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Abstract. Scheduling of collective communications (CC) in interconnection 
networks possibly containing faulty links has been done with the use of the 
evolutionary techniques. Inter-node communication patterns scheduled in the 
minimum number of time slots have been obtained. The results show that 
evolutionary techniques often lead to ultimate scheduling of CC that reaches 
theoretical bounds on the number of steps. Analysis of fault tolerance by the 
same techniques revealed graceful CC performance degradation for a single 
link or node fault. Once the faulty region is located, CC can be re-scheduled 
during a recovery period.  

Keywords: evolutionary design, fault tolerance, collective communications, 
wormhole switching. 

1   Introduction 

High performance computing platforms have been recently dominated by clusters of 
multi-core processor nodes [1] or for embedded applications by many cores 
interconnected by NoC (network on chip). The basic requirement for building the 
HPC systems turned out to be the low power consumption, in order that system parts 
can be close together and communication time thus minimized. For the same reason 
the CPU cores should be simple and processing nodes should be interconnected 
directly, without intermediate switches and routers. A class of interconnection 
networks of interest in this paper covers therefore direct networks, which for 
performance-driven environments converge on the use of pipelined cut-through (CT) 
message transmission, whose special case is wormhole routing (WH) [11] and source-
based routing algorithms.  

Since HPC systems include many processors, interconnection links and other units, 
their failure rate is much higher than the failure rate of the single-processor 
computers. Many fault-tolerant switching methods have been proposed to solve this 
problem. Unfortunately, the existing methods have many drawbacks such as low 
communication throughput, low fault-tolerant capability, and large hardware 
overhead. 

In this paper, we consider faults to be permanent (i.e. damaged microcontrollers or 
communication links), as opposed to, say, transient, intermittent or even malicious 



faults. As such, we are dealing with issues of fault tolerance. We wish to assess 
system behavior in the presence of a set of faults which is fixed for the duration of 
any routing attempt (defect in manufacture).   

Generally, there are two kinds of faults in HPC systems, faulty links and faulty 
nodes. The first one is a damaged link interconnecting two parts of a HPC system. In 
this case, when the faulty link is located, it must be excluded from all routing 
algorithms (CC schedules). After new CCs are re-scheduled, the system is able to 
work properly only with little loss of performance. A node fault can be thought of as 
implying that all of that node’s communication links are faulty. 

In this paper, we want to analyze the complexity of collective communications in 
faulty networks. We employ an evolutionary algorithm, which is able to re-scheduled 
CCs after a single or multiple link or node fault with minimal possible loss of 
communication throughput. Of course, the network has to continue connected, i.e. at 
least one path for each source-destination pairs has to remain. The results of 
evolutionary techniques applied already to CC scheduling problem of medium size 
(tens of nodes) [2] are comparable well to optimum solutions obtained by 
mathematical means. However, networks in a faulty state are neither symmetrical nor 
regular, and analytic methods for scheduling do not exist. The results can be 
compared to theoretical lower bounds only.  

The paper is structured as follows. Section 2 specifies the scheduling problem for 
CC on faulty networks while Section 3 presents an improved evolutionary algorithm 
for its solution. The results of CC scheduling in various faulty network topologies are 
summarized and discussed in Section 5. It also deals with fault tolerance of 
interconnection networks and possible recovery from a faulty state. The obtained 
results of evolutionary approach are discussed in Conclusion and possible future 
improvements are suggested. 

2   Scheduling of Collective Communication in Faulty Networks 

Pair-wise (point-to-point) as well as collective (group) communications involving 
all processors are frequently used in parallel processing and their timing complexity 
has a dramatic impact on performance. Since processors are connected only sparsely, 
the message can reach a destination processor directly, if source and destination 
processors are neighbors, or else through some intermediate nodes. The 
communication time from issuing the send request by one CPU until receiving data by 
another CPU represents an overhead of parallel processing which has to be 
minimized. The pipelined message transmission is considered only little sensitive to 
the source-destination distance; however, accumulating delays at traversing several 
nodes on the way should be minimized as well.  

In this paper we are going to analyze only the frequently used collective 
communications involving all processors: one-to-all broadcast (OAB), all-to-all 
broadcast (AAB), one-to-all scatter (OAS, a private message to each partner), all-to-
all scatter (AAS). Some other CCs, like all-to-one gather (AOG), have the same 
complexity as the basic four types. 



Each CC can be seen as a set of point-to-point communications. The CC 
scheduling problem can be simply described as partitioning this set into as few 
subsets as possible that follow one another in sequence of synchronized steps and all 
communications in one subset proceed in parallel. The main goal is to avoid any 
conflicts in shared resources – links (channels). Several messages between source-
destination pairs, not necessarily the neighbors, can proceed concurrently and can be 
combined into a single subset if their paths are link-disjoint. If the source and 
destination nodes are not adjacent, the messages go via some intermediate nodes, but 
processors in these nodes are not aware of it; the messages are routed automatically 
by the routers attached to processors (see Fig. 1). 
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Fig. 1. One-to-all broadcast communication performed in three communication steps on 4x4 
mesh. The initiator is node no. 00. Possible distributors of the broadcasted message in each step 
are marked by light yellow color. Newly informed nodes during the step are marked by light 
green color. 

The number k of bi-directional channels between the CPU and a router (ports), that 
can be engaged in communication simultaneously, has a decisive impact on the 
number of communication steps; 1-port (k=1) or all-port (k=d) models are most 



common, see Fig. 2. For the sake of performance we will consider only the all-port 
model (k=d). 
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Fig. 2. Port models for 3-regular networks a) one-port router b) all-port router 

Regardless the graph topology, there are known theoretical lower bounds on the 
number of communication steps. The broadcast communication (OAB) in WH 
network with P nodes and node degree d cannot be done in less than s steps, where 
s = logd+1P is given by the number of nodes informed in each step, that is initially 1, 
1+1×d after the first step, (d+1) + (d+1) × d = (d+1)2 after the second step, etc.,…, 
and (d+1)s ≥ P nodes after step s. 

In case of AAB communication, since each node has to accept P−1 distinct 
messages, the lower bound is (P−1)/d. A similar bound is applied to OAS 
communication, because each node can inject into the network not more than d 
messages in one step. P−1 pair-wise communications, d of them per step, must be 
packed into the lowest number of steps in such a way that paths traversed in the 
optimum broadcast tree are edge-disjoint in each step. 

For AAS communication pattern each of P processor sends an individual message 
to each of P−1 partners. A lower bound for AAS can be obtained considering that one 
half of messages from each processor cross the bisection and the other half do not. 
There will be altogether 2(P/2)(P/2) of such messages in both ways and up to BC 
messages in one step, where BC is the network bisection width [3]. In case of digraphs 
(graphs), BC is taken as the (double) the number of (un)directed edges crossed by the 
bisection. However, some ∆ messages originating and terminating in either half of a 
network cross the bisection as well. This gives the bound (P2/2 + 2∆)/BC 
communication steps, since ∆ messages cross the bisection twice. Another bound that 
concerns AAS used to be applied to SF routing only. If Σ denotes the sum of all 
shortest paths in a graph (from any source to any destination node) and if we can 
utilize only Pd channels in one step to avoid conflicts, then we cannot schedule AAS 
in less than Σ/Pd steps. We have found that for the considered class of networks this 
latter bound is sharper, even for WH routing. 

Table 1 summarizes the lower bounds for general graphs. Of course, 
communication bounds for AAB and AAS cannot be ever shorter than those ones for 
OAB and OAS respectively, if it applies. 

 



Table 1. Lower bounds on complexity of CC in d-regular networks with P nodes  

CC CT (WH) 

OAB log d+1 P  = (log P)/log (d+1) 

AAB (P – 1) / d  

OAS (P – 1) / d 

AAS max[ (P2 /2+2∆)/BC), Σ/(Pd) ] 

 
There are two major methods of increasing reliability with respect to faults in 

a system; namely, fault prevention and fault tolerance. Preventing all faults from 
a system is in most cases impossible or may cause some problems such as the delay or 
difficulty in maintenance. So we rely on fault tolerant algorithms to handle faults 
according to the following scenario [4]: 

• In many fault tolerance approaches, the detection of an error is the first 
step of the recovery. 

• When an error is detected, its origin and the possibility of containment of 
the proper maintenance activities are assessed. 

• After that, the error recovery procedure comes. Its goal is to bring the 
system to an error-free consistent state, which means avoidance of a 
message loss and guarantee of conflict-free condition. 

• After taking maintenance steps, the system will resume operation.  
Our technique supposes that faulty links or nodes have been already detected, and 

the faulty region have been bordered. Conceptually, the faulty region may be 
considered as an island of faults in a sea of communication channels and nodes. In the 
same manner a ship is navigated around an island, it should be feasible to route a 
message around faulty region, see Fig. 3. It can be done using adaptive routing 
algorithms that re-route paths from source-destination pairs. However, these 
algorithms achieve only suboptimal results (i.e. possible faster CC schedules may 
exist, but they are not discovered, whereas only deterministic principles are used for 
rescheduling). In addition, many of fault-tolerant adaptive routing algorithms are not 
deadlock free, which introduce another delays and congestions. To relax all these 
restriction an evolutionary based technique was developed and used for finding CCs 
schedules on faulty networks.  
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Fig. 3. Isolation of the faulty node 22 
 



3   Evolutionary Scheduling of Collective Communications 

We employ an Evolutionary Algorithm (EA) which is a powerful, domain-
independent search technique inspired by Darwinian theory, to perform our search. 
Although a new methodology of designing near-optimal CC schedules is independent 
of the particular evolutionary algorithm, we restricted ourselves only to a simple EDA 
evolutionary algorithm without gene dependencies (UMDA) in this work. 

Univariate Marginal Distribution Algorithm (UMDA) [5] is a very simple EDA [6] 
(Estimation of Distribution Algorithm) which does not reflect any interaction between 
genes (variables/solution parameters). The main advantage of this algorithm is better 
mixing of genetic material than is possible in standard GA [7], very simple 
implementation and much faster execution than a more complex EDA like BOA 
algorithm. Of course, any other EA can be used. Basic comparison of a success rate 
and time complexity of other types of EA applied to CC scheduling problem can be 
found in [8], [9]. 

This section describes, in more details, the elements of our evolutionary approach. 
Section 3.1 shows the global data structure and a preprocessing phase. Section 3.2 
describes how the dataset is encoded, Section 3.3 presents the evaluation function 
used in EA, and Section 3.4 briefly describes acceleration and restoration heuristics 
used to increase a success rate and reduce execution time required to reach a good 
result. Parameters of used EA (UMDA) are outlined in Section 3.5. 

3.1   Preprocessing Phase 

An input data structure stores a topology description, a definition of CC, and a set of 
senders and receivers. The topology description is saved in a form of a neighbors list 
for each node, where the nodes are considered to be neighbors only if they are 
connected by a simple direct link. If a failure occurs, the topology description is 
changed to reflect a new topology of the interconnection network that arises by 
excluding of a faulty region.  

After an input file is loaded, the data have to be preprocessed. The preprocessor 
takes the topology and finds all paths (shortest ones in the case of minimal routing) 
between all source-destination node pairs and stores them into a special data structure. 
This task is performed by a modified well known Dijkstra’s algorithm. 

3.2   Encoding 

As broadcast and scatter CCs are completely different communication services, 
candidate solutions are encoded in separate ways.  

A direct encoding has been designed for OAS chromosome; i.e. a chromosome 
contains an exact description of a schedule, see Fig. 4. The chromosome contains P 
genes; each one represents a particular point-to-point communication between the 
initiator and a destination node. A gene consists of two items: a utilized source-
destination path (the first component) and the used time slot (the second component). 



An AAS chromosome is created by extending the vector to a matrix, each row of 
which corresponds to one of OAS communications. 

 

 

Fig. 4. The structure of OAS chromosome (0 is the initiator of OAS) 

An indirect encoding has been designed for OAB; a chromosome does not include 
a broadcast tree, but only instructions how to create it. Each chromosome consists of 
P genes, one for each destination node, see Fig. 5. Individual genes are composed of 
three items: a source node for this pint-to-point communication, the index of a utilized 
path, and a step number. During each communication step, some new nodes are 
informed. These nodes can become distributors for next steps, and thus help the 
initiator of OAB to broadcast the message (all nodes receive the same message). That 
is why the additional component representing the message source must be 
incorporated into chromosome in this case.   

The main disadvantage of this encoding is possible formation of some inadmissible 
solutions during the process of genetic manipulation. Simply said, a solution is 
inadmissible if it cannot lead to a correct broadcast tree (e. g. the situation when in a 
certain step a node should receive a message from a node that has not received it yet). 
That is why admissibility has to be verified for each chromosome before evaluating 
fitness and if it is necessary, the chromosome is restored. The AAB chromosome is 
then a collection of P OAB chromosomes, a kind of a matrix chromosome. 

 

 
 
Fig. 5. The structure of OAB chromosome (0 is the initiator of OAB) 
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3.3   The Conflict Count Fitness Function 

The main idea of fitness function is based on testing a conflict-free condition. We say 
two communications are in conflict if and only if they share the same channel in the 
same communication step (see Fig. 6). The fitness function is based on counting 
conflicts between all point-to-point communications realized in the same steps. The 
valid communication schedule for a given number of communication steps must be 
conflict-free. Valid schedules are either optimal (the number of steps equals the lower 
bound) or suboptimal. Evolution of a valid schedule for the given number of steps is 
finished up as soon as fitness (number of conflicts) drops to zero. If it does not do so 
in a reasonable time, the prescribed number of steps must be increased. 
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Fig. 6. Two point-to-point communications  

3.4   Acceleration and Restoration Heuristic 

A new heuristic has been developed for improving OAS/AAS optimization speed 
taking into account a search space restriction due to a limited message injection 
capability of network nodes. Because no node can send more than k messages in one 
communication step (k-port model), an acceleration heuristic checks this condition in 
the whole chromosome and redesigns ports’ utilization in all communication steps 
before the fitness function is evaluated. 

The second OAS/AAS heuristic replaces the mutation operator in an employed EA. 
It randomly swaps time slots of two point-to-point communications. These simple 
heuristics dramatically decrease the initial conflict count and lead to the better 
convergence of EA. 

New heuristics for OAB/AAB chromosome restoration have been also developed 
and employed. The restoration (a repair of the broadcast tree) proceeds in subsequent 
communication steps. A check is made for every node whether the node receives the 
message really from the node already informed. If not so, the source node of this 
point-to-point communication is randomly replaced by a node that has already 
received the message. A change of the source node has naturally an impact on utilized 
channels. Hence the original path is replaced by newly chosen one from a list of 
exploitable paths between new source-destination pair. 

To accelerate the convergence of the EA, OAB/AAB specific heuristic has been 
developed. It injects good building blocks into the initial population. For all point-to-



point communications of OAB, the time slot is set initially to the same value (step 
no. 0). By selecting correct time slots, the restoration heuristic produces corrected 
broadcast trees that violate the conflict-free condition in much fewer cases. 

3.4   Parameters of EA 

The simple UMDA evolutionary algorithm has been used for the search for near 
optimal communication schedules. The value of the population size was set to 60 
individuals because higher values did not improve the quality of founded schedules 
and did not justify an increased computation time. The binary tournament selected the 
better half of the current population to form the parent subpopulation. The univariate 
marginal probabilistic model was created according to the parent subpopulation in 
each generation. New chromosomes were generated by the sampling of the estimated 
probabilistic model. Each chromosome was mutated by a simple mutation operator 
with probability of 90%. This operator is responsible for testing and changing 
possible source-destination paths for particular point-to-point communications. The 
mutation rate is very high due to huge number of source-destination pairs (thousands) 
whose amount growth exponentially with network diameter D. Finally, the newly 
generated solutions replace the worse half of the current population. 

4   Results of Evolutionary Design  

The evolutionary algorithm described previously has been applied to two networks 
that either already found the commercial application such as scalable Kautz networks, 
[10] and well known 2D-mesh, Fig 7. 
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Fig. 7. Investigated topologies: Kautz12 network (left) and 4x4 2D-mesh (right)  

 
First, we verified the ability of EA to discover optimal CC schedules for fail-safe 

interconnection networks, see Table 2. Obtained CC schedules for Kautz network met 
the theoretical lower bounds for all class of collective communications and thus 
cannot be improved anymore. Since 2D mesh is an irregular topology, 3 different 
situations depending on a source node position (corner, boundary, and center) were 
investigated. In all these cases, the theoretical lower bounds were reached. 



Table 2. Achieved time complexity of CC schedules 

all-port model OAB AAB OAS AAS 

Kautz12 2 4 4 7 
4x4 2D Mesh 3, 2, 2 8 8, 6, 4 16 

 
As the Kautz network is known for its fault tolerance, we have tested performance 

degradation under a single link fault. A fault diameter of the Kautz12 network is D+2, 
meaning that among multiple links between any two nodes the longest path is 4. The 
network performance under a single link fault is given in Table 3 (with node 01 as the 
source node for OAB and OAS), but the network could operate even under a double 
link fault. In any case, when the link fault is detected, the new schedule could be 
computed in 20 seconds on a single processor and then the cluster could continue with 
a lower performance. 

Table 3. Performance of Kautz12 network with a single faulty link (in # steps). A reduced 
performance is in bold. 

Link  OAB AAB OAS AAS 
No fault 2 4 4 7 
01-10 3 6 6 9 
01-12 3 6 6 9 
01-13 3 6 6 9 
02-20 2 6 4 9 
02-21 2 6 4 9 
02-23 2 6 4 9 
03-30 2 6 4 9 
03-31 2 6 4 9 
03-32 2 6 4 9 
10-01 2 6 4 9 
10-02 2 6 5 9 
10-03 2 6 5 9 
12-20 2 6 4 9 
All other 2 6 4 9 

 
The 2D meshes are very suitable interconnection network for System on Chips 

(SoC) because they need only very simple link arrangement on a 2D silicon chip. For 
the 4x4 2D mesh, performance degradation under a single link fault and a single node 
fault has been tested. Table 4 shows the performance degradation under a single link 
failure. The source node of OAB and OAS was appointed the node 00. Any link 
failure in 4x4 2D mesh increases the time overhead of AAS about 37%. The OAS and 
AAB communication will be delayed twice but only in two cases and OAB 
communication will be influenced noways. In all link failures, the proposed technique 
discovers the optimal communication schedule for a given CC. 

 



Table 4. Performance of 4x4 2D Mesh network with a single faulty link (in # steps). A reduced 
performance is in bold. 

Link  OAB AAB OAS AAS 

No fault 3 8 8 16 
00-01 3 15 15 22 
00-10 3 15 15 22 

All other 3 8 8 22 
 
Finally, we have tested the performance degradation under a single node failure 

(Table 5). A node fault can be thought of as implying that all of that node’s 
communication links are faulty. From this table, it can be observed the same 
performance degradation under a single node fault as under a single link fault. 

Table 5. Performance of 4x4 2D Mesh network with a single faulty node (in # steps). A 
reduced performance is in bold. 

Node OAB AAB OAS AAS 

No fault 3 8 8 16 
01 3 15 15 22 
10 3 15 15 22 

All other 3 15 8 22 

5   Conclusions  

The evolutionary technique has been applied successfully to Kautz and 2D mesh 
interconnection topologies and quite general collective communications. Scheduling 
CC in the minimum number of steps without creating a conflict (a common channel in 
two transfers in the same step) led to optimal solutions or nearly optimal solutions.  

The proposed technique can be with advantage used for failure recovery. CC 
schedules designed by the presented evolutionary technique are targeted for micro-
programmed DMA engines residing in nodes of the network. They can be easily re-
programmed in case of a link failure so that CC can sustain the highest possible 
performance even under limited connectivity. 

Some of the found CC schedules attain the theoretical lower bound on the number 
of communication steps and thus there is no way to improve them further. Future 
research may reveal limits on a size of networks that can be handled by parallel 
implementation of evolutionary techniques.  

Another direction for future research could explore a combining model for CC or 
fault tolerance of fat interconnection networks. 
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