
Evolutionary Optimization of Multistage Interconnection

Networks Performance
 Jiri Jaros

Brno University of Technology
Bozetechova 2

612 66 Brno, Czech Republic
+420 54114-1207

jarosjir@fit.vutbr.cz

ABSTRACT

The paper deals with optimization of collective communications

on multistage interconnection networks (MINs). In the
experimental work, unidirectional MINs like Omega, Butterfly

and Clos are investigated. The study is completed by bidirectional
binary, fat and full binary tree. To avoid link contentions and

associated delays, collective communications are processed in

synchronized steps. Minimum number of steps is sought for the
given network topology, wormhole switching, minimum routing

and given sets of sender and/or receiver nodes. Evolutionary

algorithm proposed in this paper is able to design optimal
schedules for broadcast and scatter collective communications.

Acquired optimum schedules can simplify the consecutive writing

high-performance communication routines for application-specific
networks on chip, or for development of communication libraries

in case of general-purpose multistage interconnection networks.

Categories and Subject Descriptors

I.2.8 [Artificial intelligence]: Problem Solving, Control Methods
and Search – heuristic methods, scheduling.

General Terms

Algorithms, Performance, Design.

Keywords

Collective communications, communication scheduling, evolutio-

nary design, multistage interconnection networks.

1. INTRODUCTION
On-chip networks play a critical role in the performance of
computing systems including high-speed network routers,

embedded devices and chip multiprocessors (CMPs) [1]. Moving

forward, as we integrate progressively more functionality on a
single die, the communication infrastructure that binds them will

play a central role in overall chip performance.

When the number of communicating nodes is small enough,

a single switch is sufficient to interconnect them within
a switched-media network. However, the number of switch ports

is limited by existing VLSI technology, cost considerations,

power consumption, and so on. When the number of required
network ports exceeds the number of ports supported by a single

switch, a fabric of interconnected switches is needed. All the

connections to the network fabric and between switches within the
fabric use point-to-point links as opposed to shared links. To save

chip area wormhole switching [21] is usually implemented to

reduce necessary buffer size. A common way of addressing the
crossbar scaling problem consists of splitting the large crossbar

switch into several stages of smaller switches interconnected in
such a way that a single pass through the switch fabric allows any

destination to be reached from any source. Topologies arranged in

this way are usually referred to as multistage interconnection
networks (MIN) or multistage switch fabrics [12].

The reduction in switch cost of MINs comes at the price of
performance: contention is more likely to occur on network links,

which degrades its performance. Contention in the form of

packets blocking in the network arises due to simultaneously
sharing one or more links by different message transfers.

In this paper, we want to boost the performance of MINs by
designing of such communication schedules that prevent any

possible link contention. Optimized communication schedules can

be uploaded into switch routing tables and make profit in many
parallel algorithms. For this reason, four common collective

communications CC engaging all nodes in a topology based on

broadcast and scatter services will be analyzed.

The optimization part of the algorithm is derived form

evolutionary techniques. These techniques applied already to CC
scheduling problem on hypercubes of medium size (tens of nodes)

[3] were able to find optimum solutions obtained analytically.

However, for some networks studied in this paper no analytic
methods for scheduling exist, thus the results can be compared

only with theoretical lower bound only.

The paper is structured as follows. In Section 2 the investigated

multistage interconnection networks are defined. Section 3
specifies the CC scheduling problem and presents time

complexity of optimal schedules. An improved evolutionary

algorithm solving this problem is proposed in Section 4. The
results of CC scheduling in various network topologies are

summarized and discussed in Section 5. Results obtained by

evolutionary approach are discussed in Conclusion and possible
future improvements are suggested.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GECCO’09, July 8–12, 2009, Montréal Québec, Canada.

Copyright 2009 ACM 978-1-60558-325-9/09/07...$5.00.

2. MULTISTAGE INTERCONNECTION

NETWORKS
A simple definition of unidirectional MINs can be found in [13],

where MIN is a network generally used for the interconnection of
a set of N input terminals to M output terminals (processing

nodes) using sets of fixed-size switches arranged in stages. If
N=M we say that the MIN is of size N. The degree of the MIN is

defined as the size of crossbars used to build MIN [14].

More formally, MIN is a succession of stages of switching

elements (SEs) and interconnection wires connecting N

processing nodes. SEs in the most general architecture are
themselves interconnection networks of small sizes. The most

used SEs are hyperbars [15] and more specifically crossbars. If N

is the MIN’s degree and k is the SE’s degree (the number of
input/output ports), the minimum number of switches in a stage

must be N/k.

The interconnection pattern or patterns between MIN’s stages can

be represented mathematically by a set of functions. Examples of

such topologies, examined in this paper, cover Omega and
Butterfly network. Omega network [16] implements the perfect-

shuffle permutation as its interconnection pattern for each stage;

see Fig. 1a. The Butterfly network [6], see Fig. 1b, is an
isomorphic variation of Omega network. In contrast of perfect-

shuffle exchange implemented in Omega, Butterfly is based on

butterfly permutations corresponding to the computation of a one-
dimensional FFT. In both cases, eight input-output ports are

interconnected with three stages of 2 x 2 switches. It is easy to see
that a single pass through the three stages allows any input port to

reach any output port.

 (a) Omega network (b) Butterfly network

Figure 1. Illustration of 8-node Omega and Butterfly network.

The main disadvantage of permutation based MINs is their zero

fault-tolerance and high blocking probability. To alleviate the

bottleneck consisting in only single path between an input-output
pair, the multipath Clos network has been proposed [17]. Here,

each network input-output pair can be connected by a path via an

arbitrary middle stage. The basic version of a Clos network
consists of three SE stages, as shown in Fig. 2. Clos networks of

more than three stages emerge by substituting again the middle

stage SEs by Clos network.

Clos networks are defined by three integers n, m, and r; n

represents the number of sources which feed into each of r input
stage crossbar switches. Each input stage crossbar switch has m

outlets, and there are m centre stage crossbar switches. There is
exactly one connection between each input stage switch and each

middle stage switch. There are r output stage switches, each with

m inputs and n outputs. Each middle stage switch is connected
exactly once to each output stage switch.

Figure 2. General form of Clos network, n=3, m=3, r=4.

The MINs described so far have unidirectional network links, but

bidirectional forms are easily derived as two MINs back-to-back,
folded on one another, see. Fig. 3. The overlapping unidirectional

links run in different directions, thus forming bidirectional links,

and the overlapping switches merge into a single switch with

twice the ports (i.e., 4 x 4 switch). A representative of the class is

a Fat-tree [18] topology originates in folded Butterfly network.
Unlike traditional trees in computer science, fat trees resemble

real trees, because they get thicker near the root.

Figure 3. Unfolded version of fat-tree created by two Butterfly

networks.

3. CC SCHEDULING PROBLEM
Many interactions in practical parallel programs occur in well-
defined patterns involving groups of processors. Collective

communications (CC) [4] involve communications among all

processors connected by an interconnection network. Each CC
can be seen as a set of point-to-point communications. The CC

scheduling problem can be simply described as partitioning this

set into as few subsets as possible that follow one another in
a sequence of synchronized steps; all communications in one

subset proceed in parallel. The main goal is to avoid any conflicts
in shared resources – links (channels). Several messages between

source-destination pairs can proceed concurrently and can be

combined into a single subset if their paths are link-disjoint. All
message transfers originate in processing nodes where the

transported messages are created and their destinations are

determined. To reach the destinations, messages are transported
via intermediate stages of the MIN where the routing and

switching mechanism are implemented.

Collective communications can be categorized on the number of

transmitting and receiving nodes, and implemented

communication service. If only one node distributes/collects
message/messages to/from all other nodes, we talk about one-to-

all or all-to-one communication pattern. We talk about all-to-all

pattern if all nodes perform the same communication service.
These communication patterns can implement two distinct

services, broadcast and scatter. Broadcast service distributes the

same message to all partners, whereas scatter service delivers a

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

private message to each partners (each node obtains a different

message). Four basic types of CC will by analyzed in the paper:
one-to-all broadcast (OAB), all-to-all broadcast (AAB), one-to-all

scatter (OAS), and all-to-all scatter (AAS). Some other CCs, like

all-to-one gather (AOG), have the same complexity but reverse
structure as the basic four types.

Regardless the MIN’s graph topology, there are known theoretical
lower bounds on the number of communication steps. The

broadcast communication (OAB) in a wormhole-switched

network cannot be done in less than s steps, where s = log2 N is
given by the number of nodes informed in each step, that is

initially 1, 1+1 after the first step, 2 + 2 = (2)2 after the second

step, etc.,…, and 2s ≥ N nodes after step s.

In case of OAS communication, because each node can inject not
more then one message at a time, the lower bound is N-1 steps.

A similar bound is applied to AAB communication, since each

node has to accept N−1 distinct messages, the lower bound should

be N−1 steps. Unfortunately, it would be possible only in the case,
that any two communications from different sources targeted to

different destinations can be realized in the same step without

conflict (blocking) [19]. Considering this limitation, the lower
bound cannot be reached for some of proposed networks.

For AAS communication pattern each of N processor sends an
individual message to each of N-1 partners. A lower bound for

AAS can be obtained considering that one half of messages from

each processor cross the bisection and the other half do not. There
will be altogether 2 (N/2) (N/2) of such messages in both ways

and up to BC messages in one step, where BC is the network

bisection width [4]. Considering the same limitation as in case of
AAB, the reachable lower bound will be slightly higher.

4. CC SCHEDULING ALGORITHM
The selection of Evolutionary Algorithms (EA) for the scheduling

problem has been justified already in [3]. Although a new
methodology of designing near-optimal CC schedules is

independent of the particular evolutionary algorithm, we restricted

ourselves only to a simple EDA evolutionary algorithm without
gene dependencies (UMDA) in this work.

Univariate Marginal Distribution Algorithm (UMDA) [7] is a very
simple EDA [10] (Estimation of Distribution Algorithm) which

does not reflect any interaction between genes (variables/solution

parameters). The main advantages of this algorithm are better
mixing of genetic material than is possible in standard GA [11],

very simple implementation and much faster execution than more

complex EDAs like BOA (Bayesian Optimization Algorithm [10])
algorithm. Of course, any other EA can be employed. Basic

comparison of a success rate and execution time of other types of

EA applied to CC scheduling problem can be found in [8], [9].

The following subsections detail the evolutionary approach.

Section 4.1 shows the global data structure and a preprocessing
phase. Section 4.2 describes how the dataset is encoded, Section

4.3 presents the evaluation function used in EA and Section 4.4
briefly describes acceleration and restoration heuristics used to

increase a success rate and reduce execution time required to

reach a sufficient result. Parameters of used EA (UMDA) are
outlined in Section 4.5.

4.1 Preprocessing Phase
An input data structure maintains a MIN’s topology description,

a definition of CC and sets of senders, receivers and intermediate
switches. The topology description is saved in the form of

a processing nodes’ and switching elements’ neighbors list, where

the nodes/switches are considered to be neighbors only if they are
connected by a simple direct link.

After an input file is loaded, the data have to be preprocessed. The
preprocessor takes the topology description and finds all paths

(shortest ones in the case of minimal routing) between all source-

destination node pairs and stores them into a special data
structure. This task is performed by a modified well known

Dijkstra’s algorithm [20].

4.2 Encoding
As broadcast and scatter CCs are completely different
communication services, candidate solutions are encoded in

separate ways.

An optimal OAS schedule designed for 8-node Omega is shown in

Fig. 4. This schedule reaches the lower bound of 7 steps. The

initiator, node no. 0, informs one other node in each step by means
of some of the shortest paths found during preprocessing.

Figure 4. An OAS schedule reaching the lower bound on

number of communication steps.

A direct encoding has been designed for OAS/AAS chromosome;

i.e. a chromosome contains an exact description of a schedule. The

chromosome contains N genes; each one represents a particular
point-to-point communication between the initiator and a

destination node. A gene consists of two items: a utilized path (the

first component) and the used time step (the second component).

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

The OAS chromosome corresponding to Fig. 4 is displayed in Fig.

5. The gene no. 0 does not include any value since it is not
necessary to transmit the message to itself through the network.

The node no. 0 is the initiator. The allele of the gene no. 1 implies

employing of the path 1 (there is only a single path from 0 to 1)
and finishing during the first communication step. Analogously,

the allele of gene no. 7 implies utilizing of the single path between

the initiator and node no. 7. This communication will be executed
during the seventh step.

An AAS chromosome is created by extending the vector to a
matrix, each row of which corresponds to one of OAS

communication.

Figure 5. The structure of OAS chromosome for 8-node

Omega network.

An optimal OAB schedule designed for 8-node Omega network is

shown in Fig. 6. This schedule reaches the lower bound of 3 steps.
The initiator, node no. 0 informs node no. 2 during the first

communication step. Since the distributed messages are the same

for all nodes, these two nodes can become initiators for the second
step, such node no. 3 receives the message from the node no. 0,

and node no. 7 from the node no. 2. Finally, the message is

distrusted by nodes 0, 2, 3 and 7 to nodes 6, 5, 4 and 1.

Figure 6. An OAB schedule reaching the lower bound on

number of communication steps.

A direct encoding has been designed for OAB. Each chromosome

consists of N genes, one for each destination node. Individual

genes are composed of three items: a source node index, an index
of the used path, and a step number. Fig. 7 shows an encoding

corresponding to the optimal schedule displayed in Fig. 6. As we
can see from the encoding, the node no. 1 receives the broadcasted

message through the node no. 7 in the third communication step,

whereas the node no. 7 receives the message from the node no. 2
during the second communication step.

The main disadvantage of this encoding is possible formation of

some inadmissible solutions during the process of genetic
manipulation. We say that a solution is inadmissible if it cannot

lead to a correct broadcast schedule. E.g. the situation when in a

certain step a node should receive a message from a node that has
not received it yet (e.g. node 2 from node 1 in the first step). That

is why admissibility has to be verified for each chromosome before

evaluating fitness and if it is necessary the chromosome is restored,
see section 4.4. The AAB chromosome is then a collection of N

OAB chromosomes, a kind of a matrix chromosome.

Figure 7. The structure of OAB chromosome for 8-node

Omega network.

4.3 The Conflict Counting Fitness Function
The main idea of fitness function is based on testing a conflict-
free (non blocking) condition. We say two communications are in

conflict if and only if they share the same link in the same
communication step (see Fig. 8). The fitness function is based on

counting conflicts between all point-to-point communications

realized in the same steps. The valid communication schedule for
a given number of communication steps must be conflict-free.

Valid schedules are either optimal (the number of steps equals the

lower bound) or suboptimal. Evolution of a valid schedule for the
given number of steps is finished up as soon as fitness (number of

conflicts) drops to zero. If it does not do so in a reasonable time,

the prescribed number of steps must be increased.

Figure 8. Two point-to-point communications.

4.4 Acceleration and Restoration Heuristics
New heuristics have been developed to improve OAS/AAS

optimization speed taking into account a search space restriction

due to a limited message injection capability of network nodes.
Because no node can send more than one message in

a communication step, an acceleration heuristic checks this

condition in the whole chromosome and redesigns terminal node
utilization in all communication steps before the fitness function is

evaluated.

The second OAS/AAS heuristic replaces the mutation operator in

an employed EA. It randomly swaps time slots of two point-to-

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Conflict

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Conflict-free

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 1 3 ……. - - - 2 1 2

0 1 7

destination node step number

message source path index gene
 gene

0 1 7

- - 1 1 7 1

destination node

 path index step number

…….

point communications. These simple heuristics dramatically

decrease the initial conflict count and lead to the better
convergence of EA.

New heuristics for OAB/AAB chromosome restoration have been
also developed and employed. It proceeds in subsequent

communication steps and construct a correct broadcast schedule. A

check is made for every node whether the node receives the
message really from the node already informed. If not so, the

source node of this point-to-point communication is randomly

replaced by a node that has already received the message. A
change of the source node has naturally an impact on utilized

links. Hence the original path is replaced by newly chosen one

from a list of exploitable paths between new input-output pair.

To accelerate the convergence of the EA, an OAB/AAB specific

heuristics have been developed. In the first step good building
blocks are injected into the initial population. For all point-to-

point communications of OAB, the time slot is set initially to the

same value (step no. 0). By selecting correct time slots, the
restoration heuristic produces corrected broadcast trees.

4.5 Parameters of EA
The simple UMDA evolutionary algorithm has been used for the

search for near optimal communication schedules. The value of the
population size was set to 60 individuals because higher values did

not improve the quality of founded schedules and did not justify

an increased computation time. The binary tournament selects the
better half of the current population to form the parent

subpopulation. The univariate marginal probabilistic model is

created according to the parent subpopulation in each generation.
New chromosomes are generated by the sampling of the estimated

probabilistic model. Each chromosome is then mutated by a simple

mutation operator with probability of 90%. This operator is
responsible for testing and changing possible source-destination

paths for particular point-to-point communications. The mutation

rate is very high due to great number of source-destination pairs
whose amount growth exponentially with the number of stages.

Finally, the newly generated solutions replace the worse half of the

current population.

5. RESULTS OF EVOLUTIONARY

OPTIMIZATION
The evolutionary algorithm described previously has been applied

to several MINs that already found the commercial application

such as Omega, Butterfly and Clos networks [5]. The bidirectional
MINs have been represented by binary and fat tree where terminal

nodes were placed only in leaves. This study was completed by a

full binary tree, where each node represents one processing node.

First, we verified the ability of EA to discover optimal
communication schedules for unidirectional MINs, see Table 1.

Two integers in one cell separated by a slash indicate that the

lower bound (a smaller integer) has not been reached. A single
integer represents both the lower and the upper identical bounds

reached by EA. Obtained schedules for 8-node Omega and

Butterfly met the theoretical lower bound for all classes of
collective communications, and thus cannot be improved

anymore. The limits of simultaneously executable transfers are

reached by 12-node and 16-node topologies. For successful
accomplishment of all-to-all communications, EA had to add one

additional communication step to the theoretically derived value.

The Clos network embodies the same problem that leads also in
one step addition.

Table 1. Performance of unidirectional MINs with N terminal

nodes (reached steps/theoretical step).

Topology OAB AAB OAS AAS

Omega 8 3 7 7 7

Omega 16 4 16/15 15 16/15

Butterfly 8 3 7 7 7

Butterfly 16 4 16/15 15 16/15

Clos 12 4 12/11 11 12/11

Clos 16 4 16/15 15 16/15

As an example of the resulting schedules, the optimal AAB

schedule for 8-node Omega network is presented in Table 2. In
a cell, there is shown an index of the destination node for

particular communication (row) and time slot (column). The
lower bound for AAB is very tight and indicates that all the links

are busy in all 7 steps.

Table 2. AAB in 7 steps on 8-node Omega network.

steps →

src 1 2 3 4 5 6 7

0 4 2 1 5 3 6 7

1 5 6 0 2 4 7 3

2 0 1 3 7 6 5 4

3 6 4 5 0 7 2 1

4 2 7 6 3 5 1 0

5 1 3 7 4 2 0 6

6 7 5 4 1 0 3 2

7 3 0 2 6 1 4 5

The graphic visualization of the first of seven AAB

communication steps is shown in Fig. 9. All terminal nodes send

one their message to a single destination without blocking.

Figure 9. One of AAB steps on Omega network.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 6 4 2

1 3 5 7

Second, we investigated the ability of proposed EA to discover

optimal communication schedules for bidirectional MINs
represented by binary (B-Tree), fat (F-Tree), and full binary tree

(FB-Tree).

Binary trees represent suitable interconnection networks for Chip

Multiprocessor because they need only very simple link

arrangement on a 2D silicon chip. However, as we can see in
Table 3, their performance rapidly decrease with the number of

connected processing nodes. More importantly, the proposed EA

is able to find optimal communication schedules for most tested
binary trees and investigated communication patterns. An asterisk

(*) indicates the fact that only a sub-optimal schedule has been

discovered.

The fat tree topology eliminates the bottleneck of narrowing

bandwidth towards the root. The height of the tree remains the
same, but the number of bidirectional links proportionally

increases. In this case, the EA was able to find optimal schedules

for fat-trees with 4, 8, 16, and 32 leave, except AAS on 32-leave
fat tree. There was achieved only a suboptimal solution with one

step worse time complexity.

Finally, we completed our experimental work with full binary

tree, where all switching elements integrate also a processing unit.

Since full binary tree is an asymmetrical topology, several
different situations depending on a level of source node (from

a leave to the root), were investigated. In all cases, the theoretical
lower bounds were reached.

Table 3. Performance of bidirectional MINs with N processing

nodes.

Topology OAB AAB OAS AAS

B-Tree 4 2 3 3 4

B-Tree 8 3 8 7 16

B-Tree 16 4 20* 15 64

B-Tree 32 5 64* 31 256

F-Tree 4 2 3 3 3

F-Tree 8 3 7 7 7

F-Tree 16 4 15 15 15

F-Tree 32 5 31 31 32*

FB-Tree 7 3/2/2 7 6/4/3 12

FB-Tree 15 3/3/3/3 15 14/12/8/7 56

FB-Tree 31 4/4/4/

4/4

31 30/28/24/

16/15

240

FB-Tree 63 5/5/5/

5/5/5

64 62/60/56/

50/48/32

992

An example of designed optimal schedule for 8-leave fat-tree
topology is shown in Table 4. The Fig. 10 shows the graphic

visualization of the first communication step of this
communication. Let us note, since interconnection links are

bidirectional, the message need not to go through all intermediate

stages. We can also see that not all links are utilized in the
illustrated communication step. Finally, it should be mentioned,

that the presented communication schedule is not unique; several

optimal schedules can be found for a given CC.

Table 4. AAS in 7 steps on 8-node fat tree network.

steps →

Src 1 2 3 4 5 6 7

0 2 7 5 4 6 3 1

1 5 3 6 7 4 0 2

2 6 5 4 1 3 7 0

3 7 6 1 0 2 5 4

4 3 1 7 6 0 2 5

5 4 2 0 3 1 6 7

6 1 0 2 5 7 4 3

7 0 4 3 2 5 1 6

In the simplest linear time model of wormhole-switching

communication in distributed memory systems, the real
computational times of CC can be obtained as a sum of

communication steps, each step composed of a start-up delay plus

the serialization delay mi t1

,steps #)(10 ×+= tmtt iCC
 (1)

where mi is a length (in bytes) of the longest message transported

during step i, and t1 is per byte transfer time. Start-up latency t0 is

the sw- and hw-based latency in the source and destination nodes
for initializing the cache-to-cache or memory-to-memory DMA

transfer and includes possible synchronization overhead. The

hardware overhead in routers along the traversed path has been
neglected in (1). Contention for links and associated delays are

completely avoided in our schedules.

Figure 10. One of AAB steps on Omega network

For example, duration of one communication step in CC for

typical cluster parameters [7] t0=1 µs, t1= 0.5 ns/byte and the size

of the longest message of 1024 bytes has the value of 1.512 µs

and the resulting CC times range from 3.02 µs (2 steps) up to

1499µs (992 steps). According to frequency of CCs and an

0 1 2 3 4 5 6 7

0 6 4 2

1 3 5 7

amount of interleaved computation in a certain application,

efficiency of parallel processing can be estimated.

Table 5 shows the success rate (in percentage) of evolving an

optimal schedule, if it was found. An asterisk (*) indicates the fact
that only a sub-optimal schedule has been discovered. Ten

experimental runs were executed for each topology and

communication pattern. The success rates of OAS and OAB
communications match the value of 100% in all tested topologies.

The success rates of all-to-all CC embody also sufficient values.

Only for the most complex benchmarks the success rate dropped
bellow applicable values of 50% (trees with more then 16

communicating nodes).

Table 5. Success rate of proposed EA (calculated from 10

runs)

Topology OAB AAB OAS AAS

Omega 8 100 100 100 100

Omega 16 100 50 100 100

Butterfly 8 100 100 100 100

Butterfly 16 100 50 100 80

Clos 12 100 100 100 100

Clos 16 100 80 100 40

B-Tree 4 100 100 100 100

B-Tree 8 100 100 100 100

B-Tree 16 100 50 100 100

B-Tree 32 100 10 100 90

F-Tree 4 100 100 100 100

F-Tree 8 100 100 100 80

F-Tree 16 100 100 100 70

F-Tree 32 100 100 100 30

FB-Tree 7 100 100 100 100

FB-Tree 15 100 90 100 100

FB-Tree 31 100 80 100 100

FB-Tree 63 100 20 100 50

Table 6 shows average execution times of the EA obtained form

successful runs (global optimum achieved). For OAB

communication, the values are less than one second for simple
network topologies. The longest execution time (FB-Tree 63) is

about 62 seconds. OAS communication is relatively easy; a

solution takes always less than one second. On the other hand, a
suitable solution for all-to-all communication takes much longer

time; especially for AAS communication. Evolution of an optimal
plan for full binary tree with 63 nodes takes more than six days.

An exponential increase of the execution time with network can be

observed.

All experiments were realized on IBM Blade servers equipped

with 2x dualcore AMD Opteron 275 processors and 4GB RAM.

6. CONCLUSIONS
The aim of the paper was granted. The UMDA evolutionary with
embedded efficient heuristic was able to find out collective

communication plans mostly close or equal to theoretical lower

bounds. The only exception is AAS communication in larger

networks, where the lower bounds are apparently too tight.

Table 6. Execution times of EA in seconds, minutes, hours and

days (average values during successful runs, see table 5).

Topology OAB AAB OAS AAS

Omega 8 <1s <1s <1s <1s

Omega 16 8s 23s <1s 4m6s

Butterfly 8 <1s <1s <1s 8s

Butterfly 16 7s 16s <1s 23m18s

Clos 12 3s 7s <1s 16m53s

Clos 16 8s 2m6s <1s 1h27s

B-Tree 4 <1s <1s <1s <1s

B-Tree 8 <1s 32s <1s 6s

B-Tree 16 4s 6m13s <1s 26s

B-Tree 32 25s 35m14s <1s 9m32s

F-Tree 4 <1s <1s <1s <1s

F-Tree 8 <1s 8m41s <1s 12s

F-Tree 16 5s 11m1s <1s 6m16s

F-Tree 32 18s 52h4m <1s 31m21s

FB-Tree 7 <1s <1s <1s 1s

FB-Tree 15 7s 13m4s <1s 1h24m

FB-Tree 31 38s 2h11m <1s 23h43s

FB-Tree 63 1m2s 13h42s <1s 6d8h

From all MINs, Fat tree networks promise the best scalable

performance, even though the node count can attain only a few

values. However, the performance can be fine-tuned by the
number of processors per node. Inter-node CC is then

implemented by message passing, whereas intra-node CC can

utilize either a synchronized access to the shared L2 cache by
threads or again passing messages among processes [2]. CC

schedules designed by the presented evolutionary technique are

targeted for micro-programmed DMA engines residing in nodes
of the network.

Some of the found CC schedules attain the theoretical lower
bound on the number of communication steps and thus there is no

way to improve them further. Future research may reveal limits on

the size of networks that can be handled by parallel
implementation of evolutionary techniques. Another direction for

future research could explore a combining model for CC on MINs

or their fault tolerance.

7. ACKNOWLEDGMENTS
This research has been carried out under the financial support of

the research grants “Design and hardware implementation of a

patent-invention machine”, GA102/07/0850 (2007-9), “Safety and
security of networked embedded system applications”,

GA102/08/1429 (2008-10), both care of Grant Agency of Czech

Republic, and “Security-Oriented Research in Information
Technology”, MSM 0021630528 (2007-13).

8. REFERENCES
[1] van der Steen, A. J., Dongarra, J. J. Overview of Recent

Supercomputers. TOP 500 Supercomputer Sites, Nov.
2007 Edition, http://www.arcade-eu.org/overview/.

[2] Stewart, L. C., Gingold, D. A New Generation of Cluster
Interconnect. White Paper, SiCortex Inc., Dec. 2006.

[3] Jaroš J., Ohlídal M., Dvořák V. An Evolutionary Approach

to Collective Communication Scheduling, In: 2007 Genetic

and Evolutionary Computational Conference, New York,
US, ACM, 2007,pp. 2037-2044.

[4] Duato, J., Yalamanchili, S. Interconnection Networks – An
Engineering Approach, Morgan Kaufman Publishers,

Elsevier Science, 2003.

[5] Hennessy, J. L., Patterson, D.A. Computer Architecture - A

Quantitative Approach. 4th Edition, Morgan Kaufman

Publishers, Inc., 2006.

[6] Karim, F., Nguyen, A. An Interconnect Architecture for

Networking Systems on Chips. IEEE Micro, Sept. – Oct.
2002, pp.36-45.

[7] Mühlenbein, H., Paaß, G. From recombination of genes to
the estimation of distributions I. Binary parameters. In

Lecture Notes in Computer Science 1411: Parallel Problem

Solving from Nature – PPSN IV, pp. 178-187, 1996.

[8] Jaroš, J., Dvořák, V. Speeding-up OAS and AAS

Communication in Networking System on Chips, In: Proc. of
8th IEEE Workshop on Design and Diagnostic of Electronic

Circuits and Systems, Sopron, HU, UWH, 2005, pp. 4, ISBN

9639364487.

[9] Ohlídal, M., Jaroš, J., Dvořák, V., Schwarz, J. Evolutionary

Design of OAB and AAB Communication Schedules for
Interconnection Networks, In: Lecture Notes in Computer

Science, 2006, no. 3907, DE, pp. 267-278, ISSN 0302-9743.

[10] Larrañaga, P., Lozano, J. A. Estimation of Distribution

Algorithms. Kluwer Academic Publishers, London 2002,
ISBN 0-7923-7466-5.

[11] Goldberg D. Genetics Algorithms in Search, Optimization,

and Machine Learning, Addision-Wesley Publishing
Company, 1989.

[12] Dally, W., Towles, B. Principles and Practices of
Interconnection Networks. The Morgan Kaufmann Series in

Computer Architecture and Design, Morgan Kaufman

Publishers, 2004.

[13] Szymanski T., Hamacher V. On the permutation capability of

multistage interconnection networks. IEEE Trans. Comp., C-
36(7):810–822, Jul. 1987.

[14] Kruskal, C. P., Snir, M. The performance of multistage
interconnection networks for multiprocessors. IEEE Trans.

Comput., C-32(12):1091–1098, Dec. 1983.

[15] Alleyne B. D.: Methodologies for Analysis and Design of

Data Routers in Large SIMD Computers. PhD thesis,

Princton Univ., June 1994.

[16] Lawrie, D. A.: Access and alignment of data in an array

processor. IEEE Trans. Comput., C-24(12):1145–1155, Dec.
1975.

[17] Tusch, D., Hommel, G. Multicast routing in Clos networks.
In: Proceedings of 2004 Design, Analysis, and Simulation of

Distributed Systems, Arlington, pp. 21-27, 2004

[18] Leiserson, C. E. Fat-trees: Universal networks for hardware-

efficient supercomputing, IEEE Transaction on Computers,

34(10):892-901, October 1985.

[19] Yuanyuan, Y., Pan, Y., Wang, J. Abstract Permutation
Capability of Optical Multistage Interconnection Networks,

In: Journal of Parallel and Distributed Computing, pp. 72-

91, 2000.

[20] Dijkstra, E. W.: A note on two problems in connection with

graphs. Numerische Mathematik, 1:269–271, 1959.

[21] Ni, L. M., Mckinley, P. K. A survey of wormhole routing

techniques in direct networks. IEEE Computer}, vol. 26, pp.
62-76, 1993.

