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ABSTRACT 

The paper deals with optimization of collective communications 

on multistage interconnection networks (MINs). In the 
experimental work, unidirectional MINs like Omega, Butterfly 

and Clos are investigated. The study is completed by bidirectional 
binary, fat and full binary tree. To avoid link contentions and 

associated delays, collective communications are processed in 

synchronized steps. Minimum number of steps is sought for the 
given network topology, wormhole switching, minimum routing 

and given sets of sender and/or receiver nodes. Evolutionary 

algorithm proposed in this paper is able to design optimal 
schedules for broadcast and scatter collective communications. 

Acquired optimum schedules can simplify the consecutive writing 

high-performance communication routines for application-specific 
networks on chip, or for development of communication libraries 

in case of general-purpose multistage interconnection networks. 

Categories and Subject Descriptors 

I.2.8 [Artificial intelligence]: Problem Solving, Control Methods 
and Search – heuristic methods, scheduling. 

General Terms 

Algorithms, Performance, Design. 

Keywords 

Collective communications, communication scheduling, evolutio-

nary design, multistage interconnection networks. 

1. INTRODUCTION 
On-chip networks play a critical role in the performance of 
computing systems including high-speed network routers, 

embedded devices and chip multiprocessors (CMPs) [1]. Moving 

forward, as we integrate progressively more functionality on a 
single die, the communication infrastructure that binds them will 

play a central role in overall chip performance. 

When the number of communicating nodes is small enough, 

a single switch is sufficient to interconnect them within 
a switched-media network. However, the number of switch ports 

is limited by existing VLSI technology, cost considerations, 

power consumption, and so on. When the number of required 
network ports exceeds the number of ports supported by a single 

switch, a fabric of interconnected switches is needed. All the 

connections to the network fabric and between switches within the 
fabric use point-to-point links as opposed to shared links. To save 

chip area wormhole switching [21] is usually implemented to 

reduce necessary buffer size. A common way of addressing the 
crossbar scaling problem consists of splitting the large crossbar 

switch into several stages of smaller switches interconnected in 
such a way that a single pass through the switch fabric allows any 

destination to be reached from any source. Topologies arranged in 

this way are usually referred to as multistage interconnection 
networks (MIN) or multistage switch fabrics [12].  

The reduction in switch cost of MINs comes at the price of 
performance: contention is more likely to occur on network links, 

which degrades its performance. Contention in the form of 

packets blocking in the network arises due to simultaneously 
sharing one or more links by different message transfers. 

In this paper, we want to boost the performance of MINs by 
designing of such communication schedules that prevent any 

possible link contention. Optimized communication schedules can 

be uploaded into switch routing tables and make profit in many 
parallel algorithms. For this reason, four common collective 

communications CC engaging all nodes in a topology based on 

broadcast and scatter services will be analyzed.  

The optimization part of the algorithm is derived form 

evolutionary techniques. These techniques applied already to CC 
scheduling problem on hypercubes of medium size (tens of nodes) 

[3] were able to find optimum solutions obtained analytically. 

However, for some networks studied in this paper no analytic 
methods for scheduling exist, thus the results can be compared 

only with theoretical lower bound only.  

The paper is structured as follows. In Section 2 the investigated 

multistage interconnection networks are defined. Section 3 
specifies the CC scheduling problem and presents time 

complexity of optimal schedules. An improved evolutionary 

algorithm solving this problem is proposed in Section 4. The 
results of CC scheduling in various network topologies are 

summarized and discussed in Section 5. Results obtained by 

evolutionary approach are discussed in Conclusion and possible 
future improvements are suggested. 
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2. MULTISTAGE INTERCONNECTION 

NETWORKS 
A simple definition of unidirectional MINs can be found in [13], 

where MIN is a network generally used for the interconnection of 
a set of N input terminals to M output terminals (processing 

nodes) using sets of fixed-size switches arranged in stages. If 
N=M we say that the MIN is of size N. The degree of the MIN is 

defined as the size of crossbars used to build MIN [14]. 

More formally, MIN is a succession of stages of switching 

elements (SEs) and interconnection wires connecting N 

processing nodes. SEs in the most general architecture are 
themselves interconnection networks of small sizes. The most 

used SEs are hyperbars [15] and more specifically crossbars. If N 

is the MIN’s degree and k is the SE’s degree (the number of 
input/output ports), the minimum number of switches in a stage 

must be N/k.  

The interconnection pattern or patterns between MIN’s stages can 

be represented mathematically by a set of functions. Examples of 

such topologies, examined in this paper, cover Omega and 
Butterfly network. Omega network [16] implements the perfect-

shuffle permutation as its interconnection pattern for each stage; 

see Fig. 1a. The Butterfly network [6], see Fig. 1b, is an 
isomorphic variation of Omega network. In contrast of perfect-

shuffle exchange implemented in Omega, Butterfly is based on 

butterfly permutations corresponding to the computation of a one-
dimensional FFT. In both cases, eight input-output ports are 

interconnected with three stages of 2 x 2 switches. It is easy to see 
that a single pass through the three stages allows any input port to 

reach any output port.  

    

        (a) Omega network  (b) Butterfly network 

Figure 1. Illustration of 8-node Omega and Butterfly network. 

The main disadvantage of permutation based MINs is their zero 

fault-tolerance and high blocking probability. To alleviate the 

bottleneck consisting in only single path between an input-output 
pair, the multipath Clos network has been proposed [17]. Here, 

each network input-output pair can be connected by a path via an 

arbitrary middle stage. The basic version of a Clos network 
consists of three SE stages, as shown in Fig. 2. Clos networks of 

more than three stages emerge by substituting again the middle 

stage SEs by Clos network. 

Clos networks are defined by three integers n, m, and r; n 

represents the number of sources which feed into each of r input 
stage crossbar switches. Each input stage crossbar switch has m 

outlets, and there are m centre stage crossbar switches. There is 
exactly one connection between each input stage switch and each 

middle stage switch. There are r output stage switches, each with 

m inputs and n outputs. Each middle stage switch is connected 
exactly once to each output stage switch. 

 

Figure 2. General form of Clos network, n=3, m=3, r=4. 

The MINs described so far have unidirectional network links, but 

bidirectional forms are easily derived as two MINs back-to-back, 
folded on one another, see. Fig. 3. The overlapping unidirectional 

links run in different directions, thus forming bidirectional links, 

and the overlapping switches merge into a single switch with 

twice the ports (i.e., 4 x 4 switch). A representative of the class is 

a Fat-tree [18] topology originates in folded Butterfly network. 
Unlike traditional trees in computer science, fat trees resemble 

real trees, because they get thicker near the root.  

 

Figure 3. Unfolded version of fat-tree created by two Butterfly 

networks. 

3. CC SCHEDULING PROBLEM 
Many interactions in practical parallel programs occur in well-
defined patterns involving groups of processors. Collective 

communications (CC) [4] involve communications among all 

processors connected by an interconnection network. Each CC 
can be seen as a set of point-to-point communications. The CC 

scheduling problem can be simply described as partitioning this 

set into as few subsets as possible that follow one another in 
a sequence of synchronized steps; all communications in one 

subset proceed in parallel. The main goal is to avoid any conflicts 
in shared resources – links (channels). Several messages between 

source-destination pairs can proceed concurrently and can be 

combined into a single subset if their paths are link-disjoint. All 
message transfers originate in processing nodes where the 

transported messages are created and their destinations are 

determined. To reach the destinations, messages are transported 
via intermediate stages of the MIN where the routing and 

switching mechanism are implemented.  

Collective communications can be categorized on the number of 

transmitting and receiving nodes, and implemented 

communication service. If only one node distributes/collects 
message/messages to/from all other nodes, we talk about one-to-

all or all-to-one communication pattern. We talk about all-to-all 

pattern if all nodes perform the same communication service. 
These communication patterns can implement two distinct 

services, broadcast and scatter. Broadcast service distributes the 

same message to all partners, whereas scatter service delivers a 
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private message to each partners (each node obtains a different 

message). Four basic types of CC will by analyzed in the paper: 
one-to-all broadcast (OAB), all-to-all broadcast (AAB), one-to-all 

scatter (OAS), and all-to-all scatter (AAS). Some other CCs, like 

all-to-one gather (AOG), have the same complexity but reverse 
structure as the basic four types. 

Regardless the MIN’s graph topology, there are known theoretical 
lower bounds on the number of communication steps. The 

broadcast communication (OAB) in a wormhole-switched 

network cannot be done in less than s steps, where s = log2 N is 
given by the number of nodes informed in each step, that is 

initially 1, 1+1 after the first step, 2 + 2 = (2)2 after the second 

step, etc.,…, and 2s ≥ N nodes after step s.  

In case of OAS communication, because each node can inject not 
more then one message at a time, the lower bound is N-1 steps. 

A similar bound is applied to AAB communication, since each 

node has to accept N−1 distinct messages, the lower bound should 

be N−1 steps. Unfortunately, it would be possible only in the case, 
that any two communications from different sources targeted to 

different destinations can be realized in the same step without 

conflict (blocking) [19]. Considering this limitation, the lower 
bound cannot be reached for some of proposed networks.  

For AAS communication pattern each of N processor sends an 
individual message to each of N-1 partners. A lower bound for 

AAS can be obtained considering that one half of messages from 

each processor cross the bisection and the other half do not. There 
will be altogether 2 (N/2) (N/2) of such messages in both ways 

and up to BC messages in one step, where BC is the network 

bisection width [4]. Considering the same limitation as in case of 
AAB, the reachable lower bound will be slightly higher.  

4. CC SCHEDULING ALGORITHM 
The selection of Evolutionary Algorithms (EA) for the scheduling 

problem has been justified already in [3]. Although a new 
methodology of designing near-optimal CC schedules is 

independent of the particular evolutionary algorithm, we restricted 

ourselves only to a simple EDA evolutionary algorithm without 
gene dependencies (UMDA) in this work. 

Univariate Marginal Distribution Algorithm (UMDA) [7] is a very 
simple EDA [10] (Estimation of Distribution Algorithm) which 

does not reflect any interaction between genes (variables/solution 

parameters). The main advantages of this algorithm are better 
mixing of genetic material than is possible in standard GA [11], 

very simple implementation and much faster execution than more 

complex EDAs like BOA (Bayesian Optimization Algorithm [10]) 
algorithm. Of course, any other EA can be employed. Basic 

comparison of a success rate and execution time of other types of 

EA applied to CC scheduling problem can be found in [8], [9]. 

The following subsections detail the evolutionary approach. 

Section 4.1 shows the global data structure and a preprocessing 
phase. Section 4.2 describes how the dataset is encoded, Section 

4.3 presents the evaluation function used in EA and Section 4.4 
briefly describes acceleration and restoration heuristics used to 

increase a success rate and reduce execution time required to 

reach a sufficient result. Parameters of used EA (UMDA) are 
outlined in Section 4.5. 

4.1 Preprocessing Phase  
An input data structure maintains a MIN’s topology description, 

a definition of CC and sets of senders, receivers and intermediate 
switches. The topology description is saved in the form of 

a processing nodes’ and switching elements’ neighbors list, where 

the nodes/switches are considered to be neighbors only if they are 
connected by a simple direct link.  

After an input file is loaded, the data have to be preprocessed. The 
preprocessor takes the topology description and finds all paths 

(shortest ones in the case of minimal routing) between all source-

destination node pairs and stores them into a special data 
structure. This task is performed by a modified well known 

Dijkstra’s algorithm [20]. 

4.2 Encoding 
As broadcast and scatter CCs are completely different 
communication services, candidate solutions are encoded in 

separate ways.  

An optimal OAS schedule designed for 8-node Omega is shown in 

Fig. 4. This schedule reaches the lower bound of 7 steps. The 

initiator, node no. 0, informs one other node in each step by means 
of some of the shortest paths found during preprocessing.  

    

    

    

 

Figure 4. An OAS schedule reaching the lower bound on 

number of communication steps. 

A direct encoding has been designed for OAS/AAS chromosome; 

i.e. a chromosome contains an exact description of a schedule. The 

chromosome contains N genes; each one represents a particular 
point-to-point communication between the initiator and a 

destination node. A gene consists of two items: a utilized path (the 

first component) and the used time step (the second component). 
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The OAS chromosome corresponding to Fig. 4 is displayed in Fig. 

5. The gene no. 0 does not include any value since it is not 
necessary to transmit the message to itself through the network. 

The node no. 0 is the initiator. The allele of the gene no. 1 implies 

employing of the path 1 (there is only a single path from 0 to 1) 
and finishing during the first communication step. Analogously, 

the allele of gene no. 7 implies utilizing of the single path between 

the initiator and node no. 7. This communication will be executed 
during the seventh step. 

An AAS chromosome is created by extending the vector to a 
matrix, each row of which corresponds to one of OAS 

communication.  

 

Figure 5. The structure of OAS chromosome for 8-node 

Omega network. 

An optimal OAB schedule designed for 8-node Omega network is 

shown in Fig. 6. This schedule reaches the lower bound of 3 steps. 
The initiator, node no. 0 informs node no. 2 during the first 

communication step. Since the distributed messages are the same 

for all nodes, these two nodes can become initiators for the second 
step, such node no. 3 receives the message from the node no. 0, 

and node no. 7 from the node no. 2. Finally, the message is 

distrusted by nodes 0, 2, 3 and 7 to nodes 6, 5, 4 and 1.  

    

 

Figure 6. An OAB schedule reaching the lower bound on 

number of communication steps.  

A direct encoding has been designed for OAB. Each chromosome 

consists of N genes, one for each destination node. Individual 

genes are composed of three items: a source node index, an index 
of the used path, and a step number. Fig. 7 shows an encoding 

corresponding to the optimal schedule displayed in Fig. 6. As we 
can see from the encoding, the node no. 1 receives the broadcasted 

message through the node no. 7 in the third communication step, 

whereas the node no. 7 receives the message from the node no. 2 
during the second communication step. 

The main disadvantage of this encoding is possible formation of 

some inadmissible solutions during the process of genetic 
manipulation. We say that a solution is inadmissible if it cannot 

lead to a correct broadcast schedule. E.g. the situation when in a 

certain step a node should receive a message from a node that has 
not received it yet (e.g. node 2 from node 1 in the first step). That 

is why admissibility has to be verified for each chromosome before 

evaluating fitness and if it is necessary the chromosome is restored, 
see section 4.4. The AAB chromosome is then a collection of N 

OAB chromosomes, a kind of a matrix chromosome. 

 

Figure 7. The structure of OAB chromosome for 8-node 

Omega network. 

4.3 The Conflict Counting Fitness Function 
The main idea of fitness function is based on testing a conflict-
free (non blocking) condition. We say two communications are in 

conflict if and only if they share the same link in the same 
communication step (see Fig. 8). The fitness function is based on 

counting conflicts between all point-to-point communications 

realized in the same steps. The valid communication schedule for 
a given number of communication steps must be conflict-free. 

Valid schedules are either optimal (the number of steps equals the 

lower bound) or suboptimal. Evolution of a valid schedule for the 
given number of steps is finished up as soon as fitness (number of 

conflicts) drops to zero. If it does not do so in a reasonable time, 

the prescribed number of steps must be increased. 

    

Figure 8. Two point-to-point communications.  

4.4 Acceleration and Restoration Heuristics 
New heuristics have been developed to improve OAS/AAS 

optimization speed taking into account a search space restriction 

due to a limited message injection capability of network nodes. 
Because no node can send more than one message in 

a communication step, an acceleration heuristic checks this 

condition in the whole chromosome and redesigns terminal node 
utilization in all communication steps before the fitness function is 

evaluated.  

The second OAS/AAS heuristic replaces the mutation operator in 

an employed EA. It randomly swaps time slots of two point-to-
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point communications. These simple heuristics dramatically 

decrease the initial conflict count and lead to the better 
convergence of EA.  

New heuristics for OAB/AAB chromosome restoration have been 
also developed and employed. It proceeds in subsequent 

communication steps and construct a correct broadcast schedule. A 

check is made for every node whether the node receives the 
message really from the node already informed. If not so, the 

source node of this point-to-point communication is randomly 

replaced by a node that has already received the message. A 
change of the source node has naturally an impact on utilized 

links. Hence the original path is replaced by newly chosen one 

from a list of exploitable paths between new input-output pair. 

To accelerate the convergence of the EA, an OAB/AAB specific 

heuristics have been developed. In the first step good building 
blocks are injected into the initial population. For all point-to-

point communications of OAB, the time slot is set initially to the 

same value (step no. 0). By selecting correct time slots, the 
restoration heuristic produces corrected broadcast trees. 

4.5 Parameters of EA 
The simple UMDA evolutionary algorithm has been used for the 

search for near optimal communication schedules. The value of the 
population size was set to 60 individuals because higher values did 

not improve the quality of founded schedules and did not justify 

an increased computation time. The binary tournament selects the 
better half of the current population to form the parent 

subpopulation. The univariate marginal probabilistic model is 

created according to the parent subpopulation in each generation. 
New chromosomes are generated by the sampling of the estimated 

probabilistic model. Each chromosome is then mutated by a simple 

mutation operator with probability of 90%. This operator is 
responsible for testing and changing possible source-destination 

paths for particular point-to-point communications. The mutation 

rate is very high due to great number of source-destination pairs 
whose amount growth exponentially with the number of stages. 

Finally, the newly generated solutions replace the worse half of the 

current population.  

5. RESULTS OF EVOLUTIONARY 

OPTIMIZATION 
The evolutionary algorithm described previously has been applied 

to several MINs that already found the commercial application 

such as Omega, Butterfly and Clos networks [5]. The bidirectional 
MINs have been represented by binary and fat tree where terminal 

nodes were placed only in leaves. This study was completed by a 

full binary tree, where each node represents one processing node. 

First, we verified the ability of EA to discover optimal 
communication schedules for unidirectional MINs, see Table 1. 

Two integers in one cell separated by a slash indicate that the 

lower bound (a smaller integer) has not been reached. A single 
integer represents both the lower and the upper identical bounds 

reached by EA. Obtained schedules for 8-node Omega and 

Butterfly met the theoretical lower bound for all classes of 
collective communications, and thus cannot be improved 

anymore. The limits of simultaneously executable transfers are 

reached by 12-node and 16-node topologies. For successful 
accomplishment of all-to-all communications, EA had to add one 

additional communication step to the theoretically derived value. 

The Clos network embodies the same problem that leads also in 
one step addition. 

Table 1. Performance of unidirectional MINs with N terminal 

nodes (reached steps/theoretical step). 

Topology  OAB AAB OAS AAS 

Omega 8 3 7 7 7 

Omega 16 4 16/15 15 16/15 

Butterfly 8 3 7 7 7 

Butterfly 16 4 16/15 15 16/15 

Clos 12 4 12/11 11 12/11 

Clos 16 4 16/15 15 16/15 

 

As an example of the resulting schedules, the optimal AAB 

schedule for 8-node Omega network is presented in Table 2. In 
a cell, there is shown an index of the destination node for 

particular communication (row) and time slot (column). The 
lower bound for AAB is very tight and indicates that all the links 

are busy in all 7 steps.  

Table 2. AAB in 7 steps on 8-node Omega network. 

steps    → 

src 1 2 3 4 5 6 7 

0 4 2 1 5 3 6 7 

1 5 6 0 2 4 7 3 

2 0 1 3 7 6 5 4 

3 6 4 5 0 7 2 1 

4 2 7 6 3 5 1 0 

5 1 3 7 4 2 0 6 

6 7 5 4 1 0 3 2 

7 3 0 2 6 1 4 5 

 

The graphic visualization of the first of seven AAB 

communication steps is shown in Fig. 9. All terminal nodes send 

one their message to a single destination without blocking.  

 

 

Figure 9. One of AAB steps on Omega network. 
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Second, we investigated the ability of proposed EA to discover 

optimal communication schedules for bidirectional MINs 
represented by binary (B-Tree), fat (F-Tree), and full binary tree 

(FB-Tree). 

Binary trees represent suitable interconnection networks for Chip 

Multiprocessor because they need only very simple link 

arrangement on a 2D silicon chip. However, as we can see in 
Table 3, their performance rapidly decrease with the number of 

connected processing nodes. More importantly, the proposed EA 

is able to find optimal communication schedules for most tested 
binary trees and investigated communication patterns. An asterisk 

(*) indicates the fact that only a sub-optimal schedule has been 

discovered.  

The fat tree topology eliminates the bottleneck of narrowing 

bandwidth towards the root. The height of the tree remains the 
same, but the number of bidirectional links proportionally 

increases. In this case, the EA was able to find optimal schedules 

for fat-trees with 4, 8, 16, and 32 leave, except AAS on 32-leave 
fat tree. There was achieved only a suboptimal solution with one 

step worse time complexity.  

Finally, we completed our experimental work with full binary 

tree, where all switching elements integrate also a processing unit. 

Since full binary tree is an asymmetrical topology, several 
different situations depending on a level of source node (from 

a leave to the root), were investigated. In all cases, the theoretical 
lower bounds were reached.  

Table 3. Performance of bidirectional MINs with N processing 

nodes.  

Topology OAB AAB OAS AAS 

B-Tree 4 2 3 3 4 

B-Tree 8 3 8 7 16 

B-Tree 16 4 20* 15 64 

B-Tree 32 5 64* 31 256 

F-Tree 4 2 3 3 3 

F-Tree 8 3 7 7 7 

F-Tree 16 4 15 15 15 

F-Tree 32 5 31 31 32* 

FB-Tree 7 3/2/2 7 6/4/3 12 

FB-Tree 15 3/3/3/3 15 14/12/8/7 56 

FB-Tree 31 4/4/4/ 

4/4 

31 30/28/24/ 

16/15 

240 

FB-Tree 63 5/5/5/ 

5/5/5 

64 62/60/56/ 

50/48/32 

992 

 

An example of designed optimal schedule for 8-leave fat-tree 
topology is shown in Table 4. The Fig. 10 shows the graphic 

visualization of the first communication step of this 
communication. Let us note, since interconnection links are 

bidirectional, the message need not to go through all intermediate 

stages. We can also see that not all links are utilized in the 
illustrated communication step. Finally, it should be mentioned, 

that the presented communication schedule is not unique; several 

optimal schedules can be found for a given CC.  

 

Table 4. AAS in 7 steps on 8-node fat tree network. 

steps    → 

Src 1 2 3 4 5 6 7 

0 2 7 5 4 6 3 1 

1 5 3 6 7 4 0 2 

2 6 5 4 1 3 7 0 

3 7 6 1 0 2 5 4 

4 3 1 7 6 0 2 5 

5 4 2 0 3 1 6 7 

6 1 0 2 5 7 4 3 

7 0 4 3 2 5 1 6 

 

In the simplest linear time model of wormhole-switching 

communication in distributed memory systems, the real 
computational times of CC can be obtained as a sum of 

communication steps, each step composed of a start-up delay plus 

the serialization delay mi t1  

,steps # )( 10 ×+= tmtt iCC
    (1) 

where mi is a length (in bytes) of the longest message transported 

during step i, and t1 is per byte transfer time. Start-up latency t0 is 

the sw- and hw-based latency in the source and destination nodes 
for initializing the cache-to-cache or memory-to-memory DMA 

transfer and includes possible synchronization overhead. The 

hardware overhead in routers along the traversed path has been 
neglected in (1). Contention for links and associated delays are 

completely avoided in our schedules. 

 

 

Figure 10. One of AAB steps on Omega network 

For example, duration of one communication step in CC for 

typical cluster parameters [7] t0=1 µs, t1= 0.5 ns/byte and the size 

of the longest message of 1024 bytes has the value of 1.512 µs 

and the resulting CC times range from 3.02 µs (2 steps) up to 

1499µs (992 steps). According to frequency of CCs and an 
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amount of interleaved computation in a certain application, 

efficiency of parallel processing can be estimated. 

Table 5 shows the success rate (in percentage) of evolving an 

optimal schedule, if it was found. An asterisk (*) indicates the fact 
that only a sub-optimal schedule has been discovered. Ten 

experimental runs were executed for each topology and 

communication pattern. The success rates of OAS and OAB 
communications match the value of 100% in all tested topologies. 

The success rates of all-to-all CC embody also sufficient values. 

Only for the most complex benchmarks the success rate dropped 
bellow applicable values of 50% (trees with more then 16 

communicating nodes). 

Table 5. Success rate of proposed EA (calculated from 10 

runs) 

Topology OAB AAB OAS AAS 

Omega 8 100 100 100 100 

Omega 16 100 50 100 100 

Butterfly 8 100 100 100 100 

Butterfly 16 100 50 100 80 

Clos 12 100 100 100 100 

Clos 16 100 80 100 40 

B-Tree 4 100 100 100 100 

B-Tree 8 100 100 100 100 

B-Tree 16 100 50 100 100 

B-Tree 32 100 10 100 90 

F-Tree 4 100 100 100 100 

F-Tree 8 100 100 100 80 

F-Tree 16 100 100 100 70 

F-Tree 32 100 100 100 30 

FB-Tree 7 100 100 100 100 

FB-Tree 15 100 90 100 100 

FB-Tree 31 100 80 100 100 

FB-Tree 63 100 20 100 50 

 

Table 6 shows average execution times of the EA obtained form 

successful runs (global optimum achieved). For OAB 

communication, the values are less than one second for simple 
network topologies. The longest execution time (FB-Tree 63) is 

about 62 seconds. OAS communication is relatively easy; a 

solution takes always less than one second. On the other hand, a 
suitable solution for all-to-all communication takes much longer 

time; especially for AAS communication. Evolution of an optimal 
plan for full binary tree with 63 nodes takes more than six days. 

An exponential increase of the execution time with network can be 

observed. 

All experiments were realized on IBM Blade servers equipped 

with 2x dualcore AMD Opteron 275 processors and 4GB RAM.  

6. CONCLUSIONS 
The aim of the paper was granted. The UMDA evolutionary with 
embedded efficient heuristic was able to find out collective 

communication plans mostly close or equal to theoretical lower 

bounds. The only exception is AAS communication in larger 

networks, where the lower bounds are apparently too tight.  

Table 6. Execution times of EA in seconds, minutes, hours and 

days (average values during successful runs, see table 5). 

Topology OAB AAB OAS AAS 

Omega 8 <1s <1s <1s <1s 

Omega 16 8s 23s <1s 4m6s 

Butterfly 8 <1s <1s <1s 8s 

Butterfly 16 7s 16s <1s 23m18s 

Clos 12 3s 7s <1s 16m53s 

Clos 16 8s 2m6s <1s 1h27s 

B-Tree 4 <1s <1s <1s <1s 

B-Tree 8 <1s 32s <1s 6s 

B-Tree 16 4s 6m13s <1s 26s 

B-Tree 32 25s 35m14s <1s 9m32s 

F-Tree 4 <1s <1s <1s <1s 

F-Tree 8 <1s 8m41s <1s 12s 

F-Tree 16 5s 11m1s <1s 6m16s 

F-Tree 32 18s 52h4m <1s 31m21s 

FB-Tree 7 <1s <1s <1s 1s 

FB-Tree 15 7s 13m4s <1s 1h24m 

FB-Tree 31 38s 2h11m <1s 23h43s 

FB-Tree 63 1m2s 13h42s <1s 6d8h 

 

From all MINs, Fat tree networks promise the best scalable 

performance, even though the node count can attain only a few 

values. However, the performance can be fine-tuned by the 
number of processors per node. Inter-node CC is then 

implemented by message passing, whereas intra-node CC can 

utilize either a synchronized access to the shared L2 cache by 
threads or again passing messages among processes [2]. CC 

schedules designed by the presented evolutionary technique are 

targeted for micro-programmed DMA engines residing in nodes 
of the network.  

Some of the found CC schedules attain the theoretical lower 
bound on the number of communication steps and thus there is no 

way to improve them further. Future research may reveal limits on 

the size of networks that can be handled by parallel 
implementation of evolutionary techniques. Another direction for 

future research could explore a combining model for CC on MINs 

or their fault tolerance. 
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