
Gate-Level Optimization of Polymorphic Circuits Using

Cartesian Genetic Programming

Zbysek Gajda and Lukas Sekanina

Abstract— Polymorphic digital circuits contain ordinary and
polymorphic gates. In the past, Cartesian Genetic Programming
(CGP) has been applied to synthesize polymorphic circuits
at the gate level. However, this approach is not scalable.
Experimental results presented in this paper indicate that
larger and more efficient polymorphic circuits can be designed
by a combination of conventional design methods (such as
BDD, Espresso or ABC System) and evolutionary optimization
(conducted by CGP). Proposed methods are evaluated on two
benchmark circuits – Multiplier/Sorter and Parity/Majority
circuits of variable input size.

I. INTRODUCTION

Polymorphic digital circuits contain ordinary and poly-

morphic gates. Polymorphic gates are unconventional digital

circuits which are able to change the logic function according

to an external environment status (i.e., temperature, light,

power supply voltage (Vdd) etc.) [1], [2], [3], [4], [5]. For

example, the polymorphic AND/OR gate performs the AND

function for 27 ◦C (in the first mode) or the gate performs

the OR function for 125 ◦C (in the second mode). Figure 1

shows an example of a polymorphic circuit. Behavior of

various polymorphic gates was demonstrated using simula-

tions. The first example of fabricated polymorphic gate –

the NAND/NOR gate controlled by Vdd – was presented

by Stoica’s group [3]. The six-transistor NAND/NOR gate

operates as NOR for Vdd = 1.8V and NAND for Vdd =
3.3V . The control of logic function via Vdd is unconventional

but interesting for some applications [2], [5], [6]. The HP

0.5 micron CMOS technology was used for fabrication of

the gate. Another NAND/NOR gate controlled by Vdd was

developed and characterized by FIT (Faculty of Information

Technology) Evolvable Hardware Group [5]. This eight-

transistor gate operates as NAND for Vdd = 5V and NOR

for Vdd = 3.3V . The gate was fabricated using AMIS

CMOS 0.7 micron technology. An experimental polymorphic

reconfigurable ASIC was developed which contains config-

urable ordinary gates and polymorphic NAND/NOR gates

controlled by Vdd [7]. This chip enables to investigate the

electrical properties of polymorphic circuits and demonstrate

the applications of polymorphic electronics.

Having polymorphic gates, researchers have begun to

develop methods for synthesis of polymorphic circuits [8],

Zbysek Gajda and Lukas Sekanina are with the Department of Computer
Systems, Faculty of Information Technology, Brno University of Technol-
ogy, Czech Republic (email: {gajda, sekanina}@fit.vutbr.cz).

This work was partially supported by the Grant Agency of the Czech
Republic under contract No. 102/06/0599 Methods of polymorphic digital

circuit design and the Research Plan No. MSM 0021630528 – Security-

Oriented Research in Information Technology.

Fig. 1. Example of a polymorphic circuit: a) Scheme of a polymorphic
circuit; b) Scheme of the circuit in the mode 1; c) Scheme of the circuit in
the mode 2

[9], [10]. They have also integrated polymorphic gates into

ordinary circuits to enhance their functionality [11], [12],

[13], [6], [5]. Cartesian Genetic Programming (CGP) was

used to evolve small polymorphic digital circuits [8], [10].

However, due to the scalability problem of the gate-level

evolution, the most complex circuit evolved so far is the

4×3-bit Multiplier/7-bit Sorter [10]. On the other hand, the

advantage of the gate-level evolutionary design is that it can

provide very compact solutions (i.e. gate-optimized circuits).

In this paper, conventional methods developed for circuit

synthesis (such as binary decision diagrams BDD [14],

Espresso [15], and ABC1 [16]) are combined with evolu-

tionary algorithms in order to design and optimize larger

polymorphic digital circuits. The general idea is to develop

a circuit using conventional synthesis methods and then

apply CGP to optimize the number of gates (as introduced

for circuit evolution in [17]). Proposed methods are evalu-

ated on two benchmark circuits: Multiplier/Sorter and Par-

ity/Majority. In order to fairly compare the results, solutions

will be sought in the form of circuits composed of two-input

gates (inverters included). In addition to ordinary gates, we

restrict ourselves to use only the NAND/NOR polymorphic

gate controlled by Vdd because only this gate is available for

a physical implementation. However, proposed methods can

utilize an arbitrary set of polymorphic gates.

The rest of the paper is organized as follows. Section II

formally describes the polymorphic circuit synthesis problem

whose solution is the objective of this paper. Section III

surveys the limits of CGP for design of polymorphic circuits.

It also shows that slightly larger polymorphic circuits can be

evolved using incremental evolution. In Section IV-A, BDDs

are proposed to represent polymorphic circuits. Section IV-

B describes the use of conventional methods Espresso and

ABC (equipped with polymorphic multiplexers) to synthesize

non-optimized polymorphic circuits. Section V deals with the

optimization of polymorphic circuits which were obtained by

using conventional methods. The optimization is performed

1ABC is a System for Sequential Synthesis and Verification. For purpose
of this paper, ABC is understood as a design method of sequential circuits.



using CGP, i.e. CGP is ”seeded” with conventional designs.

Discussion of obtained results is presented in Section VI.

Conclusions are given in Section VII.

II. POLYMORPHIC CIRCUIT SYNTHESIS PROBLEM

A. Problem Formulation

Let Γ(1) denote a set of ordinary gates. Let Γ(2) denote a

set of polymorphic gates. A polymorphic gate implements

two2 functions according to a control signal which can

hold two different values. The gate is in mode j (and so

performing the j-th function) in the case when j-th value

of the control signal is activated. For purpose of this paper,

we denote a polymorphic gate as X1/X2, where Xi is its

i-th logic function. For example, NAND/NOR denotes the

gate operating as NAND in the mode 1 and as NOR in

the mode 2. Note that ordinary gates can perform only one

function; however, their functionality must be fully defined

for each mode. For example, the conventional NAND gate

considered for polymorphic circuits must perform the NAND

function in the both modes (denoted as NAND/NAND). Let

Γ denote a set of all gates, Γ = Γ(1) ∪ Γ(2).

A polymorphic circuit can formally be represented by a

graph G = (V, E, ϕ), where V is a set of vertices, E is a set

of edges between the vertices, E = {(a, b)|a, b ∈ V }, and

ϕ is a mapping assigning a function (gate) to each vertex,

ϕ : V → Γ. As usually, V models the gates and E models

the connections of the gates. A circuit (and also its graph) is

in the mode j in the case when all gates are in the mode j.

Given Γ and logic functions f1 and f2 required in different

modes, the problem of the multifunctional circuit synthesis

at the gate level is formulated as follows: Find a graph G
representing the digital circuit which performs logic function

f1 in the first mode and logic function f2 in the second

mode. Additional requirements can be specified, e.g. to

minimize the delay, the area, the power consumption etc.

Unfortunately, this problem can not be approached by con-

ventional synthesis methods directly since they do not allow

representing polymorphic logic functions and manipulating

with them.

B. Initial Solution

Figure 2 shows a straightforward approach to the imple-

mentation of a polymorphic circuit which works in k =
2 modes: The best known implementation for each mode

is taken and the outputs are multiplexed by polymorphic

multiplexers (or by standard multiplexers controlled by a

sensor). Better results would be obtained by using such

implementations which can share as much resources as

possible (see the intersection in Figure 2).

A gate-level implementation of polymorphic multiplexer

pmux is shown in Figure 3. This implementation is based

on the NAND/NOR gate. Its cost is cpmux = 5 gates. We will

use this implementation for the comparisons which will be

performed in this paper. However, it is expected that a more

2This can be naturally extended for k different functions.

Fig. 2. Multiplexing circuits f1 and f2 by polymorphic multiplexers

compact and efficient transistor-level solution of pmux will

be available in the future.

Fig. 3. Polymorphic multiplexer at the gate-level

III. EVOLUTIONARY DESIGN OF POLYMORPHIC

CIRCUITS

A. Direct Evolution Using CGP

Cartesian Genetic Programming (CGP) introduced by

Miller and Thompson [18], [19], [20] is a widely-used

method for extrinsic evolution of digital circuits. CGP can

easily be extended for gate-level evolution of polymorphic

circuits [8]. Candidate circuits are modeled in a matrix of

u (columns) × v (rows) of programmable 2-input elements

(gates). The number of inputs, n, and outputs, m, is fixed.

Each gate input can be connected either to the output of

a gate placed in the previous L columns or to some of

circuit inputs. The L-back parameter, in fact, defines the

level of connectivity and thus reduces/extends the search

space. For example, if L=1 only neighboring columns may

be connected; if L = u, the full connectivity is enabled.

Feedback is not allowed. Each gate can be programmed to

perform one of functions defined in the set Γ which will

contain polymorphic functions in our task.

The fitness function for synthesis of polymorphic circuits

extends the fitness function utilized to evolve digital circuits

[21]. Let f1 denote the multiplication function and f2 denote

the sorting function in the case that the goal is to evolve a

Multiplier/Sorter circuit. The fitness value is defined as:

fitness = B1 + B2 + (u.v − z) (1)

where B1 (resp. B2) is the number of correct output bits

for f1 (resp. f2) obtained as response for all possible input

combinations, z denotes the number of gates utilized in a

particular candidate circuit and u.v is the total number of

programmable gates available. The last term is considered

only if the circuit behavior is perfect in the both modes;

otherwise u.v − z = 0.



Table I summarizes existing results for the Multi-

plier/Sorter problem obtained using CGP in our previous

work [10]. For all problems, 10 runs were executed per

experiment, the population size was 15 and up to 100

million generations were produced in each run. The 7-input

Multiplier/Sorter is the most complex polymorphic module

evolved so far. The limit of the method was probably reached

in terms of generated circuit complexity.

TABLE I

PARAMETERS AND RESULTS OF CGP FOR THE MULTIPLIER/SORTER

PROBLEM ACCORDING TO [10]. GATES IN Γ ARE NUMBERED AS: (1)

NAND/NOR, (2) AND, (3) OR, (4) XOR, (5) NAND, (6) NOR, (7)

NOT A, (8) NOT B, (9) MOV A AND (10) MOV B, WHERE MOV

DENOTES THE IDENTITY OPERATION.

Multiplier/Sorter 2×2/4b 3×2/5b 3×3/6b 4×3/7b

u × v 10 × 12 100 × 1 120 × 1 16 × 16

L-back 1 100 120 16
Mutation (genes) 1 2 4 4
Gate set 1, 2, 9, 10 1–4, 9, 10 1–10 1, 2, 9, 10

Successful runs 100% 100% 90% 30%
Generations (avg.) 52,580 854,900 26,972,648 62,617,151
Min. # of gates 23 30 52 113

Table II compares the number of gates required for CGP

with polymorphic multiplexing (according to Section II-B).

The best known Multipliers (according to [17]) and Sorters

(according to [22]) that were designed separately have been

chosen as modules for polymorphic multiplexing. No sharing

of gates is assumed herein. It is evident that in some cases

the evolved circuits are more gate-efficient than the circuits

multiplexing independent implementations despite the fact

that only the NAND/NOR gate is considered. Including other

polymorphic gates could even lead to better results.

TABLE II

COMPARISON OF THE IMPLEMENTATION COST (# OF GATES) FOR

MULTIPLIER/SORTER IMPLEMENTED USING (A) MULTIPLEXING

INDEPENDENT SOLUTIONS AND (B) CGP

Inputs Multiplier Sorter Multiplexing CGP

2 + 2 7 10 17 + 4cpmux = 37 23
3 + 2 13 18 31 + 5cpmux = 56 30
3 + 3 23 24 47 + 6cpmux = 77 52
3 + 4 38 32 70 + 7cpmux = 105 113

Table III summarizes results for Majority/Parity bench-

mark. CGP parameters are identical with the experiments

reported in Table I except the mutation rate (3 genes). In

this case, CGP can evolve Majority/Parity benchmark circuits

with up to 13 inputs.

B. Incremental evolution

Evolutionary design of larger gate-level circuits is usually

performed using modular CGP [23] or incremental evolution

[24], [25], [26]. Figure 4 shows one of the approaches to the

incremental evolution. The n-input/m-output circuit can be

TABLE III

PARAMETERS AND RESULTS OF CGP FOR MAJORITY/PARITY PROBLEM.

THE GATE SET INCLUDES NAND/NOR, AND, OR, XOR, NAND,

NOR, NOT, MOV, WHERE MOV DENOTES THE IDENTITY OPERATION.

Majority/Parity 7b 9b 11b 13b

u × v 80 × 1 120 × 1 120 × 1 160 × 1

L-back 80 120 120 160

Successful runs 100% 90% 50% 10%
Generations (avg.) 766,362 4,762,745 8,145,890 9,712,501
Min. # of gates 25 42 61 80

decomposed to m modules. Each module implements an n-

input/1-output function. By doing so, the problem becomes

easier for the evolution. This incremental evolution scheme

was applied to evolve the 4×4-bit Multiplier/8-bit Sorter.

The circuit was decomposed to 8 modules and each of them

was evolved separately using CGP (parameters: 10 runs, 15

individuals in the population, 100 million generations per

run). From Table IV, it can be seen that the resulting 4×4-

bit Multiplier/8-bit Sorter contains 289 gates (sum of module

costs). Then, a single circuit was composed of the modules

and optimized using CGP (parameters remain unchanged)

with the fitness function according to eq. (1). The optimized

solution consists of 245 gates.

Unfortunately, the approach does not scale for larger

problem instances. No solution was obtained for circuit o5 of

the 5×4-bit Multiplier/9-bit Sorter. Hence, other algorithms

have to be employed to obtain large (Multiplier/Sorter)

polymorphic circuits.

Fig. 4. Incremental evolution: decomposition of a function to m modules

TABLE IV

INCREMENTAL EVOLUTION OF 4×4 BIT MULTIPLIER/8-BIT SORTER.

Output of m./s.n. 4×4/8b o0 o1 o2 o3

Elements 160 160 160 160
Generations (avg.) 3M 0.9M 0.9M 16.6M
Success 100% 100% 100% 100%
Min. gates 8 20 32 44

Output of m./s.n. 4×4/8b o4 o5 o6 o7

Elements 160 100 160 100
Generations (avg.) 72.4M 46.9M 9.4M 1.5M
Success 60% 20% 100% 100%
Min. gates 56 71 42 16

IV. CONVENTIONAL SYNTHESIS

In order to overcome the scalability limits of evolutionary

design and to maximize sharing of resources (compacting

target circuits), three conventional approaches are tested in

this section. The main issue is how to include polymorphic

gates to conventional circuits.



A. Binary Decision Diagrams

The representation of a circuit using Binary Decision

Diagram (BDD) [14] implies the implementation which is

based on multiplexers whose selection signals are controlled

by input variables. In the case of polymorphic circuits,

terminal nodes of the decision diagram can be implemented

using polymorphic functions. In comparison to polymorphic

multiplexing (Section II-B), this method represents in prin-

ciple a quite different approach to introducing polymorphic

gates to conventional circuits.

The construction requires two steps. Firstly, a complete

binary tree is constructed with n − 1 levels, where n is the

number of inputs. The nodes are ”if-then-else” conditions

which are decided by the input variables. These nodes repre-

sent 2-input multiplexers. Secondly, terminals are connected

to the low-level nodes. The values of terminals are defined

by a truth table. Each terminal value defines a single poly-

morphic circuit. For example (see Figure 5a), consider 3-bit

Majority/Parity circuit. For the input vector 000, the circuit

must return ”0” in both modes. For the input vector 001, it

must return ”0” (majority function) or ”1” (parity function).

The input combinations 000 and 001 determine the terminal

value according to a conversion matrix (see Figure 5b) and

equation s = 23.s21 + 22.s20 + 21.s11 + 20.s10. In this

case, the value is 8 (see Figure 5c). The terminal defines

a polymorphic circuit which outputs ”0” for mode 1 and

identity for mode 2. The input vector 00 of the transformed

truth table (see Figure 5c) defines a position of the terminal

in the binary tree.

Fig. 5. Transformation process of 3-bit Majority/Parity truth table
(s1 denotes the majority; s2 denotes the parity): a) Truth table before
transformation; b) Transformation matrix for all quarters of the table; c)
Transformed truth table

Figure 6 shows reduced BDD and its implementation using

polymorphic gates. In order to reduce the size of BDD,

we applied (classical) algorithms which allowed a reduction

of identical terminals, sub-diagrams and redundant nodes.

The nodes are implemented as multiplexers and the terminal

nodes are implemented as independent polymorphic circuits.

Table V shows results of BDD-based polymorphic circuit

synthesis for Multiplier/Sorter problem. By ”Gates” we mean

common 2-input gates, NAND/NORs, 2-input multiplexers

and inverters.

TABLE V

BDD DESIGN RESULTS

Multiplier/Sorter 3×2/5b 3×3/6b 4×3/7b 4×4/8b

Nodes 37 79 135 253
Terminals 10 11 11 12
Gates 50 94 150 269

Note that this type of BDD can be understood as a

MTBDD (Multi-Terminal Binary Decision Diagram) [14].

B. Espresso and ABC

Espresso [15] and ABC [16] are conventional circuit

synthesis methods. We applied them according to Figure 2

with the aim of minimizing the number of gates in both

modules, sharing as much gates as possible among the

modules and minimizing the number of outputs that have to

be equipped with polymorphic multiplexers. Table VI shows

results of Espresso and ABC synthesis for Multiplier/Sorter

benchmark. All circuits were implemented using two-input

gates AND, OR, NAND, NOR, XOR, NAND/NOR and

inverter (uniform cost considered).

TABLE VI

RESULTS OBTAINED USING ESPRESSO AND ABC

Multiplier/Sorter 3×2/5b 3×3/6b 4×3/7b 4×4/8b

Espresso: gates 168 419 960 2309
ABC: gates 61 119 198 359

V. EVOLUTIONARY OPTIMIZATION OF CONVENTIONAL

DESIGNS

By comparing Tables I, V, and VI, it can be seen that

evolutionary design provides more compact circuits than

conventional methods. However, the results of conventional

designs were not optimized (in terms of polymorphic gates

utilization). Hence, the evolutionary approach was used to

reduce the number of gates in the conventional solutions.

In order to optimize polymorphic circuits obtained by con-

ventional synthesis methods, all these circuits are converted

to the CGP representation (with topology k × 1 where k
is total number of elements) and used for ”seeding” the

CGP. A multiplexer is converted into four 2-input gates (in

BDD design), 3-input AND-gate is converted into two 2-

input gates (in Espresso designs) etc. CGP operates with

the population size of 15 individuals. The mutation operator

modifies 7 integers in the chromosome on average. The

fitness function is defined using eq. 1. In order to make

the evaluation as short as possible, a candidate circuit is

immediately left unevaluated (i.e. fitness = 0) when it fails

for an input test vector. For each benchmark problem, the

CGP optimization was performed 10 times.

Table VII shows a comparison of results obtained by

applying CGP on 4×4-bit Multiplier/8-bit Sorter circuits cre-

ated by BDD, Espresso and ABC synthesis. We can observe



Fig. 6. BDD and a corresponding polymorphic circuit for the 3-bit Majority/Parity.

that the solutions are significantly different in the number of

gates (see Min. gates). The best result was obtained by ABC

synthesis. So, we used ABC as basis for further optimization

of other instances of Multiplier/Sorter benchmark problem.

It can be seen from Table VIII that ABC followed by CGP

optimization can provide better results than other approaches

(including direct CGP evolution); however, the results are

better only for larger circuits when the number of inputs is

7 or higher. The ABC followed by CGP optimization was

also utilized to develop Majority/Parity circuits (Table IX).

By comparison of Table IX and Table III, we can see that

the direct CGP design provides better results.

TABLE VII

RESULTS OF THE CGP OPTIMIZATION OF 4×4-BIT MULTIPLIER/8-BIT

SORTER ”SEEDED” BY CONVENTIONAL METHODS

Method BDD Espresso ABC

Elements (k) 1043 2330 375
Initial gates 1028 2309 359
Generations 100M 100M 100M

Max. gates 407 697 232
Min. gates 355 616 205
Avg. gates 385.7 646.3 218.5
Avg. optimization 38% 28% 61%
Polymorphic gates 8% 3% 22%

Design runtime [s] 345 1 3
Optimization runtime [s] 154,015 361,394 21,176

TABLE VIII

RESULTS OF THE ABC FOLLOWED BY CGP OPTIMIZATION FOR

VARIOUS INSTANCES OF THE MULTIPLIER/SORTER CIRCUIT

Multiplier/Sorter 3x2/5b 3x3/6b 4x3/7b 4x4/8b

Elements (k) 71 131 212 375
Initial gates 61 119 198 359
Generations 10M 10M 100M 100M

Max. gates 43 82 135 232
Min. gates 36 71 110 205

Avg. gates 38.8 76.3 121.4 218.5
Avg. optimization 64% 64% 61% 61%
Polymorphic gates 27% 22% 25% 22%

TABLE IX

RESULTS OF THE ABC FOLLOWED BY CGP OPTIMIZATION FOR

VARIOUS INSTANCES OF THE MAJORITY/PARITY CIRCUIT

Majority/Parity 7b 9b 11b 13b

Elements (k) 41 60 81 114
Initial gates 39 58 79 112
Generations 1M 1M 10M 10M

Max. gates 33 53 72 95
Min. gates 29 45 69 90

Avg. gates 31 48.3 71.1 91.8
Avg. optimization 79% 83% 90% 82%
Polymorphic gates 18% 19% 18% 19%

VI. DISCUSSION

Direct polymorphic circuit evolution using CGP is not

scalable. For Multiplier/Sorter circuits, the limit seems to

be in 7 inputs. On the other hand, CGP can generate very

compact solutions for small problem instances. Although the

incremental evolution can generate larger circuits than CGP,

it moves the scalability limit only partially (to the 8 inputs

for Multiplier/Sorter benchmark problem).

Experimental results indicate that combining conventional

methods with evolutionary optimization can lead to compact

polymorphic circuits. When BDDs are used, polymorphic

gates are connected towards the inputs of the circuit. Espresso

or ABC are employed to find such implementations in

which gates of f1 and f2 are reused as much as possible.

Polymorphic gates situated close to outputs of the circuit

ensure multiplexing the modules according to the external

control. The most compact circuits were obtained for the

4×4-bit Multiplier/8-bit Sorter by BDD (269 gates); ABC

requires 359 gates and Espresso 2309 gates. The highest

number of gates produced by Espresso is mainly due the

fact that many-input gates have to be transformed into 2-

input gates.

Consequent optimization of these circuits, which was

performed by ”pre-seeded” CGP, shows that results of ABC

can be improved by more than 35%, reaching thus 205 gates

for the 4×4-bit Multiplier/8-bit Sorter (the best result) and

110 gates for the 4×3-bit Multiplier/7-bit Sorter (which is

better result than direct evolutionary design using CGP).



Another important property of CGP optimization applied on

circuits created by ABC is that the number of polymorphic

gates utilized in resulting circuits is high - more than 20%

in comparison to 8% for BDD and 3% for Espresso. For

example, 16 NAND/NOR gates (in 8 polymorphic multiplex-

ers) have to be used in the 4×4-bit Multiplier/8-bit Sorter

in order to start the ABC synthesis. The resulting circuit

(after CGP optimization) contains 44 NAND/NOR gates.

It is supposed that the high proportional representation of

polymorphic gates causes the compact implementation (only

205 gates).

More comprehensive validation of this concept on a larger

set of benchmark circuits is needed. A potential problem is

that CGP optimization is based on testing all possible input

vectors which is not scalable.

VII. CONCLUSIONS

In this paper, a new method was proposed for design of

polymorphic gate-level circuits. We surveyed existing ap-

proaches to the polymorphic circuit design and showed their

limitations. Conventional methods (such as BDD, Espresso

and ABC) were extended to support polymorphic gates.

Experimental results presented in this paper indicate that

combination of conventional methods and evolutionary op-

timization conducted by CGP can lead to larger and more

efficient polymorphic circuits. Our future work will be fo-

cused on validating the proposed methods on more complex

benchmark problems. We will also investigate the effect of

various fitness functions and a multiobjective approach to the

optimization.

REFERENCES

[1] A. Stoica, R. S. Zebulum, and D. Keymeulen, “Polymorphic elec-
tronics,” in Proc. of Evolvable Systems: From Biology to Hardware

Conference, ser. LNCS, vol. 2210. Springer, 2001, pp. 291–302.
[2] A. Stoica, R. S. Zebulum, D. Keymeulen, and J. Lohn, “On polymor-

phic circuits and their design using evolutionary algorithms,” in Proc.

of IASTED International Conference on Applied Informatics AI2002,
Insbruck, Austria, 2002.

[3] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, I. Ferguson, and
V. Duong, “Taking Evolutionary Circuit Design From Experimentation
to Implementation: Some Useful Techniques and a Silicon Demon-
stration,” IEE Proc.-Comp. Digit. Tech., vol. 151, no. 4, pp. 295–300,
2004.

[4] R. S. Zebulum and A. Stoica, “Four-Function Logic Gate Controlled
by Analog Voltage,” NASA Tech Briefs, vol. 30, no. 3, p. 8, 2006.

[5] R. Ruzicka, L. Sekanina, and R. Prokop, “Physical demonstration of
polymorphic self-checking circuits,” in Proc. of 14th IEEE Interna-

tional On-Line Testing Symposium. IEEE, 2008, pp. 31–36.
[6] L. Starecek, L. Sekanina, and Z. Kotasek, “Reduction of test vectors

volume by means of gate-level reconfiguration,” in Proc. of 2008
IEEE Design and Diagnostics of Electronic Circuits and Systems

Workshop. IEEE Computer Society, 2008, pp. 255–258. [Online].
Available: http://www.fit.vutbr.cz/research/view pub.php?id=8603

[7] L. Sekanina, R. Ruzicka, Z. Vasicek, R. Prokop, and L. Fujcik,
“Repomo32 – new reconfigurable polymorphic integrated circuit for
adaptive hardware,” in 2009 IEEE Workshop on Evolvable and Adap-

tive Hardware. IEEE Computational Intelligence Society, 2009.
[8] L. Sekanina, “Evolutionary design of gate-level polymorphic digital

circuits,” in Applications of Evolutionary Computing, ser. LNCS, vol.
3449. Lausanne, Switzerland: Springer Verlag, 2005, pp. 185–194.

[9] W. Luo, Z. Zhang, and X. Wang, “Designing polymorphic circuits with
polymorphic gates: a general design approach,” IET Circuits, Devices
& Systems, vol. 1, no. 6, pp. 470–476, 2007.

[10] L. Sekanina, L. Starecek, Z. Kotasek, and Z. Gajda, “Polymorphic
gates in design and test of digital circuits,” International Journal of

Unconventional Computing, vol. 4, no. 2, pp. 125–142, 2008.
[11] R. S. Zebulum and A. Stoica, “Multifunctional Logic Gates for Built-

In Self-Testing,” NASA Tech Briefs, vol. 30, no. 3, p. 10, 2006.
[12] ——, “Ripple Counters Controlled by Analog Voltage,” NASA Tech

Briefs, vol. 30, no. 3, p. 2, 2006.
[13] L. Sekanina, “Evolution of Polymorphic Self-Checking Circuits,”

in Proc. of the 7th Conf. on Evolvable Systems: From Biology to

Hardware, ser. LNCS, no. 4684. Wuhan, China: Springer, 2007,
pp. 186–197.

[14] R. Drechsler and B. Becker, Binary Decision Diagrams: Theory and

Implementation. Kluwer Academic Publishers, Boston, USA, 1998.
[15] R. K. Brayton et al., Logic Minimization Algorithms for VLSI Synthe-

sis. Kluwer Academic Publishers, Boston, MA, USA, 1984.
[16] Berkley Logic Synthesis and Verification Group, ABC: A System

for Sequential Synthesis and verification. [Online]. Available:
http://www.eecs.berkeley.edu/˜ alanmi/abc/

[17] V. Vassilev, D. Job, and J. F. Miller, “Towards the automatic design
of more efficient digital circuits,” in Proc. of the 2nd NASA/DoD
Workshop of Evolvable Hardware. Los Alamitos, CA, US: IEEE
Computer Society, 2000, pp. 151–160.

[18] J. Miller and P. Thomson, “Cartesian Genetic Programming,” in
Proc. of the 3rd European Conference on Genetic Programming
EuroGP2000, ser. LNCS, vol. 1802. Springer, 2000, pp. 121–132.

[19] J. Miller, D. Job, and V. Vassilev, “Principles in the Evolutionary
Design of Digital Circuits – Part I,” Genetic Programming and

Evolvable Machines, vol. 1, no. 1, pp. 8–35, 2000.
[20] J. A. Walker, J. F. Miller, and R. Cavill, “A multi-chromosome

approach to standard and embedded cartesian genetic programming,”
in GECCO 2006: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, vol. 1. ACM Press, 2006, pp. 903–910.

[21] T. Kalganova and J. Miller, “Evolving more efficient digital circuits
by allowing circuit layout evolution and multi-objective fitness,” in
The First NASA/DoD Workshop on Evolvable Hardware. Pasadena,
California: IEEE Computer Society, 19-21 1999, pp. 54–63.

[22] D. E. Knuth, The Art of Computer Programming: Sorting and Search-

ing (2nd ed.). Addison Wesley, 1998.
[23] J. A. Walker and J. Miller, “The Automatic Acquisition, Evolution

and Re-use of Modules in Cartesian Genetic Programming,” IEEE

Transactions on Evolutionary Computation, vol. 12, no. 4, pp. 397–
417, 2008.

[24] J. Torresen, “A scalable approach to evolvable hardware,” Genetic

Programming and Evolvable Machines, vol. 3, no. 3, pp. 259–282,
2002.

[25] E. Stomeo, T. Kalganova, and C. Lambert, “Generalized disjunction
decomposition for evolvable hardware,” IEEE Transaction Systems,

Man and Cybernetics, Part B, vol. 36, no. 5, pp. 1024–1043, 2006.
[26] T. Kalganova, “Bidirectional incremental evolution in extrinsic evolv-

able hardware,” in Proc. of the 2nd NASA/DoD Workshop on Evolvable

Hardware. IEEE Computer Society, Silicon Valley, USA, July 2000,
pp. 65–74.


