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Abstract— This paper exemplifies principles of embedded 
system design that props safety and security using 
operational errors management in frame of a dedicated 
Computer-Based System architecture. After reviewing 
basic principles of Cyber-Physical Systems as a novel 
slant (or marker?) to modeling and design in this domain, 
attention is focused on a real-world solution of a safety 
and security critical embedded system application 
offering genuine demonstration of that approach. The 
contribution stresses those features that distinguish the 
real project from a demonstration case study. 
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I.  INTRODUCTION 
The integration of physical systems and processes 

with networked computing has led to the emergence of 
a new generation of engineered systems: Cyber-
Physical Systems (CPSs) [1]. Such systems use 
computations and communication deeply embedded in 
and interacting with physical processes to add new 
capabilities to physical systems. Because computer-
augmented devices are everywhere, they are a huge 
source of economic leverage. Embedded computers 
allow designers to add capabilities to physical systems 
that they could not feasibly add in any other way. By 
merging computing and communication with physical 
processes and mediating the way we interact with the 
physical world, CPS bring many benefits: they make 
systems safer and more efficient; they reduce the cost of 
building and operating these systems; and they allow 
individual machines to work together to form complex 
systems that provide new capabilities. By merging 
computing and communication with physical processes 
and mediating the way we interact with the physical 
world, CPS bring many benefits: they make systems 
safer and more efficient, they reduce the cost of 
building and operating these systems, and they allow 
individual machines to work together to form complex 
systems that provide new capabilities [1]. 

CPS domain paradigms [2] suggest considering 
both application requirements, namely time constraints 
defined by physical processes of the system 
environment, and implementation aspects, namely 

computation and communication capacity constraints, 
from the beginning of system design. The design of a 
CPS application should consider namely functionality 
and dependability measures [3]. 

This paper deals with design of a petrol dispenser 
control system as a CPS fitting special requirements not 
only on functionality, but also on safety and security. 
The key issue appears fault management in this case. 
Many current design methods focus on elimination of 
design errors, see e.g. [4], [5]. On the other hand, 
operational errors caused by hardware faults, varied 
environment, or by intentional security attacks are 
treated by fault tolerance and fault avoidance safety 
techniques or by security techniques usually during 
implementation [5]. This paper presents principles 
addressing operational errors management from the 
beginning through all phases of design cycle.  

While the next two sections briefly introduce the 
Asynchronous Specification Language (ASL) [6], 
which is deployed for simple behavioral descriptions of 
the application, and dependability concepts applied, the 
rest of paper presents the approach to operational errors 
management with the design of a fuel dispenser control 
device. 

II. SPECIFICATION LANGUAGE 
A formal specification asserts that a description has 

precise and unambiguous semantics. The language of 
specification should fit purposes of specification and be 
appropriate for a description of the system. For 
structured behavioral specifications of reactive systems, 
process algebra CSP, temporal logic LTL and related 
transition systems in frame of the model checker SPIN 
[7] and the prover PVS [8] appear as most common 
tools in the domain of small embedded applications. 
For real-time systems, e.g. model checker UPPAAL [9] 
and related timed automata can be used. Unfortunately, 
none of these or similar generally available tools is 
equipped, according to our knowledge, with a simple-
enough specification language that fits requirements on 
modeling distributed, asynchronous, multi-clocked 
systems implemented e.g. by multiple loosely 
interconnected and communicating microcontrollers in 
frame of a real-time application. That was the reason 
why we developed ASL. 



The specification language ASL employs 
distributed sequential processes with message passing. 
The real-time operational semantics of the language 
stems from the event-count model of local time, which 
represents a concept of physical timing stemming from 
some periodic physical oscillation whose frequency fits 
measurements of the duration of local process actions. 
Timing semantics can be derived from logical time, 
which is a partial ordering of events in the system, and 
from a physical generator of periodic events, which 
implements a real-time clock. An event-count, E, 
counts the number of a specific type of events that have 
occurred during execution. Each event occurrence 
invokes the implicit operation ADVANCE(E): E:=E+1. 
The explicitly callable operation AWAIT(E, s) 
suspends the calling process until the value of E is at 
least s. The call AWAIT(E, s) can reset the current 
value of E, enabling relative counting. An event-count 
monitors either a prescribed type of asynchronous 
external events or periodic internal events that an 
internal timer circuit implements as local-time clock 
ticks. The following primitives relate to process 
specification, timing, communication, and control.  

 
process_name(is: list_of_s_inputs; os: list_of_s_outputs; 
 ic: list_of_m_inputs; oc:list_of_m_outputs):  
... endprocess; 
 
wait(_, timeout); wait(event, _); wait(event, timeout, test); 
send(message, destination); 
loop ... [... when <cond> action ... exit;]* ... endloop; 
 

Each of asynchronous processes can be equipped by 
its individually timed local clock, can receive messages 
through input buffer, and can send messages to other, 
directly or indirectly addressable processes. Process 
header contains in parentheses lists labeled by is, os, ic, 
that act as the interface with the process' environment. 
The language distinguishes between signal inputs or 
outputs, which denote communication events signaling 
their occurrence, and message inputs or outputs as 
typed asynchronous channels between processes. Those 
signals and messages provide inter-process 
synchronization and communication, whose operations 
are driven by the statements wait(_, timeout), wait(event, _), 
wait(event, timeout, test), and send(message, destination).  

The primitive wait(_, timeout) suspends a process for 
the interval defined by the value timeout. Operational 
semantics can be obtained through the event-count 
abstraction introduced above: in this case, an event is 
every tick of the local clock, so the related operation is 
AWAIT(local_ticks, timeout_value). For the primitive 
wait(event, _), which suspends a process until the 
specified event (external signal or message) appears, 
the model operation is AWAIT(event_type, 1). The 
semantics of the combined statement wait(event, timeout, 
test) requires two event-counts: the first anticipates the 
specified event and the second, with a lower priority, 
monitors the local clock. The reason of process 

activation can be checked through the value of the 
logical variable test: when the value is true, the event 
occurred within the interval timeout. 

The primitive send(message, destination) implements 
asynchronous communication with non-blocking 
semantics. To respect different local clocks, a special 
clocking that is common for the source and the 
destination controls the information transfer. However, 
the nodes communicate asynchronously by message 
passing through an input buffer at the destination. The 
input of a message induces the event for the related 
operation AWAIT(message, 1). If any synchronization 
is required, it must be described explicitly using wait 
statements. 

The control structure primitives loop ... endloop 
delimit an indefinite cycle, which is exited upon a true 
result of testing the condition following the primitive 
when. Consequently, the statements, which occur 
between the action and exit primitives and which follow 
the endloop primitive, are executed. This structured 
statement enables to extend the language with 
additional control structures by simple macro-like text 
replacements such as 

 
if <cond> then <s1> else <s2> fi; 
 ~ loop when <cond> action <s1> exit;  
    <s2> when true exit; endloop; 
 
timeloop(timeinterval) ... endloop;   
 ~ loop ... wait(_, interval); endloop; 

 
Actually, the control structure timeloop(timeinterval) ... 

endloop specifies an isochronous loop, which is 
periodically initiated whenever the timeinterval expires 
and which can be exited like the indefinite cycle. The 
operation AWAIT(local_ticks, timeinterval_value) 
defines the exact semantics of timing these initiations.  

The associated rapid prototyping, which makes ASL 
specifications executable, arises from attribute grammar 
and Prolog deployment. Any Prolog interpreter can 
drive expansion of an ASL specification into the related 
executable code. This expansion is based on an attribute 
grammar specifying both syntax and static semantics by 
a definite clause grammar and Prolog rules. It provides 
a simple language translator prototype, which tackles 
the ASL as the input language, and a target executable 
language as the output language. The resulted 
prototyping technique uses interconnected node 
prototype boards with microprocessors equipped with a 
simple real-time operating system kernel. While the 
timing and communication primitives are mapped onto 
relevant real-time executive services and 
communication services of the operating system kernel, 
the rest of ASL specification is prototyped by the 
executable code generated with the help of the Prolog 
translator prototype presented in more detail by [6]. 

 



III. DEPENDABILITY 
Dependability [10] is that property of a system that 

allows reliance to be justifiably placed on the service it 
delivers. A failure occurs when the delivered service 
deviates from the specified service. Dependability 
measures consist namely of reliability, availability, 
security, safety and survivability. Availability is the 
ability to deliver shared service under given conditions 
for a given time, which means namely elimination of 
denial-of-service vulnerabilities. Security is the ability 
to deliver service under given conditions without 
unauthorized disclosure or alteration of sensitive 
information. It includes privacy as assurances about 
disclosure and authenticity of senders and recipients. 
Security attributes add requirements to detect and avoid 
intentional faults. Safety is the ability to deliver service 
under given conditions with no catastrophic affects. 
Safety attributes add requirements to detect and avoid 
catastrophic failures.  

A failure occurs when the delivered service deviates 
from the specified service. The failure occurred because 
the system was erroneous: an error is that part of the 
system state which is liable to lead to failure. The cause 
of an error is a fault. Failures can be classified 
according to consequences upon the environment of the 
system. While for benign failures the consequences are 
of the same order of magnitude (e.g. cost) as those of 
the service delivered in the absence of failure, for 
malign or catastrophic failures the consequences are not 
comparable. 

A fail-safe system attempts to limit the amount of 
damage caused by a failure. No attempt is made to 
satisfy the functional specifications except where 
necessary to ensure safety. A mishap is an unplanned 
event (e.g. failure or deliberate violation of maintenance 
procedures) or series of events that results in damage to 
or loss of property or equipment. A hazard is a set of 
conditions within a state from which there is a path to a 
mishap.  

A fail-stop system never performs an erroneous 
state transformation due to a fault. Instead, the system 
halts and its state is irretrievably lost. The fail stop 
model, originally developed for theoretical purposes, 
appears as a simple and useful conception supporting 
the implementation of some kinds of fail-safe systems. 
Since any real solution can only approximate the fail-
stop behavior and, moreover, the halted system offers 
no services for its environment, some fault-avoidance 
techniques must support all such implementations.  

Obviously, design of any safe system requires 
deploying security to avoid intentional catastrophic 
failures. And vice versa, system’s security can be 
attacked using a safety flaw. The greater the assurance, 
the greater the confidence that a security system will 
protect against threads, with an acceptable level of risk. 

IV. APPLICATION 
The application concerns petrol dispenser with an 

electronic counter/controller. The application appears as 
(1) safety critical from the point of view of danger of 
explosion in case of uncontrolled petrol issue and (2) 
security critical from the point of view of danger of loss 
of money in case of unregistered issue, see also [11], 
[12], [13]. 

A. State-based System Description 
A dispenser control system communicates with its 

environment through two classes of I/O variables. The 
first class describes an interface with volume meter (I), 
pump motor (O), and main and by-pass valves (O) that 
enable full or throttled issue. The timing for this class is 
defined by flow velocity and measurement precision 
requirements. Second class of I/O-variables models 
human interface that must respect timing constants of 
human-physiology. This class contains release signal, 
unhooked nozzle detection, and product's unit prices as 
inputs; as for outputs, volume and price displays belong 
to this class. 

The behavior of the higher level component can be 
described by the following state sequences of a finite-
state automaton with states blocked-idle, ready, full 
fuel, throttled and closed, and with inputs release, 
(nozzle) hung on/off, close (the preset or maximal 
displayable volume achieved), throttled (to slow down 
the flow to enable exact dosage) and error: 

 
blocked-idle  release→    ready  hung off→     full_fuel  hung on→    blocked-idle 
blocked-idle  release→    ready  hung off→     full_fuel  throttle→     throttled hung on→ 
        hung on→      blocked-idle 
blocked-idle  release→    ready  hung off→     full_fuel  throttle→     throttled  close  →  
                          close  →   closed  hung on→     blocked-idle 
blocked-idle  error   →   blocked-error 
blocked-idle  release→    ready  error   →  blocked-error 
blocked-idle  release→    ready  hung off→     full_fuel  error   →  blocked-error 
blocked-idle  release→    ready  hung off→       full_fuel  throttle →   throttled  error   →    
                          error   → blocked-error 
 

The states full_fuel and throttled appear to be 
hazardous from the viewpoint of unchecked flow 
because the motor is on and the liquid is under pressure 
-- the only nozzle valve controls an issue in this case. 
Also, the state ready tends to be hazardous: when the 
nozzle is unhooked, the system transfers to the state 
full_fuel with flow enabled. Hence, the accepted fail-
stop conception necessitates the detected error 
management in the form of transition to the state 
blocked-error. To initiate such a transition for flow 
blocking, the error detection in the hazardous states is 
necessary. On the other hand, the state blocked-idle is 
safe because the input signal release can be masked out 
by the system that, when some failure is detected, 
performs the internal transition from blocked-idle to 
blocked-error. 



Of course, an equivalent of the above state 
sequences can be derived more rigorously as the 
Kripke-style semantics of Linear Temporal Logic 
(LTL) formulae specifying a related transition system, 
see e.g. [7], [8]. But such a formal approach was 
refused by cooperating development engineers from 
industry. 

B. Incremental Measurement for Flow Control 
The volume measurement and flow control 

represent the main functions of the hazardous states. 
The next applied application pattern, incremental 
measurement, means the recognition and counting of 
elementary volumes represented by rectangular 
impulses, which are generated by a photoelectric pulse 
generator. The maximal frequency of impulses and a 
pattern for their recognition depend on electro-magnetic 
interference characteristics. The lower-level application 
patterns are in this case a noise-tolerant impulse 
detector and a checking reversible counter. The first one 
represents a clock-timed impulse-recognition 
automaton that implements the periodic sampling of its 
input with values 0 and 1. This automaton with b states 
recognizes an impulse after b/2 (b>=4) samples with the 
value 1 followed by b/2 samples with the value 0, 
possibly interleaved by induced error values, see an 
example timed-state sequence: 
 
(0, q1) inp=0 →  ... inp=0 →   (i, q1) inp=1 →   (i+1, q2) inp=0 →  ... inp=0 →    (j, q2) ... 
   ... inp=1 →    (k, qb/2+1) inp=1 →  ... 
... inp=1 →   (m, qb-1) inp=0 →   (m+1, qb) inp=1 → ... inp=1 →   (n, qb) inp=0/IMP   →       (n+1, q1) 
i, j, k, m, n are integers representing discrete time instances in 
increasing order. 

 
For the sake of fault-detection requirements, the 

incremental detector and transfer path are doubled. 
Consequently, the second, identical noise-tolerant 
impulse detector appears necessary. 

The subsequent lower-level application pattern 
used provides a checking reversible counter, which 
starts with the value (h + l)/2 and increments or 
decrements that value according to the impulse detected 
outputs from the first or the second recognition 
automaton. Overflow or underflow of the pre-set 
values of h or l indicates an error. Another counter that 
counts the recognized impulses from one of the 
recognition automata maintains the whole measured 
volume. The output of the letter automaton refines to 
two displays with local memories not only for the 
reason of robustness (they can be compared) but also 
for functional requirements (double-face stand). To 
guarantee the overall fault detection capability of the 
device, it is necessary also to consider checking the 
counter. This task can be maintained by an I/O 
watchdog application pattern that can compare input 
impulses from the photoelectric pulse generator and the 

changes of the total value; evidently, the appropriate 
automaton provides again reversible counting. 

Similarly like in the previous subsection, the more 
formal approach can be based on some real-time 
temporal logic, e.g. TLTL, or a more simple temporal 
logic equivalent to counting automata, [9]. But again, 
such a formal approach was rejected by cooperating 
development engineers from industry. 

C. Behavioral Specification 
The demonstration of logical structure description 

employs a fast process simulating both of the two 
impulse-recognition automata together with the 
reversible counter. The detection process sends a 
message about a detected impulse to the slower meter 
process, which sends a fuel-volume message to the 
display process. 

A high-level process simulates the previously 
discussed behavior of the dispenser. For that reason, a 
communication between the dispenser-control process 
and the above-described lower-level processes must 
proceed. Usually, the design progresses top-down. 
Hence, the primarily designed fuel-stand process reads 
the input variable fuel-volume. A next refinement 
replaces the simple reading by the communication with 
the meter process from the lower level. Similarly, the 
write commands to block output expand to a 
communications with the blocking process. 
process detection (s: hang_off, hang_on; o: meter): 
loop   q0 := 1; q1 := 1; count := (h+l)/2; wait(hang_off, _); 
   timeloop(sample_interval) 
      read(in0,input0); read(in1,input1); 
      if q0 <= n/2 then begin if in0 = 1 then q0 := q0 + 1 end 
      else if in0 = 0 then q0 := q0 + 1; 
      if q1 <= n/2 then begin if in1 = 1 then q1 := q1 + 1 end 
      else if in1 = 0 then q1 := q1 + 1; 
      if q0 >= n then begin q0 := 1; count := count - 1; 
                                send(impulse,meter) end; 
      if q1 >= n then begin q1 := 1; count := count + 1 end; 
     when l > count or count > h action write(true,block) exit; 
   endloop; 
   wait(hang_on, _); 
endloop; 
endprocess; 
 
process meter (s: hang_off; i: impulse; o: display): 
loop   vol := 0; 
   loop   read(position,nozzle); 
   if position = hang_on then begin vol:=0; wait(hang_off, _); 
                                                  send(vol,display) end; 
         wait(impulse, _); vol := vol + 1; 
         when vol > maxvol action write(true,block) exit; 
         send(vol,display); 
   endloop; 
endloop; endprocess; 
process display (i: vol): 
loop   write(vol, display1); write(vol, display2); 
          wait(vol, update_interval, test); endloop; 
endprocess; 



 

D. System Structure Refinement 
The reviewed design example complies with such 

decisions as incremental measuring, periodic sampling 
of impulses, doubling the incremental detector and 
transfer path, and choosing the nozzle position for 
synchronization. Evidently, these design patterns 
support the considered fail-stop model. 

Next patterns have to bring suitable solution of the 
dispenser control system for achieving broader 
applicability. Dispenser is a ranged product, so the 
minimal production costs are required. This requirement 
leads to a multi-purpose device for petrol, octane 
mixture, petrol and additive mixture, or high-speed 
diesel-oil issue, for the attendant station or for the self-
service station with cashier or with debit or credit 
automaton or slot machine. One of the functions enables 
to preset the fuel (centrally by the cashier or locally on 
the stand) in volume or cash with the automatic 
termination of the dose. 

The physical design of the system is based on a 
distributed architecture with optionally two or three 
simple microcontrollers (if the preset unit has been 
installed) as depicted on Figure 1. and Figure 2., see also 
the following page. While the management system, if 
present, participates in the data communication 
architecture, the debit or credit automaton or slot 
machine observes only volume impulses and rules 
release, throttle, and close signals, completing product 
issue independently.  

The microcontrollers interact so the auxiliary (A) 
and main (M) processors are configured front-end/back-
end with regard to impulse pipelining while the main 
processor, M, preset unit processor, P, and/or 
management system processor form a master/slave 
configuration for the transfer of the preset or completed 
fuel volume. The main microcontroller, M, implements 
the volume meter, dose/cash counter, main display 
service, and stand driver, including fuel control. The 
auxiliary microcontroller, A, pre-processes the volume 
impulses of both the possible liquids and implements 
testing and checking functions. The preset unit 
processor, P, serves both keyboard and local display and 
calculates a volume equivalent if the pre-setting is in 
cash. In between processors A and M there is a watch-
dog, designed for guarding the equivalent main display 
increments with respect to the primary impulses. All 
three processors share access to the actual unit prices 
and mix-ratio through a multiplex driven by the main 
processor.  

 

 
 

Figure 1.  Configuration 
 
Remaining input is nozzle position. Outputs control 

pump motor, main/throttle valves and signal lights 
drivers. In the state blocked-idle with both valves closed 
and the motor off, the red light only is on; in the state 
ready with both valves closed and the motor off, the 
green light only is on; in the states full fuel (both valves 
opened, the motor on), throttled (the main valve closed, 
the throttle valve opened, the motor on), and closed (both 
valves closed, motor off) both lights are off; at last, the 
state blocked-error (both valves closed, motor off) is 
signaled by both lights on. 

The detailed system logical design respects hard-
real-time limits for impulse inputs and a response-time 
limit related to the preset fuel-dose completion. 
Processes located to the main and auxiliary processors 
are implemented in foreground/ background format so 
that the time-critical sequences are triggered by 
interrupts generated by local timers. The software of the 
preset unit processor includes an isochronous loop for 
keyboard debounce. The presence of the preset unit 
and/or central cashier system has to be transparent for 
the rest of the control system software. The framework 
includes a corresponding data-communication protocol 
that provides also optional installation of the preset unit, 
and/or a management system, see the following 
algorithmic specifications of the processes M and P. 

 



 
 

Figure 2.  Communication structure 
 

process M (i: preset, confirmation; o: request, total): 
transaction_m(peer, request, response, result) 
     result := false; send(request, peer); 
     wait(response, m_timeout, test); if test then result := true; 
end; 
loop 
     dispenser_status := blocked-idle; 
;dispenser_status = blocked-idle 
     write(false, unblock); 
     timeloop(repeat_interval) 
   read(connected, C_ready) 
   if connected then begin read(position, nozzle); 
      if position = hang_on  
 then begin 
                 transaction(C,request,preset,success); 
                when success action exit; end; 
                        end 
              else begin read(liberate, release); 
  when liberate action preset:=(max_vol, mix_free) exit;  end; 
endloop; 
     dispenser_status := ready; 
;dispenser_status = ready 
     if mix_ratio = mix_free 
 then timeloop(repeat_interval) 
   read(position, nozzle); when position=hang_off action exit; 
        transaction_m(P, request, preset, success); 
        when success action exit; 
endloop; 
     dispenser_status := full_fuel; 
;dispenser_status = full_fuel 
     write(true, unblock); 
  . 
   .  
     dispenser_status := blocked-idle; 
;dispenser_status = blocked-idle 
     write(false,unblock); 
     timeloop(repeat_interval) 
   read(connected, C_ready); when not connected action exit; 
   transaction_m(C, total, confirmation, success); 

   when success action exit; 
     endloop; 
endloop 
endprocess; 

process P (i: request; o: preset): 
transaction_s(peer, request, response, result) 
     result := false; wait(request, s_timeout, test); 
    if test then begin result := true;  send(response, peer); end; 
end; 
 
loop      . 
;dispenser_status = ready 
     write(connect_PM, switch); 
     loop read(position, P_nozzle); 
   when position = hang_off action exit; 
   transaction_s(M,request, preset, success); 
   when success action exit; 
     endloop; 
     write(hang_off,nozzle); write(connect_CM, switch); 
;dispenser_status = full_fuel 
     write(true, unblock); 
endloop; 
endprocess; 
 

V. RESULTING FAULT MAINTENANCE CONCEPTS 
After the text edit has been completed, the paper is 

ready for the template. Duplicate the template file by 
using the Save As command, and use the naming 
convention prescribed by your conference for the name 
of your paper. In this newly created file, highlight all of 
the contents and import your prepared text file. You are 
now ready to style your paper.  

The application discussed appears as safety critical 
because of (1) danger of explosion in the case of 
uncontrolled petrol issue and (2) loss of money in the 
case of unregistered issue. The first item, excepting 
security management with debit or credit automaton and 
slot machine, is resolved without any support of the 
electronic counter/controller (nozzle with hydraulic 
shut-off, hooked nozzle mechanical blocking, and 
cashier administration). To prevent unregistered issue, 
the fail-stop conception used appraises as more 
acceptable the forced blocking of the dispenser with 
preserved actual data on displays instead of an 
untrustworthy issue. On the other hand, because 
permanent blocking or too frequently repeated blocking 
is inappropriate, the final implementation must employ 
also fault avoidance techniques. The next reason for the 
fault avoidance application stems from the fact that only 
approximated fail-stop implementation is possible. 

The configurations, so far introduced stepwise, 
accomplish the fault management in the form of (a) 
hazardous state reachability control and (b) hazardous 
state maintenance. In all safe states (blocked-idle, closed, 
and blocked-error), any fuel issue is disabled by power 
hardware construction; in the same time, the contents of 



all displays are protected against any change required by 
possibly erroneous control system. The system is 
allowed to reach hazardous states (ready, full fuel, and 
throttled) when the processors successfully passed the 
following tests: start-up checks, unit prices comparison, 
inter-processor communication, and all-or-nothing 
voting. The hazardous state maintenance includes 
doubled input path check for a main product, mixture 
ratio check for secondary product, watchdog check, and 
passive display test. 

After power reset, all microcontrollers installed 
perform start-up checks, which encompass internal 
RAM test, ROM checksum test, and timer functional 
test. The dispenser can be released either by the cashier 
at the petrol station management system through the 
above depicted data communication protocol or by a 
release signal from attendant/cashier, debit automaton, 
credit automaton, or from slot machine. In the first case, 
a communication transaction must proceed between the 
dispenser's main processor and the management 
system's processor; similarly, a local preset leads to a 
communication transaction between the dispenser's main 
and preset processors. When the nozzle is being 
unhooked, all microcontrollers installed check the 
multiplex function together with unit price settings, 
which form two doubled independent inputs on dual 
faced calculator for both possible products. After that, 
all processors vote if the motor can be started and both 
valves opened. All processors must agree to enable the 
issue. If one of them votes against because one or more 
of the previously mentioned tests have not passed, the 
dispenser transfers to the state blocked-error and the issue 
is blocked until next reset after repair. 

When the dispenser issues a product mixture with a 
ratio setup before the nozzle is unhooked, the above-
mentioned reversible counter performs the check of 
main product impulses, which are doubled by doubling 
the impulses source and the transfer path. Also, the 
possible secondary product impulses are checked with 
the adequate main product impulses and the ratio setup, 
using similar reversible counter. The output information 
changes, represented by low-order bit position sent to 
volume displays, are checked by the watchdog--in this 
case an independent hardware reversible counter--
against the main product impulses. As a result, 
differences bigger than a tolerated value can also result 
in issue blocking. The last test deals with the possibility 
to check all 7 segments in all positions whenever a 
button is pressed. An attendant can check if all display 
positions exhibit the figures "8". When the button is 
loosening, the actual output information, saved in 
display buffers, appears on displays. In the case of a 
detected error, the attendant must decide about proper 
maintenance. 

Of cause, the above-described patterns create only 
skeleton carrying common fault-tolerant configurations. 
In short, while auxiliary hardware components maintain 
supply-voltage level and reset, nozzle position, and 
release signals filtering and timing, the software 
techniques, namely time redundancy or skip-frame 
strategy; deal with non-critical inputs and outputs. 

VI. CONCLUSIONS 
This paper describes a fault management example in 

frame of a safe and secure embedded system using 
dedicated architecture. After reviewing the simple 
specification language and dependability concepts 
deployed, main attention is focused on hardware 
architecture, software, and communication services 
fitting the application requirements. The petrol dispenser 
controller exemplifies in this case a real-world solution 
of a safety and security critical embedded system 
application. The presented paper updates and refines the 
approach originally introduced in [14] for another 
application. 

The full behavioral specification discussed above 
was prototyped using the technique mentioned at the 
end of the section 2 that resulted in executable model 
heavily utilized for experiments during not only early 
design phases, but also later on when investigating 
variants for reuse and re-design of the application. The 
formal semantics of the ASL enabled also to develop a 
related model-checking technique, which was used, 
due to exponential complexity, to verify only selected 
parts of the specification.  

The reason of developing a new specification 
language deals with its asynchronous, multi-clocking 
nature together with overall simplicity, which was 
required by measurement and pumping application 
domain developers. 
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