper. Syst. Rev., 39(5):221–234, 2005.

14

