High Speed Pattern Matching Algorithm Based on
Deterministic Finite Automata with Faulty Transition
Table

Jan Kastil, Jan Korenek
Brno University of Technology
Faculty of Information Technology
Bozetechova 2, Brno 612 66, Czech Republic
(ikastil, korenek) @ fit.vutbr.cz

ABSTRACT

Regular expression matching is the time-critical opera-
tion of many modern intrusion detection systems (IDS).
This paper proposes pattern matching algorithm to
match regular expression against multigigabit data
stream. As usually used regular expressions are only
subjectively tested and often generates many false po-
sitives/negatives, proposed algorithm support the pos-
sibility to reduce memory requirements by introducing
small amount of faults into the pattern matching. Al-
gorithm is based on the perfect hashing and is suitable
for hardware implementation.

Categories and Subject Descriptors

C.2.0 [Network Communication Networks]: Gen-
eral —Security and protection (e.g., firewalls)

General Terms
Algorithms,Design,Security

Keywords

Intrusion Detection, Protocol recognition, pattern match-
ing, Perfect hashing

1. INTRODUCTION

Regular expression matching is usually based on de-
terministic or nondeterministic finite automata. The
nondeterministic automaton is often used in FPGA im-
plementations but it requires several concurrently ac-
tive states or backtracking implementation. Determin-
istic Finite Automaton (DFA) is memory centric and is
mostly used in processor implementations. Fast lookup

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
ANCS’10 October 25-26, 2010, La Jolla, CA, USA.
Copyright 2010 ACM 978-1-4503-0379-8/10/10 ...$10.00.

in transitional table is the basic operation in most im-
plementations of the DFA.

To obtain higher throughput of the pattern matching
the number of characters accepted per symbol or the
frequency has to be increased. Maximal frequency is
bounded by the physical limits of the FPGA. The ex-
pansion of symbol’s dimension rises the alphabet’s size
and is directly responsible for large memory require-
ments. Algorithms for increasing symbol’s size were al-
ready presented in [4].

Analysis in [1] shown that transition tables for regular
expressions used in IDS are sparse. Hash functions are
very efficient for the look-up in the sparse data struc-
tures. If the perfect hash function is used for transition
look-up, next state can be obtained in one memory ac-
cess with a very small overhead. Algorithm in [2] re-
quires less then two bits per key. Disadvantage of the
PHF is it’s inability to distinguish between the exist-
ing and nonexisting transition. In [3], the whole tran-
sition was stored in the transition table to check the
existence of the transition, which lead to high memory
consumptions. The part of the architecture responsi-
ble for confirmation of the existence of the transition is
called validation block.

2. PERFECT HASHING WITH FAULTS

Modern IDS often drop packets if the network load is
too high. If the packet is dropped due to high load, it
goes into the protected network without any check. We
propose to allow small probability of the failure into the
automaton to decrease memory requirements.

Proposed algorithm address trade off between speed
and correctness of the matching algorithms. Introduc-
ing faults into the DFA results in the ability to test
every byte of the data stream with the probability, that
some of the pattern will be missed. The probability
of the faults during recognition is the parameter of the
proposed solution.

The memory reduction can be introduce into valida-
tion block by storing the hash fingerprint instead of the
complete representation of the transition. The probabil-
ity of the failure depends on the size of the fingerprint.

The principle of the whole pattern matching unit can
be seen at the Figure 1. First step is the implementa-

Bytes
stream PHF . "
Stage 1 ransition
Alphabet Memory
Decoder
Next State validation
multiplexor block ¢ PHF
Stage 2
Context

register Start register

Figure 1: Principle of the matching unit

tion of the alphabet decoder. The decoded symbol is
concatenated with active state information in the join
block. The result of the concatenation is used as an in-
put into the three uniform hash functions for the com-
putation of the PHF. Computed hash values are used
as pointers into the transition table implemented in the
BlockRam of the FPGA. Therefore, the actual look up
in the memory consumes one clock cycle. Three lines
are obtained by the transition queries. Every line con-
tains two bit information for the computation of the
perfect hash function followed by the n-bit information
of for the validation block and the lastest part is the
next state of the automaton.

The computation of the PHF is finished and the result
is used for the choosing of the correct line. The hash
key stored in the line is checked in the validation block.
If the validation is successful next state is connected to
the input of the join block for the acceptation of the
next symbol. If validation fail, than pattern matching
is stopped or reset to the starting state.

Small state information allows context switching to
support concurrent matching in several flows.

3. EXPERIMENTAL RESULTS

The experiments were done on subset of rules of L7
filters [5] used for protocol recognition in the Liberouter
project [6]. Several pattern in this set created blow-up
in number of transitions when joined together. There-
fore whole group was divided into several subgroups by
the algorithm described in [7]. The automaton was ex-
tended to accept 3 characters per transition which cor-
respond to throughput 6 Gbps per unit.

Memory consumption for the implementation based
on the perfect hash function was computed together
with the memory consumption of the faulty unit. The
memory consumption of the faulty unit depends strongly
on the probability that the fault occur. Typical result
of these experiments are shown in the graph in Figure 2.

4. CONCLUSION

The main contribution of this work is the decrease of
the memory requirements by introducing a small por-
tion of faults into the pattern matching in IDS. Proposed
algorithm work at the flow level and achieves multigiga-
bit throughput per flow. The algorithm is based on the
Deterministic finite automata and therefore the state of
the matching unit can be stored in small amount of bits.

X
S 100 Probabil 2.5
= | robability ——

% % Faulty Unit)
o 80 | Storing key ——

= 70 - _

S 60+ _— 415
z 50t _—

g .

P 40 - , 11

%* 30 + - g

> 20— 105
= 10 +

e

£ 0L— 0
E 0 5 10 15 20 25 30 35 40 45

Number of bits per key

Figure 2: Typical memory savings

Algorithm uses perfect hash function to determine the
next state and uniform hash function to determine valid-
ity of the transition. Early experiments shown memory
savings more than 20 percent depending on the regular
expressions complexity.

The future work should focus on evaluation how the
quality of the IDS depends on the probability of the
fault during the matching process.

Acknowledgements

This research was supported by the Research Plan No.
MSM, 0021630528 —Security-Oriented Research in In-
formation Technology, Research Plan MSM, 6383917201
and the grant BUT FIT-S-10-1.

5. REFERENCES

[1] J. Kastil and J. Korenek, “Hardware accelerated
pattern matching based on deterministic finite
automata with perfect hashing,” in DDECS 2010,
2010, pp. 149-152.

[2] F. C. Botelho, R. Pagh, and N. Ziviani, “Simple
and Space-efficient Minimal Perfect Hash
Functions,” in In Proc. of the 10th Intl. Workshop
on Data Structures and Algorithms. Springer
LNCS, 2007, pp. 139-150.

[3] J. Kastil, J. Korenek, and O. Lengal, “Methodology
for fast pattern matching by deterministic finite
automaton with perfect hashing,” in DSD 2009.
Washington, DC, USA: IEEE Computer Society,
2009, pp. 823-829.

[4] M. Becchi and P. Crowley, “Efficient regular
expression evaluation: theory to practice,” in
ANCS 2008. New York, NY, USA: ACM, 2008,
pp. 50-59.

[5] “Application layer packet classifier for linux.”
[Online]. Available: http://17-filter.sourceforge.net/

[6] “Liberouter project.” [Online]. Available:
www.liberouter.org

[7] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and
R. H. Katz, “Fast and Memory-efficient Regular
Expression Matching for Deep Packet Inspection,”
in ANCS 2006. New York, NY, USA: ACM, 2006,
pp. 93-102.

Memory requirements [Mb]

