
A Case Study on Behavioural Modelling of
Service-Oriented Architectures

Marek Rychlý

Department of Information Systems
Faculty of Information Technology

Brno University of Technology
(Czech Republic)

4nd IFIP TC2 Central and East European Conference
on Software Engineering Techniques,

October 12–14, 2009

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 1 / 16

Outline

1 Introduction
Service-Oriented Architecture (SOA)
Component-Based Development (CBD)
Case Study: Specification and Architecture

2 Behavioural Modeling of Services
A Calculus of Mobile Processes (π-Calculus)
Case Study: Behaviour of Services
Case Study: Behaviour of Components

3 Current Results and Future Work

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 2 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

Service-Oriented Architecture (SOA)
Component-Based Development (CBD)
Case Study: Specification and Architecture

Service-Oriented Architecture (SOA)

Definition (Service-Oriented Architecture)

SOA represents a model in which functionality is decomposed into
small, distinct units (services), which can be distributed over a
network and can be combined together and reused to create
business applications.

[Thomas Erl, SOA: Concepts, Technology, and Design, 2005]

SOA can be described at three levels of abstraction:
1 business processes

(a system is a hierarchically composed business process, represents sequence
of steps in accordance with some business rules leading to a business aim)

2 services
(an implementation of a business processes and their parts with well-defined
interfaces and interoperability for the benefit of the business)

3 components
(an implementation of a service as component-based systems with well-defined
structure and description of its evolution for the benefit of the implementation)

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 4 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

Service-Oriented Architecture (SOA)
Component-Based Development (CBD)
Case Study: Specification and Architecture

Component-Based Development (CBD)

Definition (Software Component)

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. It can
be deployed independently and is subject to composition by third
parties.

[Clemens Szyperski, Component Software: . . . , 2002]

1 Primitive components
(realised directly, beyond the scope of architecture description)

2 Composite components
(decomposable on systems of subcomponents at the lower level)

The (dynamic) architecture of component-based system can evolve:

functional interfaces can be (re)bound via control interfaces,

mobile components can be moved into different contexts,

(composite) components can change their functionality.

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 5 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

Service-Oriented Architecture (SOA)
Component-Based Development (CBD)
Case Study: Specification and Architecture

Case Study Specification

Testing environment

Tester

Set of external system
simulators

System under testing
(SUT)

test script

tester test log

external systems
simulators

MMI

CBCS

external systems
interface

control
software

external
systems

testing environment

SUT

Testing environment is described as a composition of a tester and a set of
external system simulators. Tester automatically executes specific test
scripts and coordinates the SUT via a man machine interface (MMI) and
the external system simulators. Set of external system simulators
interact with SUT and simulate a tested environment (e.g. a behaviour of field
objects as points, track circuits, coloured signals, etc.). Computer based
control system (CBCS):

runs the control software,
interacts with operators via the man machine interface (MMI),
monitors and controls external systems of each rail yard via its
external systems interface.

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 6 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

Service-Oriented Architecture (SOA)
Component-Based Development (CBD)
Case Study: Specification and Architecture

Service-Oriented Architecture of Testing Environment

<<service>>
TestLogger

<<service>>
TestEnvironmentBroker

<<service>>
TestEnvironment

<<service>>
TestManager

AsyncReplyET

 provider
ExecuteTest

 consumer

PublishEnvironment

 provider

FindEnvironment

 consumer

LogResults

 provider

ReadLog

 provider

SubmitTest

 : TestLogger : TestManager : TestEnvironmentBroker : TestEnvironment

Tester

6:

7: asyncReply()

10:

9: readLog()

8: logResults()

5: executeTest()

4:

3: searchForService()2: testSubmission()

1: publishService()

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 7 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

Service-Oriented Architecture (SOA)
Component-Based Development (CBD)
Case Study: Specification and Architecture

TestEnv. Service as Component-Based System

<<component>>
testEnvironment

<<component>>
controller

<<component>>
test

<<component>>
environment

<<component>>
output

executeWithID
 exec : Operation

startTestP
 : CtrlStart

detachTestP/R

 : CtrlDetach

 : CtrlDetach

stopTestP/R

 : CtrlStop

 : CtrlStop

provRefOResP/R

 : CtrlRefProvInterface

 : CtrlRefProvInterface

teAttachP/R

 : CtrlAttach

 : CtrlAttach

 done : Operation

cDone oDone

teReply

oReply

 rep : Operation

 res : Operation

oResult

bindTResP
 : CtrlBindReqInterface

 : CtrlRefProvInterface

teExecTestP/R

tResult

bindTIntP

tInteract

provRefEIntP/R

eInteract

 : CtrlRefProvInterface

 int : Operation res : Operation

 : CtrlBindReqInterface

 int : Operation

 done : Operation
 : RefToComponent

 rep : Operation : RefToComponent

asyncReplyETexecuteTest

Component “testEnvironment” is able to receive component “test” (a test script) and to
attach it as its sub-component via component “controller”.

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 8 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

A Calculus of Mobile Processes (π-Calculus)
Case Study: Behaviour of Services
Case Study: Behaviour of Components

A Calculus of Mobile Processes (π-Calculus)

Algebraic approach to description of a system of concurrent and
mobile processes.
Two concepts: agents (communicating processes) and names
(communication channels, data, etc.).

a〈b〉.P output prefix
a(c).P input prefix

τ.P unobservable
prefix

(c)P restriction of
scope

P + Q sum of capabilities of
processes

P | Q composition of
processes

!P an infinite composition
of the process

P ::= M | P | P | (c)P | !P
M ::= 0 | π.P | M + M
π ::= a〈b〉 | a(c) | τ

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 10 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

A Calculus of Mobile Processes (π-Calculus)
Case Study: Behaviour of Services
Case Study: Behaviour of Components

Reduction, Abstraction and Application
Communication defined as a reduction relation → , the least
relation closed under a set of the reduction rules.

R-INTER (a〈b〉.P1 + M1) | (a(c).P2 + M2) → P1 | P2{b/c}

R-PAR
P1 → P′

1
P1 | P2 → P′

1 | P2
R-RES P → P′

(c)P → (c)P′ R-TAU τ.P + M → P

R-STRUCT
P1=P2 → P′

2=P′
1

P1 → P′
1

R-CONST
Kbb̃c → P{b̃/ã} K ∆

= (ã).P

An abstraction of arity n ≥ 0 is an expression of the form
(a1, . . . ,an).P, where the ai are distinct.

A pseudo-application of an abstraction F def
= (ã).P is an

expression of the form F 〈b̃〉, a process P
{

b̃/ã
}

.

A constant application of a process constant K ∆
= (ã).P, is an

expression of the form K bb̃c, reducible according rule R-CONST.
It allows recursive definitions.

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 11 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

A Calculus of Mobile Processes (π-Calculus)
Case Study: Behaviour of Services
Case Study: Behaviour of Components

Behavioural Description of Services in SOA

Behaviour of the testing environment:

System def
= (st , rl).(et , ar , lr , pe, fe)

(TM〈st , fe, lr〉 | TE〈et , ar , pe〉 | TL〈lr , rl〉 | TEB〈pe, fe〉)

Behaviour of “TestEnvironmentBroker” service:

TEB def
= (pe, fe).(q)(TEBpubbq, pec | TEBfindbq, fe, pec)

TEBpub
∆
= (t , pe).pe(i, d).(t ′)(t〈t ′, i, d〉 | TEBpubbt ′, pec)

TEBfind
∆
= (h, fe, pe).h(h′, i, d).(TEBfindbh′, fe, pec | (fe〈i〉.pe〈i, d〉 + d))

Behaviour of “TestEnvironment” service:

TE def
= (et , ar , pe).TEinit〈et , ar , pe〉.TEimpl〈et , ar〉

TEimpl
def
= (et , ar).(s0, s1, ar s, etg)

(ar s〈ar〉 | (d , t)(etg〈t〉.t(p).Wirebet , p, dc) | TEcomp〈s0, s1, etg , ar s〉)

TEinit
def
= (et , ar , pe).pe〈et , ar〉

. . . see the conference proceedings. . .

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 12 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

A Calculus of Mobile Processes (π-Calculus)
Case Study: Behaviour of Services
Case Study: Behaviour of Components

Behavioural Description of Components

Interface references and binding, import and export, control of the
component’s life-cycle, in component “testEnvironment”:

TEcomp
def
= (s0, s1, p

g
executeTest , p

s
asyncRepltET).(pexecuteTest , rteExecTest ,

ps
teExecTest , rasyncRepltET , pteReply , p

g
teReply , pteAttach)

(CtrlIfs〈pexecuteTest , p
g
executeTest〉 | CtrlIfs〈rteExecTest , ps

teExecTest〉
| CtrlIfs〈rasyncRepltET , ps

asyncRepltET 〉 | CtrlIfs〈pteReply , p
g
teReply 〉

| CtrlEI〈pexecuteTest , rteExecTest〉 | CtrlEI〈pteReply , rasyncRepltET 〉
| CtrlSS〈s0, s1, pteAttach〉 | TE ′

comp〈pteAttach, ps
teExecTest , p

g
teReply 〉)

Core behaviour of composite component “testEnvironment”:

TE ′
comp

def
= (pteAttach, ps

teExecTest , p
g
teReply). . . .

(Ctr〈sctr
0 , sctr

1 , pg
cDone, p

g
teExecTest , rteAttach, rdetachTest , rstopTest ,

rprovRefEInt , rprovRefORes〉 | Env〈senv
0 , senv

1 , pg
eInteract〉

| Out〈sout
0 , sout

1 , pg
oResult , p

s
oDone, p

s
oReply 〉 | . . .)

. . . see the conference proceedings. . .
Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 13 / 16

Introduction
Behavioural Modeling of Services
Current Results and Future Work

Current Results and Future Work

Current Results
The behaviour is described as a single π-calculus process abstraction.
(e.g. process abstraction (st , rl).System)

It describes dynamic architecture with component mobility.
(e.g. service “TestEnvironmentBroker”, component “test” in “testEnvironment”)

Evolution of the architecture can be invoked by functional requirements.
(e.g. processing test scripts invoke changes in component “testEnvironment”)

Verification of properties of the behaviour and model-checking in SOA.
(ensures compatibility of services, limits evolution of architecture, etc.)

Further work

Integration with modelling tools, based on metamodel.

Design-time verification and model-checking, service and component
modelling with constraints.

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 15 / 16

Thanks

Thank you for your attention!

Marek Rychlý A Case Study on Behavioural Modelling of Service-Oriented Architectures (CEE-SET 2009) 16 / 16

	Main Talk
	Introduction
	Service-Oriented Architecture (SOA)
	Component-Based Development (CBD)
	Case Study: Specification and Architecture

	Behavioural Modeling of Services
	A Calculus of Mobile Processes (pi-Calculus)
	Case Study: Behaviour of Services
	Case Study: Behaviour of Components

	Current Results and Future Work

	Appendix
	Appendix
	Thanks

