
Analysis of Reconfigurable Logic Blocks for
Evolvable Digital Architectures

Lukas Sekanina and Petr Mikusek

Faculty of Information Technology, Brno University of Technology
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Abstract. In this paper we propose three small instances of a reconfig-
urable circuit and analyze their properties using the brute force method
and evolutionary algorithm. Although proposed circuits are very sim-
ilar, significant differences were demonstrated, namely in the number
of unique designs they can implement, the sensitiveness of functions to
the inversions in the configuration bitstream and the average number of
generations needed to find a target function. These findings are quite
unintuitive. Once important (sensitive) bits of the reconfigurable circuit
are identified, evolutionary algorithm can incorporate this knowledge. We
believe that the proposed type of analysis can help those designers who
develop new reconfigurable circuits for evolvable hardware applications.

1 Introduction

One of possible approaches to building adaptive hardware is to combine reconfig-
urable hardware with search algorithms. In the field of evolvable hardware, the
evolutionary algorithm is used to find a suitable configuration of a reconfigurable
device [1, 2].

In the area of digital circuits, application-specific reconfigurable circuits and
field programmable gate arrays (FPGA) can be considered as the most popular
reconfigurable platforms for evolvable hardware. In general, the reconfigurable
digital circuit consists of an array of programmable logic elements, programm-
able interconnects and programmable I/O ports. The function of programmable
logic elements and their interconnection (i.e. the circuit functionality) is de-
fined using a configuration bitstream. The configuration bitstream is stored in
a configuration register (or memory) whose bits directly control the configurable
switches and multiplexers of the platform.

When the evolvable system is completely implemented on a single chip, a part
of the chip is devoted for evolving designs and another part is used to implement
the evolutionary algorithm. In these systems, evolutionary algorithm usually di-
rectly operates with the configuration register, i.e. the chromosome is considered
as a candidate configuration. A kind of internal reconfiguration has to be em-
ployed (for example, ICAP in Xilinx Virtex II+ families [3]). Another option is
to configure the reconfigurable device externally, for example, from a PC where
the evolutionary algorithm is implemented [4]. The quality of evolved solutions
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depends on the evolutionary algorithm as well as the reconfigurable device. As
this paper primarily deals with reconfigurable hardware in evolvable digital ar-
chitectures, we will focus our attention only on the reconfigurable circuit.

When one is building a new reconfigurable ASIC, the reconfigurable circuit can
be designed exactly according to requirements of a given application. Designer
can choose the optimal type and count of configurable logic elements, suitable
interconnecting network as well as configuration subsystem (organization of the
configuration memory, the style of reconfiguration etc.).

When one is building a reconfigurable device with the FPGA, there are two
options. (1) Evolution can work at the level of logic blocks available in the FPGA.
In other words, it operates directly with the configuration bitstream of the FPGA
[4, 3]. This solution requires the knowledge of the internal structure of the FPGA
and the configuration bitstream. It is usually very efficient in terms of resources;
however, it can be slow. (2) A new reconfigurable circuit is created on the top
of an FPGA [5]. Using this method, sometimes called Virtual Reconfigurable
Circuit (VRC), a very efficient reconfigurable device can be created for a given
application. However, its implementation cost can be significant, as everything
must be implemented using resources available in the FPGA.

In both cases, designer has to come up with a suitable configurable logic
blocks and configurable interconnections with respect to the target application.
Designer has to define the organization of the configuration register (memory)
in order to maximize the efficiency of evolutionary algorithm.

The goal of this paper is to demonstrate how these design choices can influ-
ence the class of functions which will be implementable in the particular recon-
figurable circuit and the efficiency of a search algorithm in the space of possible
configurations. In particular, we will be interested in those architectures in which
the reconfiguration subsystem is implemented using multiplexers, i.e. the func-
tion of a configurable element as well as the interconnection is determined using
multiplexers. This is typical for reconfigurable ASICs as well as for VRCs. In
this study we will consider a simple reconfigurable circuit with four inputs and
two outputs and a 32-bit configuration register. As the number of possible con-
figurations is relatively small (232), we can analyze its behavior by brute force
to see how its structure influences the number of implementable designs, the ef-
ficiency of the search algorithm and the effect of mutations in the configuration
bitstream. Results of the analysis can be exploited for designing new evolvable
systems for real world-applications in which the small reconfigurable circuit can
represent a single reconfigurable logic block of a complex reconfigurable system.

2 Proposed Model of a Reconfigurable Circuit

In order to perform the analysis of a typical reconfigurable unit observable in
current evolvable hardware systems, we propose to investigate the structure and
properties of a small instance of VRC. The VRC is used to implement a combi-
national logic circuit of four inputs (x0, x1, x2, x3) and two outputs (y0, y1) whose
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Fig. 1. A non-optimized use of multiplexers

function is defined using 32 bits. The VRC contains four logic blocks. Obviously,
such circuit can be implemented using two 16-bit look-up tables. However, that
type of implementation would not allow us to estimate the behavior of larger
instances of VRCs which exhibit many similar features with the proposed archi-
tecture.

Because it is supposed that the chromosome directly represents the config-
uration bits of the VRC, all possible bit combinations should represent valid
circuits. Moreover, in order to make the evolution efficient, the implementation
of EA easier and the utilizations of hardware resources economical, it is desirable
to perfectly utilize all possible combinations of groups of bits. Consider the ex-
ample given in Figure 1. The 8-input multiplexer effectively uses only six inputs;
the last two inputs has to be connected somewhere. Anyway, three bits must
be included in the chromosome to control the multiplexer’s selector. Then, the
two out of eight combinations are not used effectively, which can turn the search
algorithm to a wrong part of the search space.

For comparisons, we propose three architectures of VRC, labeled as cfg4f, cfg8f
and cfg16f. They have the same number of inputs, outputs, configurable blocks
and the size of configuration register. They differ in the number of functions
supported by configurable blocks and the reconfiguration options.

2.1 Reconfigurable Circuit cfg4f

Figure 2 shows the reconfigurable circuit cfg4f which consists of four programm-
able elements B0–B3 and three stages of multiplexers. Each of configurable
blocks can implement four different functions. The first stage of multiplexers
selects a primary input which will be connected to blocks B0 and B1. As there
are only six possible input points for the second stage of multiplexers (four pri-
mary inputs and the outputs of B0 and B1), the 8-input multiplexers can not
be utilized perfectly. Hence, the output of block B0 and B1 is connected to the
multiplexers twice. From the point of evolutionary design, the probability that
a connection is made between block B0/B1 and the second stage of multiplexers
is higher than for the primary inputs and the second stage of multiplexers. The
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Fig. 2. Reconfigurable circuit cfg4f
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Fig. 3. Reconfigurable circuit cfg8f

primary outputs can be connected either to blocks B0, B1, B2 or B3 using the
third stage of multiplexers. Selection bits of the third stage of multiplexers are
perfectly utilized. For next comparisons, we will consider three variants of cfg4f
which differ in the function sets supported in configurable blocks:

– cfg4f(xornot) utilizes functions NAND(0), NOR(1), XOR(2) and NOT(3)
– cfg4f(xoror) utilizes functions NAND(0), NOR(1), XOR(2) and OR(3)
– cfg4f(xorxnor) utilizes functions NAND(0), NOR(1), XOR(2) and XNOR(3)

2.2 Reconfigurable Circuit cfg8f

Figure 3 shows reconfigurable circuit cfg8f which employs configurable blocks
with eight functions (NOR (0), x AND ȳ (1), x̄ AND y (2), AND (3), OR (4),
x̄ OR y (5), x OR ȳ (6), NAND (7)). Because three bits of the configuration
bitstream are devoted to the selection of a function, fewer bits can be used to
define the interconnects.

The first and third stage of multiplexers is identical with cfg4f. As the second
stage uses 4-input multiplexers, not all six possible points (primary inputs and
the outputs of blocks B0 and B1) can be connected to block B2 and B3. Hence,
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Fig. 5. Structure of the configuration bitstreams. Notation: Bx – the configurable block,
Sx – the selector, F – function definition, O – the primary output.

block B2 can read its inputs from the primary input x0 and x2 or from blocks
B0 and B1. Block B3 can read its inputs from the primary input x1 and x3 or
from blocks B0 and B1.

2.3 Reconfigurable Circuit cfg16f

Similarly to cfg8f, also cfg16f restricts the interconnection options. Blocks B2 and
B3 can be connected only with blocks B0 or B1. On the other hand, this allows
the use of a full repertoire of possible logic functions over two logic variables in all
configurable blocks. Figure 4 shows architecture of cfg16f. Finally, the structure
of configuration bitstreams of all circuits is given in Figure 5.

3 Experimental Evaluation

In order to analyze the behavior of proposed reconfigurable circuits a well-
optimized software simulator was created. As a single configuration can be eval-
uated in approx. 100 ns, it is possible to test all configurations in less than 8
minutes on a common PC. The number of different configurations is |C| = 232.
The theoretical number of possible logic behaviors is |F | = 2no.2ni , where ni

is the number of primary inputs and no is the number of primary outputs, i.e.
22.24

= 232 in our case. However, the number of logic functions which can be
implemented in the reconfigurable circuit is much lower because two and more
different configurations quite often represent the same logic behavior. This is
typical for all reconfigurable devices used for evolvable hardware.
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Table 1. Characterization of reconfigurable circuits in terms of the number of differ-
ent (unique) logic functions which can be implemented and the number of different
implementations of a single logic function (occurrence)

Circuit cfg4f cfg4f cfg4f cfg8f cfg16f
(xornot) (xoror) (xorxnor)

Unique designs 57,837 119,502 104,468 178,764 57,712
Avr. occurence 74,260 35,941 41,113 24,026 74,421
Max. occurence 86,994,432 86,926,336 95,109,120 113,224,704 308,514,048
Min. occurence 256 128 256 64 256
Designs with min. occ. 13,272 1,512 29,160 29,952 15,864

3.1 Achievable Functions

First series of experiments is devoted to characterizing proposed reconfigurable
circuits in terms of the number of unique designs (logic functions) and the occur-
rence of some specific designs. Table 1 shows that the number of unique designs
(in the space of 232 possible designs) is quite small. Circuit cfg8f provides the
highest number of unique designs (178,764). We can observe how significantly the
number of unique designs decreases when only one of functions in configurable
blocks is changed from the two-input OR to the single input NOT. Some func-
tions are very frequent on all reconfigurable circuits, for example y0 = y1 = 0,
y0 = y1 = 1, or y0 = y1 = xk. No function exists which can be implemented
uniquely; the minimum number of occurrences of a function is 64. There are
only 8,888 different functions which can be implemented on all five variants of
the circuit.
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Fig. 6. The number of changes in logic functions when jth bit is inverted (calculated
for all configurations)



150 L. Sekanina and P. Mikusek

3.2 The Sensitivity of Functions to Inversions

As mutation is usually implemented using the inversion of a particular bit, it
is important to analyze to what extent the circuit function is sensitive to bit
inversions of the configuration bitstream. For every configuration ci, we calcu-
lated the corresponding logic function fi(ci). Then, for every single independent
inversion of the configuration bit j, j ∈ {1, . . . , 32}, we checked whether the new
function fi(ci)(j) is different from fi(ci). Figure 6 shows how many times (in per-
centage points) the logic function is changed when jth bit of the configuration ci

is inverted (i ∈ {1, . . . , 232}). A general observation is that independently of the
reconfigurable circuit and its configuration, we can see that the logic function is
changed in more than 90% cases when bit 0, 1, 2 or 3 are inverted. The circuit
function is also very sensitive to other four bits in cfg16f. Other bits do not seem
to be so important. Results are not shown for cfg4f(xorxnor) because they are
indistinguishable from cfg4f(xoror) in Figure 6.

Figure 7 shows the results of the same experiment; however, the y-axis does
not give the number of changes in logic functions. It displays the sum of Hamming
distances (in percentage points, the maximum is 232.2no.2ni ) between truth tables
of original logic functions and truth tables of logic functions obtained using the
inversion of jth bit. Thus, we can see how significant the inversions are for
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Fig. 7. The sum of Hamming distances (in percentage points, the maximum is
232.2no .2ni ) between truth tables of original logic functions and truth tables of logic
functions obtained using the inversion of jth bit
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Table 2. The average percentages of changes in logic functions and Hamming distances
of truth tables over all configurations and independent bit inversions

Circuit cfg4f cfg4f cfg4f cfg8f cfg16f
(xornot) (xoror) (xorxnor)

Average changes [%] 49.27 53.97 54.30 57.72 48.32
Average Hamming distance [%] 11.62 12.70 14.16 14.55 10.94

a particular bit of the configuration. For example, while logic functions strongly
depend on bits 20 and 27, the importance of bits 0, 1, 2 and 3 is less significant for
cfg8f in comparison to Fig. 6. The graphs obtained using the Hamming distance
are not as uniform as in the previous case.

Table 2 summarizes average values of percentage points from Fig. 6 and Fig. 7.
Both metrics suggest that the cfg8f architecture is the most sensitive to the (in-
dependent) inversions of the configuration bits. These results are also correlated
with the number of unique design which can be implemented in a given recon-
figurable circuit (see Table 1).

3.3 Circuit Evolution on Proposed Architectures

In order to evaluate proposed reconfigurable circuits for purposes of the evolu-
tionary circuit design, a suitable target problem has to be chosen. As we have
already mentioned, there are 8,888 functions which can be implemented on all
five architectures. The goal of this experiment is to calculate the average number
of generations that are needed to find all these functions on all architectures.
A simple evolutionary algorithm was utilized which directly operates at the level
of configuration bitstream of a particular reconfigurable circuit. It utilizes the
population of five individuals. A new population is formed using (1+4) evolution-
ary strategy. A single bit is always inverted during mutation. The probability of
selection is identical (uniform) for all bits. The fitness value is determined as the
number of output bits which are correctly calculated by a candidate circuit for
all possible input combinations. The maximum fitness is 32. Evolutionary algo-
rithm was executed 200 times for every target function. A single run is stopped
when a perfect fitness value is obtained or 50,000 generations are exhausted.
Results are given in the first part of Table 3 which shows the average number
of generations for a single function, calculated as the average number of gener-
ations from all runs and for all 8,888 target functions. We can observe that the
best value is obtained for the cfg16f (797) circuit and the worst one is for the
cfg8f circuit (2,734). This result corresponds with the number of unique designs.
If more unique designs exist in the search space then it is more difficult to find
a particular one.

3.4 Exploiting the Knowledge of Reconfigurable Architectures

Because we have recognized that logic functions are (in average) more sensi-
tive to some configuration bits than to some others, we can speculate whether
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Table 3. Summary of results for evolutionary design of 8,888 functions

Circuit cfg4f cfg4f cfg4f cfg8f cfg16f
(xornot) (xoror) (xorxnor)

Average generations (uniform mut.) 1,115 1,929 1,553 2,734 797
Average generations (nonuniform mut.) 1,009 1,728 1,480 2,710 813
Speedup 1.11 1.17 1.05 1.01 0.98

Table 4. Masks for the bits selected for nonuniform mutation

Circuit sensitive sensitive-inverted average
cfg4f(xornot) 0xc410000f 0x3beffff0 0x38e80800
cfg4f(xoror) 0x0820202f 0xf7dfdfd0 0x33c01010
cfg4f(xorxnor) 0x0410101f 0xfbefefe0 0x0be80100
cfg8f 0x0810204f 0xf7efdfb0 0xf0001830
cfg16f 0x0909000f 0xf6f6fff0 0x00f02490

Table 5. Summary of results for evolutionary design of 8,888 functions when non-
uniform mutation is used on selected bits

Circuit cfg4f cfg4f cfg4f cfg8f cfg16f
(xornot) (xoror) (xorxnor)

Avr. genenerations (nonunif. mut. 1/4) 1,970 3,151 2,669 3,691 1,105
Speedup 0.57 0.61 0.58 0.74 0.72
Avr. genenerations (average bits) 1,524 2,445 2,065 3,545 1,021
Speedup 0.73 0.78 0.75 0.77 0.78

a higher/lower mutation probability of these sensitive bits can improve the con-
vergence of the evolutionary algorithm. For each reconfigurable circuit we have
chosen eight the most sensitive bits and mutated them with the probability 4-
times higher than other bits. This is called the nonuniform mutation in Table 3.
The position of selected bits is given with respect to Figure 5 in Table 4 (column
“sensitive”).

We used the same evolutionary algorithm as in the previous section. Table 3
shows a small speedup of convergence (1–17%) for four out of five investigated
architectures. Therefore, it seems that our selection of sensitive bits is good.

In order to validate that the bits, which we have identified as sensitive, are
really more important than other bits, two additional experiments were per-
formed on all reconfigurable circuits. Firstly, we repeated the previous experi-
ment, however, decreased the probability of mutation of eight the most sensitive
configuration bits four times in comparison to other bits. Secondly, the previous
experiment was repeated, but the probability of mutation was increased four
times for 8 really average sensitive bits (their position is given as a mask in
Table 4, column “average”). In both cases the speedup is much smaller than 1.
That means that more generations are needed in average to find a solution and
that this approach is not useful.
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4 Conclusions

Although proposed circuits are very similar, significant differences were demon-
strated, namely in the number of unique designs they can implement, the sen-
sitiveness of functions to the inversions in the configuration bitstream and the
average number of generations needed to find a target function. These findings
are quite unintuitive. We believe that the proposed type of analysis can help
those designers who develop new reconfigurable circuits for evolvable hardware
applications. Once important (sensitive) bits of the reconfigurable circuit are
identified, evolutionary algorithm can incorporate this knowledge. Additional
knowledge can be included to the evolutionary algorithm and circuit architec-
ture from the target domain. Typically, only a specific subset of all possible
functions is evolved using the reconfigurable device. In this paper, we assumed
that all possible functions belong to the application domain and will be evolved.
Further research is needed to identify a suitable probability of mutation for the
sensitive bits of a particular reconfigurable circuit and other parameters of the
evolutionary algorithm.
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