
Towards the Automatic Evolutionary Prediction
of the FOREX Market Behaviour

Karel Slaný
Department of Computer Systems

Faculty of Information Technology, Brno University of Technology
Brno, Czech Republic

Email: slany@fit.vutbr.cz

Abstract

In this paper a self-adapting architecture for FOREX market prediction,
which is being developed, is described. The proposed system utilizes genetic
programming (GP) for predictor representation. The goal of the system is the
design and adaptation of simple predictors which can either be used by the
system itself or be ’manually’ used by a human trader.

Keywords

FOREX; prediction; genetic programming; on-line evolution

1. Introduction

The FOREX is the worlds biggest market. The trading
moves around the globe 24 hours a day, 7 days a week. It
is considered to trade the amount of 1.5 · 1012USD every day.
Formerly the market was accessible only to banks and big
financial institutions. Nowadays everyone can open an account
at a broker and go trading FOREX commodities. However with
many big institutions and even more small traders, all of them
using computers to somehow predict the future behaviour,
the market is considered to be very efficient. The market
by itself provides less information about its future behaviour.
Synthetic prediction models based on various techniques such
as statistical analysis [2], [4], [6], neural networks, fuzzy
logic [1], evolutionary algorithms [3] etc. are constantly being
developed [5].

Evolutionary algorithms (EAs) represent an interesting al-
ternative to conventional design techniques. This is because
EAs can generate solutions without the knowledge about the
internal structure of the solved problem. The found solutions
frequently embody complex structures which are difficult to
understand by a human designer. In the case of FOREX data
prediction this can be of advantage, because the market shows
a very complicated behaviour. The EA can be used either to
optimize parameters of a human-designed model or to design
the predictor model from scratch.

Another way of classifying the design process is according
to the training process. The predictor can be designed and
verified on static data before being used. After the design
process is finished the predictor is going to be used. After
some time a demand for a new predictor will rise, because

the currently used predictor is obsolete. Then the process of
evolution needs to be restarted. In the second case the pre-
dictor is being trained on dynamically changing training data.
The predictors, designed during the never-ending adaptation
process, are constantly being optimized to meet the changes
in the environment. The currently best evolved predictor can
be verified and used for prediction. It can be automatically
replaced by a fitter solution.

In the paper a self-adapting system architecture is being
described. The system is based on a EA running in background
to the changing environment.

2. System Structure

The evolutionary system, in it’s structure, is designed to
operate independently on the human-operator interference. It
is capable of adapting the evolved candidate solutions to the
changes in the market environment on the fly. The design
follows the design of a more simple system [12] which is also
working in a changing environment. The system can be divided
into five separately operating subsystems (fig. 1). Currently it
is used for prediction of FOREX market behaviour but it can
be easily modified to deal with other tasks.

2.1. Preprocessor

The preprocessor is responsible for translating input data
into an internal representation. The system uses a low-level
input data representation - tick data. The data are obtained
by sampling price changes. They are in no way modified and
enter the system as they are sampled from the market.

The main idea of the preprocessor is not filtering-out the
possible noise from the input data because it might contain
useful information. The preprocessor, as it is designed, intro-
duces additional information into the input data. Additional
supportive values are computed, such as moving averages of
different time-windows. The values can pick out interesting
data such as peaks in specified time intervals. The preprocessor
also computes, with a certain delay, the referential function
which is used for fitness evaluation. The preprocessor is
primary designed to reduce the computational load of the EA
unit, simply by computing some built-in function results in
advance – this can speed-up the evolution heavily.

PREPROCESSOR

EA UNIT

FITNESS
EVALUATION

UNIT

PREDICTOR
UNIT

HISTORY BUFFER

INPUT
DATA

ADDITIONAL
DATA

REFERENTIAL
DATA

AD RD ID

GENOME FITNESS

G

G G

F
OUTPUT

INPUT

Fig. 1. Structure of the predictor system. The system
is designed to run EAs in changing environments. The
core of the system is the EA unit communicating with the
predictor unit which containing the best evolved solutions
and computing the system response.

To evaluate all the necessary data to support the evolution
the preprocessor contains a circular buffer of sampled past
inputs which are being used to compute all the necessary data.

All the data produced by the preprocessor are supplied with
a time stamp. The time stamp serves for the easier assemblage
of the data in other system units.

2.2. History Buffer

The preprocessed data are provided with a time stamp and
then stored into a large buffer according to the supplied time
stamps. Old data are replaced with new one. The data stored
in the buffer are being used both as training data for the EA
and also as input data for the prediction unit.

As mentioned before, the preprocessor unit can compute
the referential function for training data but with a certain
delay. The history buffer has to assemble the correct referential
function values with the sampled tick data which are already
stored in the buffer. This can be done easily according to the
time stamps.

At the current stage of the system development the time
stamps are only used to identify corresponding data in the
buffer. But there exists a possibility for utilizing the informa-
tion in the time stamps. This is one of the subjects of the
experiments in progress.

2.3. EA Unit

The core of the system is a unit capable of running evolu-
tionary algorithms which designs new predictors and/or adapts
them to the continually changing environment. The system uti-
lizes tree-based genetic programming (GP) chromosomes [9]
for predictor representation. The tree-based GP representation
can easily be changed to another form of GP such as Cartesian
genetic programming (CGP) [11]. This is an advantage in
cases where a fixed chromosome length is desired.

The unit holds a population of candidate solutions which
are constantly being adapted to the changing environment.
The fitness of the best solution is being compared with the
fitness values of the predictors stored in the prediction unit.
In cases when a candidate solution is better than a solution in
the predictor unit a candidate solution is send/received to/from
the predictor unit.

2.4. Fitness Evaluation Unit

The fitness evaluation is located separately from the EA
unit because fitness values are also needed for the predictor
evaluation in the prediction unit. The unit communicates
with the history buffer, which contains the training data, and
evaluates the fitness value of all the candidate solutions and
predictors which are present in the system.

The fitness evaluation unit is the most resource demanding
subsystem because of the nature of the training data. Each
candidate solution and predictor is being evaluated on millions
tick data samples.

2.5. Predictor Unit

This is the executive unit of the system. The system outputs
are generated here. The unit is designed to utilize the evolved
candidate solutions and compute the systems response. The
unit communicates with the history buffer and the EA unit. It
holds the best evolved predictors and uses them to compute
the systems response. It is designed to use several predictors
in parallel for better prediction accuracy. However it can be
run also in a ’single mode’ where only one predictor is used.

3. Implementation Details

The market data can be seen as a time series of chrono-
logically ordered observations of a specific event. One of the
essential attributes is the mutual dependency of the observed
values. The analysis of such series constitutes of finding a
model showing how mutually dependent the observed values
are.

The prediction of a time series is a process of finding the
most accurate guess (at the time t) of the future value (at the
time t+ l). The guess is computed from the past sampled data
at the time t. The time series can be described as a sequence
of values zt−n+1, zt−n+2, . . . , zt−1, zt, where zi ∈ R. The
notation ẑt(l) represents the forecast of zt+l made in time t.

3.1. Data Structure

The described system is not designed to predict future
market prices directly. At the current stage of development the
system is used for indication of turning points - to identify
major trend changes. These can be identified easily in the
past data when enough data is available. Nevertheless the
identification whether the market is currently approaching a
turning point is a more difficult task.

The system operates at a very low level. The input are tick
data i.e. unfiltered data sampled directly from the market. The
data are processed by the preprocessing unit where the turning
points in the past data are identified, marked and added as
referential values to the training data.

The process of the computation of the referential data starts
with dividing the training data into sub-sequences W of equal
length, usually a week. Each sequence W is divided into n
disjunct sub-sequences of equal size W = W0 ∪W1 ∪ . . . ∪
Wn−1. The function

IdxW (ts) = i, zts ∈Wi (1)

returns the index of the sub-sequence which holds the sample
zts with the sample time ts.

In each sequence W the minimal zmin and the maximal
zmax sample value is identified. The sample value interval
Z = 〈smin, smax〉 is divided into k disjunct sub-intervals of
equal length beginning at zmin, Z = Z0 ∪ Z1 ∪ . . . ∪ Zk−1.
This is illustrated in the figure 2.

W

Z

W0 W1 Wn-1

Z0

Zk-1

Z1

Fig. 2. The sequence of values W is divided into smaller
sequences. The value interval Z is divided into smaller
intervals. This creates a mesh which is then used for the
computation of referential data.

Let the function

IdxK(z) : j, z ∈ Zj (2)

return the index if the sub-interval Zj where the value of the
sample z lies in.

The result of function

IdxKlast(Wi) = j, zlast ∈ Zj (3)

is the index of one of the sub-intervals of Z, zlast is the last
element of the sequence Wi. The function

K(Wi, l) = j (4)

returns j = Klast(Wi) if ∀z ∈ Wi ∪Wi+1 ∪ . . . ∪Wi+l the
prescription z ∈ SKlast(Wi) is true. Otherwise the return value
is defined as j = IdxK(ze) where ze ∈ Z is the first value
where ze /∈ SKlast(Wi).

The function

ref(z, l) =

 1 : IdxKlast(Wi) < IdxK(Wi, l)
−1 : IdxKlast(Wi) > K(Wi, l)

0 : IdxKlast(Wi) = K(Wi, l)
(5)

where z ∈ Wi is used to compute referential data identifying
the turning points. It returns the value 1 if the values are going
to rise during a certain future period or returns -1 if the prices
are going to fall.

The parameters k and n define the delicacy of the mesh.
The parameter k impacts the sensitivity of the detected value
changes whereas the parameter n impacts the timescale of the
function. The parameter j in ref(x, j) defines the horizon of
the function. The length of the sequences Wi also impacts
the robustness of the predictor. In real world delays often
occur which a real system has to deal with. The broker has a
certain delay between receiving requests and executing them.
The length of Wi impacts the time delay a predictor can be
trained on.

3.2. Predictor Design

As mentioned before, the training data are not filtered.
Additional data are added to the incoming data in order to
reduce the computational effort of the training process. The
data used to train a predictor have a similar structure as shown
in the table 1.

TABLE 1. Training data structure. In this case the
predictor can utilize the input values and additional

moving averages computed from past 10, 100 and 1000
samples. The underlined values are available to a
predictor to determine the turning points at time t.

time input/bids ref. mavg(10) mavg(100) mavg(1000)
t− 8 1.1933 0 1.193330 1.193207 1.192460
t− 7 1.1932 0 1.193310 1.193206 1.192459
t− 6 1.1933 0 1.193310 1.193207 1.192458
t− 5 1.1932 0 1.193310 1.193206 1.192457
t− 4 1.1933 0 1.193310 1.193205 1.192456
t− 3 1.1934 0 1.193310 1.193206 1.192455
t− 2 1.1935 0 1.193330 1.193209 1.192454
t− 1 1.1934 0 1.193330 1.193210 1.192453

t 1.1935 0 1.193350 1.193213 1.192453

At the time t the evolved predictor has to determine whether
the input data are at a turning point. It is simple to identify a
turning point at the time t − 3000 because the samples from
time t−2999 to t are present and can be used by the function
5. However we do not have the samples t + 1 to t + 3000 to

compute the turning point at time t simply because the future
has not happened yet.

The task of the predictor is to compute, at the time t,
the value pt which can identify a turning point. The values
pt should be in the set {−1, 0, 1}. The predictor can use
a vector of past m samples of the time series z̄m(t) =
(zt−m+1, . . . , zt). A vector of the size h of additional suppor-
tive values which are computed at the time t is also available
āh(t) = (a1t, . . . , aht). To construct the predictor is to find a
function pred(z̄m(t), āh(t)) which is at every time t equal to
the hypothetical referential function results; z̄m(t) is a vector
of last m samples measured till the time t, āh(t)) is the vector
of additional data computed for the last sample at time t.

Genetic programming [9], [10] (GP) is used to represent a
predictor. GP is a methodology to generate computer programs
by using evolutionary algorithms (EAs). GP chromosomes
are very powerful and can represent any Turing-computable
function [14]. The chromosome represents a syntactical tree
structure. The leaves (terminals) represent inputs, the nodes
(non-terminals) represent functions. The tree is evaluated
bottom-up (from the leaves towards the root). The function
in the root returns the the total outcome.

To represent the function pred(z̄m(t), āh(t)) by the means
of GP a set of terminals representing the function inputs has
to exist. A set Γterm = {fz1, . . . , fzm} ∪ {fa1, . . . , fah},
containing functions returning values from the vectors z̄m(t)
and āh(t), is necessary. It is also useful to add a set of
constants Γconst = {c1, . . . , cn} which can be used for
terminal inputs. The set Γfunc holds the functions assigned
to the nodes.

3.3. Fitness Function

The fitness value is a measure comparing how good a
predictor is when comparing it to the referential function
outcomes. The comparison is performed on training data where
both input and referential values are available. Suppose there
is a sequence Z = zi−n+1, . . . , zi of sampled input data.
The sequence is translated onto the sequence of referential
data R = ri−n+1, . . . , ri in the way rl = ref(zl, j), j ∈
{i−n+1, . . . , i}. Also the vectors of additional precomputed
values are supplied Ā = {āi−n+1, . . . , āi}. The predictor
pred(z̄m(t), āh(t)) is evaluated by creating a sequence of
predicted values P = pi−n+1, . . . , pi, pl = pred(z̄m(l), āl).

The following functions can be used for fitness evaluation:

Emae =
1

n + 1

n∑
i=0

|ri − pi| (6)

Emse =
1

n + 1

n∑
i=0

(ri − pi)
2 (7)

The function above compute the mean average error (6) and
the mean square error (7).

TABLE 2. Functions used to compute supportive values
in the preprocessor.

function description
mavg10 moving average over last 10 values

mavg100 moving average over last 100 values
mavg1000 moving average over last 1000 values

mavg10000 moving average over last 10000 values

TABLE 3. The set of function used in the genome nodes.

function result
add(a, b) a + b
sub(a, b) a− b

mult(a, b) a× b

divs(a, b)

{
a/b : b 6= 0
a : b = 0

min(a, b) minimum from a and b
max(a, b) maximum from a and b

avg(a, b) a+b
2

abs(a) | a |

g(a, b, c)

{
c : a > b
0 : a ≤ b

l(a, b, c)

{
c : a < b
0 : a ≥ b

3.4. Evolutionary Algorithm

At the beginning of the design process a canonical tree-
based GP algorithm was used. The main disadvantage was the
tendency to converge all candidate solutions around a specific
solution and thus to reduce the adaptability. Therefore the
algorithm was replaced with a more sophisticated algorithm
– the age-layered population structure (ALPS) algorithm [8]
designed by G. S. Hornby. The algorithm divides the popula-
tion according to the age of their members. It also periodically
introduces random solutions to reduce premature convergence.
In our case the algorithm was used to work in a dynamically
changing environment.

4. Experiments

The whole system is implemented in software using the
Python and C programming languages. The preprocessor is
written in Python because it is much easier to modify the
source code. The rest of the system is written in C because it
produces more efficient code.

The preprocessor computes the functions in the table 2, the
referential function values and adds the results to the data
history buffer.

At a single time the evolved GP genomes are free to use last
200 sampled values and all the supportive values attached to
the last sample. The genome uses the set of constants Γconst =
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0, 1, 2, 5, 10, 20, 50}. The set of
functions Γfunc is described in the table 3.

To reduce bloat [13] the tree depth is restricted to 5. The
crossover and mutation operators are adjusted to deal with the
restriction. The population holds 200 members.

The predictor unit communicates with the EA unit. Every
generation the EA unit sends the best evolved predictor to the

TABLE 4. The range of prediction accuracies depending
on various system settings.

predicted correctly 12− 31%
false predicted rises or falls 15− 35%
false predicted stagnation 45− 70%

predictor unit where is can replace the worst predictor. The
discarded predictor can be send back to the EA unit where it
may be used again. The predictor unit can use a variant of a
majority function to decide the final outcome of the system.

4.1. Results

The system was simulated on sampled EUR/USD data from
the year 2005. At the start-up of the system it is better to let the
system adapt the predictors before the environment changes
for the first time. Then it is able to adapt the predictors on the
fly.

The system is written with the support of threads – it can
use all cores of a multi-core system. However the system is
still painfully slow when it is simulated on a single processor
system. Most of the time the system waits for the fitness
function evaluation. Therefore the data are dispatched to the
system in a lower rate than they would enter the system in a
real world application.

The systems performance at the current stage of develop-
ment is summarized in the table 4. The main problem to
deal with is the relative high number of false turning point
predictions. There should be as little as possible.

5. Conclusions

The results show that the system design is capable, under
certain circumstances, of a relatively good prediction rate.
The major drawback is the high ratio of mispredicted turning
points. Fortunately there is still a lot of work to be done. This
work may include tuning the function set or modifying the
preprocessor to take advantage of the time which the tick data
arrived at.

The acceleration of the fitness evaluation represent another
demand to be dealt with. There may be a benefit in the
acceleration on modern GPUs [7] or just by using the more
conventional approach of parallelization on a cluster machine.

Acknowledgements

This work was supported by the Grant Agency of the Czech
Republic under No. 102/07/0850 Design and hardware im-
plementation of a patent-invention machine and the Research
intention No. MSM0021630528 – Security-Oriented Research
in Information Technology.

References

[1] Antonia Azzini, Célia da Costa Pereira, and Andrea Giovanni Battista
Tettamanzi. Predicting turning points in financial markets with fuzzy-
evolutionary and neuro-evolutionary modeling. In Applications of
Evolutionary Computing, pages 213–222. Springer, 2009.

[2] George Edward Pelham Box, Gwilym Meirion Jenkins, and Gre-
gory Charles Reinsel. Time Series Analysis, Forecasting and Control.
Prentice Hall, New Jersey, 2006.

[3] Anthony Brabazon and Michael O’Neill. Biologically Inspired Algo-
rithms for Financial Modelling. Springer-Verlag, Berlin Heidelberg,
2006.

[4] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series
and Forecasting. Springer-Verlag, New York, 2002.

[5] Jing Dang, Anthony Brabazon, David Edelman, and Michael O’Neill.
An introduction to natural computing in finance. In Applications of
Evolutionary Computing, pages 182–192. Springer, 2009.

[6] Christian Dunis. Forecasting Financial Markets, Exchange Rates,
Interest Rates and Asset Management. John Wiley and Sons, 1997.

[7] Simon Harding and Wolfgang Banzhaf. Fast genetic programming on
gpus. In EuroGP, pages 90–101, 2007.

[8] Gregory Scott Hornby. Alps: the age-layered population structure for
reducing the problem of premature convergence. In GECCO ’06:
Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pages 815–822, New York, NY, USA, 2006. ACM.

[9] John R. Koza. Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, Cambridge, 1992.

[10] William B. Langdon and Riccardo Poli. Foundations of Genetic
Programming. Springer-Verlag, Berlin Heidelberg, 2002.

[11] Julian Francis Miller and Peter Thomson. Cartesian genetic program-
ming. In Proceedings of the 3rd European Conference on Genetic Pro-
graming, Lecture Notes in Computer Science, pages 121–132, Berlin,
1999. Springer Verlag.

[12] Karel Slaný. Branch predictor on-line evolution. In 2008 Genetic and
Evolutionary Computational Conference GECCO, pages 1643–1648.
Association for Computing Machinery, 2008.

[13] Terence Soule. Code Growth in Genetic Programming. PhD thesis,
University of Idaho, 1998.

[14] Astro Teller. Turing completeness in the language of genetic program-
ming with indexed memory. In Proceedings of the 1994 IEEE World
Congress on Computational Intelligence, volume 1, pages 136–141,
Orlando, Florida, USA, 27-29 1994. IEEE Press.

