A Component-based Approach to Verification of
Embedded Control Systems using TLA

Ondrej Rysavy and Jaroslav Rab
Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic
Email: {rysavy,rab}@fit.vutbr.cz

Abstract—The method for writing TLA Tspecifications that II. COMPONENTMODEL

obey formal model called Masaccio is presented in this paper Thi fi . brief . faf | del f
The specifications consist of components, which are built ém IS Section gives a briet overview ol a tormal model tor

atomic components by parallel and serial compositions. Usg €mbedded components as defined by Henzinger in [4]. In this
a simple example, it is illustrated how to write specificatios of ~paper, only discrete components are considered, althdwegh t
atomic components and components that are products of parell proposed approach relies on the language that can be applied
or serial compositions. The specifications have standard fm to hybrid systems [5] as well
of TLA Tspecifications hence they are amenable to automatic A fund tal entity of th' del i t Th
verification using the TLA Tmodel-checker. undamental entity of the mo. elisa pomponen . e
component structures the system into architectural uhas t
interact through defined interfaces. It is possible to $tmec
. INTRODUCTION components into a hierarchy that can be arbitrary nested to
. simplify the system design. The compone#t consists of
Software ru_nnln% '?1 emﬁed_deld sysltdems neﬁessr?ry aCqUliEfinition of interface and internal behavior. An interface
sotme ?ropemes (?[tfe P %S'Cat_ WO: : Usuta Y t este PrOfafines disjoint sets of input variablégi", output variables,
erties form a part of non-functional aspects in system rer,.. ; ; intf ;
quirements [1]. To model embedded software, these asp v » and a set of pubhc Iocgt_lonsLA - AN ex_ecut|on O-f
b idered b ificat h d herwi component consists of a finite sequence of jumps. A jump
must be considered by a specification method otherwise the, pair (p, q) € [Vén,out] y [V;‘n,out]l_ An observationp is

_model_of a sy_stem easily d_iverges from the real_ity and peeon@a”ed the source of jumfp, ¢) and an observation is called
inapplicable in further refinement and analysis. Consingct the sink of jump(p, ¢). A jump o is successive to jump if

large systems relies on effective and systematic appdicadf Lg_le source of jump is equal to the sink of jump. Formally
modular approach. A large class of entities playing the ro execution ofd is a pair or a triple b Wheré
of building blocks that can be composed have been defined pair (a, w) ple (a, w,)

tnotably. ol or obiectoriented . a,b € L't are interface locations and = wy ... w, is
most notably, classes for object-oriented program cootitno, a.nonempty, finite sequence of jumps 4fsuch that every
components in hardware design, procedures and module

dural) d act biect d act u'ﬁ]1p w;, for 1 < i < n is successive to the immediately
procedural programming, and active objects and actors |receding stepw;—1. We write E£4 for the set of executions
reactive programming [2].

Thi deal th thod based ; i of the component.
S_paper deals with a method based on a ormalsm zp atomic componeris the simplest form of components

called Temporal Logic of Acti_ons [3] that enables to desmribr und in Masaccio. The behavior of the component is solely
embedded control software in a modular manner and ap%?ﬁecified by its jump action. The interface of atomic com-

an automatized model-checker tool to verify required pro onent exploits input variables read by the component and

lgrue_s OJ a spe(tzlﬁﬁauonf. ;]rhe mawlrfggtnb%;_tmrtl_ of th'sh pap utput variables controlled by the component. The compbnen
1es In demonstration ot how the pecinications wnose A(J) has two interface locationsfrom and to; that is,

interpretation is that of a formal model called Masacciajdh 7intf

b itten i ‘ i The f | model it thA() = {from,to}. The entry condition offrom is the
€ writien In a systematic way. The formal mode’ permits rojection of the jump predicate to the unprimed I/O varégbl
construct a hierarchical definition of components that anitt b

. .) The entry condition ofo is unsatisfiable.
from atomic components using operations of parallel COMpPO-1v0 componentsA and B can be combined to form a
sition, serial composition, renaming of variables, renagrof

: - X - _ parallel compositionC = A ® B if the output variables
locations, hiding of variables, and hiding of locations. the of A and B are disjoint and for each interface locatian

refs.ul.tt|.ng|g TLA(\j.sptemflc?jtlonsthatviz the tfprm otfha Conjur:'cmz;},ommon to bothA and B, the entry conditions ot are

° 'P' Iablprt? Itcha e_l_f; ntla.x.t-s ag ?Cr'loni’ €y are lga Iequivalent inA and in B. The input variables of component

explorable by the explicit model-checker. Vi = (VA \ Vg“) U (VA \ V). The output variables
out __ out out i

The research has been supported by the Czech Ministry ofdidndn the of the component aré/C - VA U VB - The interface

frame of Research Intentions MSM 0021630528, and by the tGkgency)

of the Czech Republic through the grants GACR 201/07/P54# GACR 1[Vj‘”’”"t] stands for a set of all possible assigments of values intatinp

102/08/1429. and output variables of a component.

brake:BOOLEAN
I

® Drive i
CheckBrake
to
ﬁmm J3: brak ‘ slowdown
brake:BOOLEAN
J2: -brake
® Englne Accelerate
J4: dx = 5
entry‘
entry, . . ; 13: dx&(21..50) —dx’ = dx +
Drive exit : i ;
slowdown . ‘ speedup
. J2: dx £(0..20) —dx' == dx + 2
entry . . exit ‘
slowdown . ‘ speedup dheint
speedup. Distance
1.
Halt : from to
exit J3: X > 100 ‘ exit
J2: xe(-1000..1000) —x" = X + dx
x:Int dx:Int xint

v

Fig. 1. The components Engine and Drive

locations of A ® B are the interface locations of together complex behavior is modeled inside the component.
with the interface locations aB. An interface locatioru that
is common toA and B and its entry conditions agree in both . TLA +

f:omponents has this entry condition alsoAng B. Other Temporal Logic of Actions (TLA) is a variant of linear-time
interface Ic.)claluons cannot be used tc.J.entry th(.a_component,{emporal logic. It was developed by Lamport [3] primarily
~ The definition of parallel composition specifies that eaq specifying distributed algorithms, but several workewn
jump is done in synchronous manner in both subcomponenify the area of application is much broader. The system of
Moreover, if one component reaches the exit interface iooat 1| A+ extends TLA with data structures allowing for easier
then the execution in the other component must be terminatﬁgscription of complex specification patterns. TLA+ speci-
If both components reach their exit locations one is chosgRations are organized into modules. Modules can contain
nondeterministically. As the consequence of these prsert geclarations, definitions, and assertions by means of dbgic
parallel composition operation is associative and comtiveta. formylas. The declarations consist of constants and viasab
Two componentsA and B can be composed in series taConstants can be uninterpreted until an automated veitficat
form a serial compositionC' = A @ B if the set of output procedure is used to verify the properties of the specificati
variables are identical; that isyg** = Vg“'. The input variables keep the state of the system, they can change in the
variables of composed componentlis” = V4" U Vg". The system and the specification is expressed in terms of tramsit
interface locations ofd & B are the interface locations of formulas that assert the values of the variables as obsémved
together with the interface locations &% If a is an interface (ifferent states of the system that are related by the system
location of bothA and B, then the entry condition of in transitions. The overall specification is given by the terapo
A @ B is the disjunction of the entry conditions afin the formula defined as a conjunction of the forhm\ [N, A L,
subcomponentsi and B. where | is the initial condition, N is the next-state relatio
The set of execution of the componedt = A @& B (composed from transition formulas), and L is a conjunctibn
contains 1) the paifa, w) iff either (a,w|4) is an execution fairness properties, each concerning a disjunct of the stexe
of A, or (a,w|p) is an execution of3, 2) the triple(a,w,b) relation. Transition formulas, also called actions, amdireary
iff either (a,w|a,b) is an execution of4, or (a,w|4,b) is formulas of untyped first-order logic defined on a denumerabl
an execution ofB. The operator of serial composition isset of variables, partitioned into sets of flexible and rigid
associative, commutative, and idempotent. variables. Moreover, a set of primed flexible variables hia t
To support these two compositional operations, the renaform of +/, is defined. Transition formulas then can contain
ing and hiding operations are defined for variables and localt these kinds of variables to express a relation between
tions. The renaming operation maps variables and locatiam® consecutive states. The generation of a transitioresyst
of different names to each other that allows for sharing dafiar the purpose of model checking verification or for the
and control between components. Hiding makes variablessimulation is governed by the enabled transition formulae
locations internal to the component, which is useful whenfarmula O[N], admits system transitions that leave a set of

1 MODULE Accelerate
2 EXTENDS Naturals

3 VARIABLES dz, clock, location

4} {
5 J1 2 Alocation = “from” A location’ = “from”

6 ANdz € (0..20)Ade’ = dz+2

7 A clock’ = —clock

o J2 = Alocation = “from” A location’ = “from”

10 Ndx € (21..49) N ds' = dz + 1

11 A clock’ = —clock

13 J3 £ Alocation = “from” A location’ = “from”

14 Adz =50 A dz’ =50

15 A clock’ = —clock

17 Init = Adz e (0..50) A clock € BOOLEAN A location = “from”

19 Next = J1V J2V J3
|
20

Fig. 2. The TLAF specification of component Accelerate

variables v unchanged. This is known as stuttering, whichThe componenEngine and its subcomponents are visually
is a key concept of TLA that enables the refinement andodeled in figure 1. Components are represented by rectan-
compositional specifications. The initial condition andktre gles. Input and output variables are represented by arrows
state relation specify the possible behaviour of the systemonnected to component boundaries. Locations are refiegsen
Fairness conditions strengthen the specification by asgertby solid discs. Jump actions are represented by arrows. f jum
that given actions must occur. The TLA+ does not formallis labeled with condition predicate and action predicatsictv
distinguish between a system specification and a propertgmputes new values of output variables.

Both are expressed as formulas of temporal logic and con-ComponentEngine consists of a serial composition of
nected by implicationS — F, where S is a specificationtwo subcompoments, namely)rive and Halt. An entry

and F is a property. Confirming the validity of this impliaati location is directly connected with one of the locations of
stands for showing that the specification S has the propefy-ive component. There is one exit location that is accessible
F. The TLA+ is accompanied with a set of tools. One dfom both subcomponents. Other interface locations, namel
such tool, the TLA+ model checker, TLC, is state-of-the-asfowdown and speedup, serve for passing the control flow
model analyzer that can compute and explore the state spacbeiweenDrive and Halt components. The component inter-
finite instances of TLA+ models. The input to TLC consistacts with the environment by reading input variabteke and

of specification file describing the model and configuratiotontrolling output variables anddz. These variables are also
file, which defines the finite-state instance of the model to lwailable to both subcomponents.

analysed. An execution of TLC produces a result that givesComponentDrive governs train acceleration. The compo-
answer to the model correctness. In case of finding a problement is a parallel composition of three atomic components:
this is reported with a state-sequence demonstrating #oe trCheckBrake, Accelerate, and Distance. Input variable

in the model that leads to the problematic state. Inevitablrake determines whether the train accelerates or decelerates.
the TLC suffers the problem of state space explosion thiég value is observed b¢'heck Brake component that takes

is, nevertheless, partially addressed by a technique kremvnaway control fromDrive component if variablérake signal-
symmetry reduction allowing for verification of moderatessi izes the application of train’s brake. In componéatelerate,

system specifications. the actual speed of the train is computed. The train dynamics
is simplified by considering that the train accelerates by
IV. SPECIFICATION OFCOMPONENTS 1ms~2 if its velocity is greateR0ms~1 and by2ms~2 if its

Using a simple example as required by space constraints|ocity is less thar0ms~!, respectively. Finally, component
this section explains the construction of Ttt8pecifications Distance is responsible for computing the actual distance
that corresponds to Masaccio embedded components. from the railway crossing.

An example represents a specification of componentComponentalt has similar structure to componebtive.
Engine taken from [4]. This component is a part of a complek’s purpose is to slow the train down as long as input vagabl
specification that models the control of a railway crossing. brake is set to true. Ifbrake is released it passes the control
particular, theEngine component controls acceleration andack to Drive component through locatiospeedup.
deceleration of a train that is moving in a near distance ¢o th To show that TLA" specifications conform to Masaccio
railway crossing. Although this example is rather trivialis interpretation, the interpretation of TLAexpressions needs
sufficient to demonstrate basic principles of the speciicat to be defined. The following simplified system is used (for
method as it contains both parallel and serial compositionscomplete semantics see e.g. [6]). The TLAodule is called

1 MODULE Drive
2 EXTENDS Integers, Sequences

3 VARIABLE brake, z, dx, clock, locl, loc2, loc3

44 |
5 driveBrake INSTANCE DriveBrake WITH location <+ locl

6 accelerate INSTANCE Accelerate WITH location <« loc2

7 distance = INSTANCE Distance WITH location — loc3

8 ¥ |
o Init = driveBrake!Init A accelereate!Init A distance!Init

A
A

11 Next = driveBrake! Next A accelereate! Next A distance! Next
|
12

Fig. 3. The TLA" specification of componenbrive

a standard module if it has the form of conjunction of an The following definition generalizes atomic component
initial state predicate and a next-state action predicdtke specification rules.

meaning of a standard TLAmodule M = (V, I, N), where Definition 1 (atomic componentAn atomic component
V is a finite set of variabled, is an initial predicate, and/ is A(J) is a TLAT module M = (V, I, N) such that:

a set of next-state actions, is then defined by valuatiortiomc it declares a variable for each 1/O variable of the atomic
Vq(x), which assigns a value to each variable V and each component; that isyv : T € ij(z.;;ut . Ju € V such that
states, and model satisfying relatios, =1, p, which asserts sEpmveT forall s e My.

that propositiorp is true in states in the modelM of module « it declares a location variable; that iscation € V, and
M. A model M is a graph that consists of a set of nodes = v € {from,to} for all s € My.

My representing states, and a set of ed§es representing , the meaning of next-state actioW agrees with the

transitions between states. Obviously, a set of initiaiestaf predicate,’*™?; that is, (p, ¢) = N if each unprimed
modelM is defined as all states satisfying the initial predicate; yariablex from IV is assigned the valug,(z) and each
thatis, 7 = {s € My : s |=a I}. Each next-state action primed variabley from N is assigned the valug,(y).

can be split into a part,;, where only unprimed variables , the meaning of initial predicaté agrees with the predi-
occur, and a partiz, where also primed variables occur. If cate %016471(1) (from); that is p |=xq I for every trace of
s Fam miandr = no then, necessary,r € My and atomic componentd(.J) with prefix (from, (p,q)) if

(s,r) € Mpg. Masaccio interpretation is defined in terms o5ch variable: from I is assigned the valug, (z).

of execution traces. Obwously_, an execution is a trace thatAS it can be seen from the TL#specification in figure 2,
can be generated by traversing a grapti. Formally, a

) : the atomic specification contains variable denoted:lask.
trace w consists of jumpgp, ¢), such thatp,q € My and hi iabl hronizati o
(p.q) € M. This variable serves to synchronization purposes. It eefor

that parallel actions are executed at the same time. Threrefo
.) o . P i
A. Specifying atomic components all jumps mcluo!e the condition statlngoc{c_ = _clock. Ex
cept proper actions, there are also specific actions supgort

According to Masaccio semantics, an atomic discrete CORsria| compositions as described later in this section.s@he
ponentA(J) is completely specified by a jump predicate tha{pecific actions violate this condition requiring that tivaet
defines a set of legal jumpé. Further, an atomic componentg stopped; that is¢lock’ = clock.

has an arbitrary number of input and output variables. In 5 component can be entered at locatiofif an entry con-
each atomic component, there are only two interface loesfio yition ¢ (a) is satisfied atp, ¢'); that is, (p, ¢') = ¢ (a).

denoted agfrom an_d to.)) _ A valid expression of entry condition is similar to nextista
The represEntatmn of atomic component is straightiOfa|ation in TLA. It has form of conjunctions of expressions
ward in TLAT language. In figure 2, TLA description yhat can contain unprimed and primed variables. Contrary to

of Accelerate component is shown. A set of jumps iS @ A the entry condition is enabled if both unprimed and
conjunction of three next-state actions. Actidh represents pimed parts are satisfied ifp, ¢), while the TLA action is

acceleration of a train in lower speeds. Actid represents gnapied if the unprimed part is satisfied in stateThis is
acceleration of the train in higher speeds. Finally, actiqpyortant for guarantee of the dead-lock free property. A€ T
J3 specifies that if the train reaches its maximal speed dj,iomatically checks whether the given specification isddea
maintains this speed. In addition to state variableation ooy free, it is possible to relax the entry condition ints it

and controlled variablelz, which keeps thg actual train’sweaker formp [= ¢ (a), which does not contain the primed
speed, the module declares a boolean variahlek, which |,4iapjes.

models the passing of the time. Introducing the system clock

is necessary for synchronization of the components. While o N

this simple approach seems to be appropriate in this caBe,SPecifying Composition of Components

more flexible approach, e.g. [7], might be considered in moreThe componenDrive shown in figure 1 is a result of par-
involved real-time specifications. allel composition of three subcomponents. The correspandi

TLAT specification is given in figure 3. The semantics ahat Halt subcomponent is in the idle state that is expressed

parallel composition corresponds to joint-action speaiftn by assigning ™ to variable&i1, hl2 andhl3. To define next-

as described by Lamport in [3, p.147]. Its encoding in TLAtate action predicates we assume that specificatioH @t

is straightforward. and Drive were both extended with the following definition:
The Drive module contains input and output variables N e e e

brake, z, dz and also variablebcl, loc2 andloc3 that keeps Idle = locl ="" Nloc2="" Aloc3 =

the state of subcomponentSriveBrake, Accelerate and This definition asserts that component is in the idle state.
Distance, respectively. These location variables are boungherefore, actionZ1 and actionL2 define a behavior of

to variablelocation in each component during the compotpe containing component as an execution of component
nent instantiation as declared on lines 5-7. Line 9 defines;f.; ... and componentdalt, respectively, assuming that a
collection of initial states of the subcomponents. Theiahit complementing component is being idle during this executio
predicatel nit is a conjunction of initial predicates of all SUb'FinaIIy, two connector actions are necessary to allow $iritg
components. Next-state action predicatext is a conjuction petweenDrive and Halt components. In particular, connector
of next-state predicates of subcomponents, which gives 1§ specifies that ifDrive reaches the end locatiaiowdown,
intended execution interpretation of the component; tsat {yhich is represented by interface locatiafig = ” from” A

the jumps of subcomponents are executed in parallel andj® — »;,” A 713 = "to”. the control is passed télalt

synchronous manner. - component entering itslowdown location. This location is
Definition 2 (parz_;\IIeI composition)A componentC = represented by interface locatididl = 7 from” A hi2 =

A ® B composed in parallel from subcomponeatsand B »;,» A 113 = ”t0”. The control is removed from component

can be written as TLAmodule M¢c = (Ve, Ic, N¢), where p.i.0 by assigningdil’ = *” A dI2' =77 AdlI3 =77

« Vo is a set of module’s variables that includes all input pefinition 3 (serial composition)A componentC' com-
and output variables of the subcomponents and locatiggsed in series from subcomponertsand B; that is, C =

variables (an implicit renaming of location variables i ¢ B, can be written as TLAmodule M¢ = (Ve, I, Neo),
considered to prevent the slash of their names in mody|gere

M¢); that isVe = V4 U V.

o I is an initial predicate that is a conjunction of initial
predicates of both submodules and a component specific
constraints; that idc = I4 A Ig A 1.

o N¢ is a next-state action predicate that is defined as a
conjgnction of next-state predicates of both submodules; flow information in the form of assertions on interface
that is N¢ = Na A Np.) __locations; thatis/c = (I4ALg)V(IgALg), whereL 4

A state space of a composed component is generated according or L specifies that control can be assigned to component
the initial predicates and next-state actions of its subcom A or B, respectively.
ponents. The conjunction of next-state actions requires th N is a next-state action predicate that is defined as a

there are simultaneous jumps in each of the subcomponent. yiginetion of next-state predicates of both submodules
Moreover if one of the subcomponent reaches its end location 4 4 necessary connectafs; that is No = Na V

which causes that such component has not enabled action, it NgV Cs.
is not possible to execute any jump in any of the contained
components. This configuration is then recognized as the end

location of the component.

The serial composition of components requires that only oneln this section, a brief elaboration on results of verifioati
contained component has control at a time. This needs to dxperiments is presented. The TLC tool was used to check
reflected in a location configuration. Therefore a specied{o the basic properties of specifications composed in the style
tion, denoted as empty string (), has been added to repteslasaccio model.

a state of a component without a control. A component whoseEach component can be verified using TLC tool separately.
location configuration is ™ cannot execute any of its jumpdNevertheless, often a component depends on its environment
To enable the passing of control between components, spediind the environment specification needs to be supplied ierord
actions that modify only location variables are added ih® t to get a meaningful results. For instance, compoi&Bstance
specification. Their purpose is similar to that of connectdhat computes a distance according to the actual velocity
elements that can be found in many architecture descriptigquires to provide a specification that sets boundariefien t
languages, e.g. [8]. behavior of velocity variablelxz. Moreover, the dependency

The example of a component composed in series is showraimong the components can be circular. Therefore to verify
figure 4. The moduld’ngine instantiates two subcomponentsa component, a suitable context needs to be provided. The
namely Drive and Halt. The initial predicate specifies thatapproach used in this paper for verification of the companent
the componentDrive will have control when componentstems from the assume-guarantee principle that constithiat
Engine is first executed. This means to define valid initiatontext of a component. This principle was studied in the
interface location for subcomponentrive, in particular, to frame of Masaccio formalism in [9]. The context does not need
assign valuefrom to di1, dI2 anddi3 variables, and to define to be specified from scratch. Instead, existing specifinatif

« V¢ is a set of module’s variables that includes all input

and output variables of the subcomponents and location

variables.

o I is an initial predicate that is a disjunction of initial
predicates of both submodules annotated with control

V. VERIFICATION USINGTLC

MODULE FEngine

EXTENDS Integers
VARIABLES brake, x, dz, clock
VARIABLES hll, hi2, hi3, di1, di2, di3

drive 2 INSTANCE Drive WITH locl «— di1, loc2 «— di2, loc3 — dI3
halt = INSTANCE Halt WITH locl « hil, loc2 « hi2, loc3 « hi3

© 0 N O Ul A W N

I1 2 Adll = “from” A dI2 = “from” A di3 = “from” A drive!Init
ARll =" NhI2 =""ANR3=""

Jun
S

12 12 2 Adil=""AdI2=""ANdI3=""
13 A hl1 = “from” A hl2 = “from” A hi3 = “from” A halt!Init

15 Init = 11V I2
17 L1 = halt!Idle A drive! Next A UNCHANGED (hi1, hi2, hi3)

19 C1 = Adil="to" AdI2= "from” A dI3 = “from”

20 ARl ="AhI2=""ANN3=""

21 AdIl =" ANdI2' =" NdI3 ="

22 A Rhll" = “from” A hl2' = “from” A hl3' = “from”
23 A UNCHANGED (brake, z, dz, clock)

25 L2 = drivelldle A halt! Next A UNCHANGED (di1, dI2, dI3)

27 C2 = Ahll = “to” A2 = “from” A hl3 = “from”

28 ANdll="ANdI2="ANdI3=""

29 AR =" ANR2 =" AR ="

30 A dll’" = "“from” A dI2' = “from” A dI3' = “from”
31 A UNCHANGED (brake, z, dz, clock)

33 Next = L1V C1VI2V C2
34 L

Fig. 4. The TLAF specification of componenEngine

components that form the environment of the component beiAg issue lies in the use of integer variables for meassuring
verified can be turned into a context like specification. Morealistance and actual speed of the train and the necessity to
over, this context specification can be proved as appr@prigheck whether the property holds for any combination of
if it satisfies a refinement relation. In many cases, it can lfeese values. The solution is to merge concrete values into
checked automatically using TLC tool. Interface refinenient significant intervals, i.e. fotix there are two such intervals,
described in [3, p.163] a&Spec = 3Ih : IR A HSpec, in particular, hispeed = (21..50) and lospeed = (0..20).
where/, is a vector of free variables off Spec and IR is a Also distance variabler can be defined to be from a

relation between variables &f and lower level variables of set of intervals, e.gextdistt = (co,5000), fardistt =
of specificationL Spec. (5000, 1000), neardist™ = (1000, 0).

Verification of componenEngine required to compute the
state space consisting of 816288 states. TLC completes this VI. CONCLUSION

task roughly within 30 seconds on a computer with 1.66 GHz In this paper, the overview of the method capable of
processor. It should be noted, that the specification shownformal specifying and verifying embedded control systems h
figure 4 was extended withbop action for the sake of TLC been presented. The method is based on the T Lvhich
verification procedure. The loop action is required to pnéveallows to produce clear and simple specifications because of
TCL to complain on finding a deadlock state. It just loop#s very expressive language. An accompanying tool, TLC
forever if the end location of componeRingine is reached. model checker, can be employed to show that the specification
loop 2 (W13 = "t0" v dI3 = "t0") exposes intendeq prqperties. This method was iIIustrape_)aI 0
AUNCHANGED vars simple exa_mple_ln this paper. The _se_mantlcs of spe_C|f|cat_|on
can be defined in terms of Masaccio interpretation, inclgdin
The specification sent to TLC for verifying properties was aserial and parallel component compositions.
follows: In addition to clarification of the basic facts on the method
for writing TLA *specifications under Masaccio interpretation,
the several topics for future work were revealed during the
The verification of componenVear (see [4] for its speci- work on this paper:
fication) took much longer (approx. 15 minutes) and the states Deeper understanding of the assume-guarantee refine-
space searched was greater than 7 millions of distinctsstate ment in the TLA" specification framework is required and

Spec == Init NO[Next V looplvars

the proof that these specifications obey assume-guarantee
principle as specified for Masaccio model should be
given.

Specification of hybrid systems as proposed by Masac-
cio was not addressed in the paper. As shown in [5],
TLATis expressive enough to capture a large class of
hybrid system specifications. The question is whether
the verification can be adequately supported by the tools
available for TLAF.

As expected and shown by the example, the state explo-
sion is a problem in the case of verification of non-trivial
systems. While TLAmodel-checker can explore several
hundreds of millions of states, there is also possibility to
apply state space reduction techniques. The TLC poses
symmetry reduction mechanism [3, p.245] that can reduce
significantly state space for design that contains multiple
same or similar parts.

The formal model and the presented specification and ver-
ification method is suitable, in particular, for applicatito

the domain of distributed time-triggered systems [10]. The
intention is to integrate this method in a visual modeling

framework [11] to enable automatic checking of properties
of systems being visually modeled.

(1]

(2]
(3]
[4]

(5]
(6]

(7]
(8]

El

[10]

(11]

REFERENCES

P. Cousot and R. Cousot, “Verification of embedded saftw&roblems
and perspectives,Lecture Notes in Computer Scienoml. 2211, pp.
97-114, 2001.

E. A. Lee, “Embedded softwareAdvances in Computersol. 56, pp.
56-97, 2002.

L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software EngineersAddison-Wesley Professional, 2003.
T. A. Henzinger, “Masaccio: A formal model for embeddednipo-
nents,” inTCS "00: Proceedings of the International Conference IFtP o
Theoretical Computer Science, Exploring New Frontiers loédretical
Informatics London, UK: Springer-Verlag, 2000, pp. 549-563.

L. Lamport, “Hybrid systems in t,” in Hybrid Systemsser. Lecture
Notes in Computer Science, vol. 736. Springer, 1992, pplGZ-

M. Kaminski and Y. Yariv, “A real-time semantics of temad logic of
actions,”Journal of Logic and Computatiowol. 13, no. 6, pp. 921-937,
2001.

L. Lamport, “Real-time model checking is really simpley CHARME
2005, pp. 162-175.

K.-K. Lau, V. Ukis, P. Velasco, and Z. Wang, “A componenidel

for separation of control flow from computation in componbased
systems,"Electronic Notes in Theoretical Computer Scigneel. 163,
no. 1, pp. 57-69, September 2006.

T. A. Henzinger, M. Minea, and V. Prabbtlybrid Systems: Computa-
tion and Contro] ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, January 2001, vol. 2034/2001, ch. Assu
Guarantee Reasoning for Hierarchical Hybrid Systems, Bp—290.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applicationsser. The Springer International Series in Engineer-
ing and Computer Science. Springer Netherlands, 2002,3@8, ch.
The Time-Triggered Architecture, pp. 285-297.

M. Faugere, T. Bourbeau, R. de Simone, and S. Gerardrt&vAlso an
uml profile for modeling aadl applications,” ITECCS '07: Proceedings
of the 12th IEEE International Conference on Engineeringmptex
Computer Systems (ICECCS 2007) Washington, DC, USA: IEEE
Computer Society, 2007, pp. 359-364.

