
Heuristic Synthesis of Multi-Terminal BDDs
Based on Local Width/Cost Minimization

Petr Mikušek, Václav Dvořák

Brno University of Technology, CZ
{imikusek, dvorak}@fit.vutbr.cz

Abstract

Multi-terminal Binary Decision Diagrams

(MTBDDs) are useful representation of multiple output
Boolean functions. However, construction of such a
diagram is a difficult task, especially when in some
sense optimum diagram is sought. The paper presents
an improved algorithm of MTBDD synthesis aiming at
minimum MTBDD width or cost. The presented algo-
rithm is a core of the upgraded version of a synthesis
tool that accepts incompletely specified integer-valued
functions of Boolean variables specified by possibly
compatible cubes. The suggested technique is suitable
for hardware (LUT cascades) or firmware implemen-
tation (branching microprograms).

Keywords: Incompletely specified functions, multi-
terminal BDDs, LUT cascades, iterative disjunctive
decomposition, functional decomposition.

1. Introduction

Design of digital systems is based on various speci-

fications of Boolean functions, most often in a form of
Boolean expressions or in cube notation (Espresso
formats), [1]. Another popular machine representation
of single-output Boolean functions uses binary deci-
sion diagrams (BDDs), which can have many forms,
[2], [3].

Conversion of a single Boolean function into a BDD
and related optimization problems were studied inten-
sively [2]. As the variable ordering influences the cost
and shape of the diagram, we should find one ordering
of variables among all possible, that produces a dia-
gram optimal in a certain sense (e.g. minimum cost,
width or average path length).

Generalization of BDDs to multiple-output Boolean
functions are so called word-level BDDs, among them
e.g. multi-terminal BDDs (MTBDDs) or BDDs for
characteristic function BDD_for_CF [3], [4]. The latter
diagrams use both input and output variables at deci-
sion nodes what makes them more complex; their

width can be minimized in some cases by the known
algorithm [5]. On the other hand, optimum MTBDD
synthesis, basically optimum ordering of variables with
respect to a certain goal, is covered very little in the
literature [3]; and yet, tools for BDDs synthesis [6] and
manipulation cannot be used for MTBDDs, nor can be
a MTBDD obtained from BDDs of component Boo-
lean functions. Given the ordering of variables, the
diagram may be obtained by decomposing the original
function repeatedly, i.e. removing a group of 1 or more
variables at each step.
 In many cases integer values can be taken as iden-
tifiers for binary output vectors of multiple-output
Boolean functions. This paper is more-less theoretical,
presenting a heuristic technique of the MTBDD con-
struction for incompletely specified integer functions
of Boolean variables. The main contribution of the
paper is the upgraded algorithm of iterative decompo-
sition accepting incompletely specified functions.

The paper is structured as follows. Section 2 deals
with the basic definitions and notions. MTBDD con-
struction using a simple disjunctive decomposition
iteratively is described in Section 3. Our heuristic ap-
proach to variable ordering is discussed in Section 4.
The results and future research directions are com-
mented on in Conclusion.

2. Basic definitions and notions

To begin our discussion, we define the following

terminology. An integer function of n Boolean vari-
ables is defined as a set F of (n+1)-tuples, called func-
tion cubes, in which the first n components correspond
to the binary inputs and the single integer component,
to the output. Set F is only a shorthand description of a
full function table, even though in the small example
illustrated below (Table 1a, b) the full map looks
smaller. The function F in Table 1 will be used as a
running example in the sequel.

The value of symbol “-“ is considered uncertain,
whereas 0 and 1 are certain. An element c of {0, -, 1}n
is called an input cube. We will be using notions of
cube calculus [8].

Table 1. Integer function specification

a) by the full map b) by cubes

x3x4
x1x2 00 01 10 11
00 0 0 2 dc
01 0 dc 2 1
10 3 3 dc 3
11 3 1 2 1

 x1 x2 x3 x4 F
1 1 0 0 - 3
2 1 - 0 0 3
3 1 0 - 1 3
4 0 - 1 0 2
5 - 1 1 0 2
6 - 1 - 1 1
7 - 1 1 1 1
8 0 - 0 0 0
9 0 0 0 - 0

A set of (n+1)-tuples does not necessarily define an

integer function, because it is possible to assign con-
flicting output values. Similarly to Boolean fr func-
tions [1], we introduce integer-valued fr functions;
they must satisfy the consistency condition, which
guarantees that there are no contradictions; shortly, if
two input cubes are compatible, their corresponding
outputs must be identical.
 Now we will define the basic notions related to
MTBDDs (BDDs) and functional decomposition.
 Def. 1. The cost of the MTBDD is given by the
total number of true decision nodes, with outgoing
edges directed to different nodes.
 Def. 2. The width of the MTBDD at a certain height
is the number of edges crossing the section of the
MTBDD between adjacent levels of decision nodes,
where the edges incident to the same node are counted
as one.
 Functional decomposition [3] of function F(X)
is a serial disjunctive separation of F into two func-
tions G (residual) and H (detached) such that

 F(X) = H(U,G(V)). (1)
We want functions G and H to have strictly fewer in-
puts than F.
 The advantage of MTBDDs over BDDs_for_CF is
that while the former diagrams can be cut into slices of
arbitrary size, the latter diagrams must be recon-
structed after decomposition [5], because input and
output variables are interleaved.

3. MTBDD construction based on
the disjunctive iterative decomposition

 Decomposition can be applied iteratively to a se-
quence of residual functions with a decreasing number
of variables. In this section we will present a method
of iterative disjunctive decomposition based on notion

of blankets [8], modified and simplified for our case of
integer functions. We will select always a single input
variable (|U|=1), from now on denoted as a detached
variable, that will be removed from a residual function
in such a way that the width or cost of the diagram will
be minimized locally. More general techniques like
non-disjunctive decomposition or multi-variable de-
composition (|U|>1) can be explored in future as well.
 Instead of the exact formulation of a decomposition
algorithm, we prefer to illustrate it on our running ex-
ample. At the beginning we will select input variables
for iterative decomposition simply in a natural se-
quence, with no optimization in mind. A single vari-
able will be removed from the function in one decom-
position step. Starting with variable x1 in our running
example, we first create two-block blankets β2, β3, β4
for each input variable x2, x3, x4:

β2 = {1, 2, 3, 4, 8, 9; 2, 4, 5, 6, 7, 8}
β3 = {1, 2, 3, 6, 8, 9; 3, 4, 5, 6, 7} (2)
β4 = {1, 2, 4, 5, 8, 9; 1, 3, 6, 7, 9}.

Blankets consist of subsets (blocks) of cubes denoted
by line numbers from Table 1b. The first block in each
blanket includes cubes which contain “0” or “–” in
place of variable x1, cubes in the second block have
value “1” or “–” in place of variable x1. The input
blanket for the subset (X\x1) is then obtained as an
intersection of two-block blankets (2):

β = {1, 2, 8, 9; 1, 3, 9; 4; 3; 2, 8; 6; 4, 5; 6, 7}. (3)
Each block in blanket β can be assigned an ordered
pair of function values
 [F(0, x2, x3, x4), F(1, x2, x3, x4)]. (4)
There are three types of these output pairs:
a) type [u, v]: (true pair or decision node)
two values in the pair are different, u ≠ v; e.g. blocks
(1,2,8,9), (1,3,9) and (2,8) in blanket (3) generate pair
[0,3];
b) type [u, u]: (degenerated pair or decision node)
two values in the pair are identical; e.g. blocks (6) and
(6,7) generate pair [1,1] and block (4,5) pair [2,2];
c) type [u,-] or [-,u]:
one of the values (4) doesn’t exist in the list of cubes
(it’s don’t care); e.g. block 4 generates pair [2,-] and
block 3 generates [-,3]. Don’t care value will be re-
placed by a particular value later to match case a) or
b).

Now we can create compatible classes of these pairs
with the goal to select a set of maximal classes, with
minimal cardinality, that covers all the pairs; blocks
with compatible output pairs get the same new id. In
our example eight compatible classes in blanket β can
be merged to three {1, 2, 3, 8, 9; 4, 5; 6, 7}, denoted
with new id 0, 1, and 2, see Table 2. The minimal car-
dinality of merged blocks ensures that the number of

dc = don´t care

outputs log2|G| of the residual function G1(x2, x3, x4),
is as small as possible. Finding maximal compatibility
classes of pairs (4) is easy and can follow the algo-
rithm below:

Algorithm 3.1. Assigning id’s to output pairs.

1. List and enumerate all distinct output pairs with
different certain values (type [u, v]);
2. continue in listing and enumeration of output pairs
with the same certain values (type [u, u]);
3. output pairs with one certain value and one uncer-
tain value (types [u,-] or [-, u]):

if there is a compatible pair [u, u] in the list , use its
id;
else if there is a compatible pair, type [u,w] or
[w,u], in the list , use its id;
else (hardware optimization) if possible, join two
output pairs [v, -] and [-,w] into a single pair [v, w]
and assign it a next new id;
else insert a new output pair with certain values [u,
u] into the list and assign it a next new id.

 Uncertain values are replaced by certain values in
such a way as to reduce the number of new id numbers
to a minimum. This is in fact utilization of don’t cares
for minimization. In more complex cases with ternary
output vectors or when removing more than one vari-
able at a time, finding the minimal cover must be done
by more general methods, e.g. by graph coloring [8].

The detached function H1 is obtained, even though
not in the cube form but in the integer form, by reading
the first table in Table 2 backward,
 H1(x1, new id) = [F(0, x2, x3, x4), F(1, x2, x3, x4)].

To obtain the residual function G1 is a bit trickier.
The input blanket for the subset (X\x1) completed by
function values “new id” contains redundant cubes
which must be removed. On the other hand, all rele-
vant minterms of G1 must be covered in the reduced
cube set as well. Function G1 in our example is speci-
fied by five cubes, Table 2.

In the 2nd decomposition step we repeat the same
procedure: the input blanket γ for the subset X\{x1,x2}
consists of four blocks that can be merged to only
three. Functions H2 and G2 are obtained as before, the
rest of procedure is straightforward.

By now, we have obtained a sequence of detached
functions H1 to H4 that can be implemented by four
layers of a MTBDD. Construction of the MTBDD
starts from leaves and goes left to the root, Fig. 1. The
new id is used as a decision node label and integer
values of the detached function H|x=0, H|x=1 for two
values of the detached variable x are labels of succes-
sor nodes.

Table 2. Iterative decomposition procedure

 x1 new
β 0 1 id

1,2,8,9 0, 3 0 H1 x2 x3 x4 G1
1,3,9 0, 3 0 1 0 0 - 0

4 2, - 1 2 - 0 0 0
3 -, 3 0 → 3 0 - 1 0

2,8 0, 3 0 4 - 1 0 1
6 1, 1 2 5 1 - 1 2

4,5 2, 2 1 G1
6,7 1, 1 2

 x2 new

γ 0 1 id x3 x4 G2
1,2 0, 0 0 H2 1 0 0 0

1,3,5 0, 2 1 → 2 - 1 1
4 1, 1 2 3 1 0 2

3,5 0, 2 1

 x3 new

δ 0 1 id x4 G3
1,3 0, 2 1 H3 1 0 1
2 1, 1 0 → 2 1 0

 x4 new

ε 0 1 id
1,2 1, 0 0 H4 0

0

0

1
1

0
3

2

1

0
d c b a

0

2 1

2 d=1

d=0

Fig. 1. MTBDD as a result of disjunctive
iterative decomposition

4. Heuristic iterative decomposition

The remaining question not addressed as yet is,

which variable should be used in any given step. We
use a heuristics that strives to optimize one level of the
MTBDD at a time. There are more sophisticated heu-
ristics such as sifting where the window of several
variables is moved from the root to leaves in order to
optimize the position of several variables at a time [3].
However, if desired, our approach could be extended
to more than one detached variables.

There are three parameters of MTBDDs that can be
optimized: size (cost), width and an average path
length (APL). For firmware implementation of
MTBDDs, only cost minimization is of interest (de-
generate nodes do not count). In our heuristics we
minimize the number of regular nodes level by level,
from leaves to the root. We expect that the total cost
will be close to the minimum total cost. That is why we
also talk about suboptimal MTBDD synthesis.

If hardware LUT cascades are to be generated, a
slightly modified optimization criterion is required.
The main concern is the cascade width defined as the
number of binary rails connecting adjacent LUTs. It is
related to the MTBDD width, the number of edges
between adjacent levels of the diagram, as

 # rails = ⎡log2 (# edges)⎤. (5)
The following algorithm minimizes the local width:

Algorithm 4.1. Selection of a variable to minimize
the local width/cost of the MTBDD.
step ← 0;
do {

repeat the simple disjunctive decomposition with
each of (n – step) variables;
apply the minimum local width criterion: select the
variable that generates the minimum number of new
id numbers (labels of decision nodes, LUT rows);
in case of a tie and (firmware optimization only):
apply the lowest cost criterion: select a variable pro-
ducing the lowest number of output pairs of type [u,
v] – true decision nodes;
in case of a tie again, select one variable randomly;
step ← step +1;

} while step < n-1.

To aid MTBDD synthesis, the program tool HIDET
has been developed [7]. The first version accepted only
completely specified integer-valued fr functions speci-
fied by disjoint cubes. The new version adopting the
algorithm from Section 3 (now under construction)
allows incomplete fr functions and compatible input
cubes. As functions with many don’t cares are quite
common, this is important innovation.

6. Conclusion

The presented method of heuristic MTBDD synthe-

sis of multiple-output Boolean functions concentrated
on theoretical basis of the more general key algorithm
of HIDET accepting incomplete integer-valued fr func-
tions specified by possibly compatible cubes. Decom-
position used in the algorithm is based on notion of
blankets. The procedure to minimize the local width or

cost of diagrams has been formally presented. It is re-
lated to minimum cover of maximal compatibility
classes that is in our case not too difficult to find.

Future research will be devoted to experiments with
the upgraded version of HIDET and possible to its
further extension, namely replacing integer values by
ternary output cubes. This would make possible to
clarify applications best suitable for MTBDDs on one
hand and for BDD_for_CF diagrams on the other.

Acknowledgement

This research has been carried out under the finan-
cial support of the research grants “Design and hard-
ware implementation of a patent-invention machine”,
GA102/07/0850 (2007-9), “Safety and security of net-
worked embedded system applications”,
GA102/08/1429 (2008-10), "Mathematical and Engi-
neering Approaches to Developing Reliable and Se-
cure Concurrent and Distributed Computer Systems"
GA 102/09/H042 (2009-12), all in care of Grant
Agency of Czech Republic, and “Security-Oriented
Research in Information Technology”, MSM
0021630528 (2007-13).

References

[1] M.J.S. Smith, Application-Specific Integrated Circuits.

Addison-Wesley Longman Inc., New York, p.1026, 1997.
[2] R. Drechsler, B. Becker, Binary Decision Diagrams -

Theory and Implementation. Springer, 1998.
[3] Yanushkevich, S. N., Miller, D., M., Shmerko, V. P.,

Stankovic, R. S., Decision Diagram Techniques for Mi-
cro- and Nanoelectronic Design. CRC Press, Taylor &
Frasnis Group, Boica Raton, FL, 2006.

[4] T. Sasao, Y. Iguchi and M. Matsuura, "Comparison of
decision diagrams for multiple-output logic functions," In-
ternational Workshop on Logic and Synthesis
(IWLS2002), New Orleans, Louisiana, June 4-7, 2002,
pp.379-384.

 [5] T. Sasao and M. Matsuura: BDD representation for
incompletely specified multiple-output logic functions and
its applications to functional decomposition, Design
Automation Conference, pp.373-378, June 2005.

[6] http://tams-www.informatik.uni-hamburg.de/applets/
[7] Mikušek Petr, Dvořák Václav: On Lookup Table Cas-

cade-Based Realizations of Arbiters, In: 11th
EUROMICRO Conference on Digital System Design
DSD 2008, Parma, IT, IEEE CS, 2008, pp. 795-802.

[8] Brzozowski, J.A., Luba, T.: Decomposition of Boolean
Functions Specified by Cubes. Research report CS-97-01,
University of Waterloo, Canada, p.36, 1997.

