
Noname manuscript No.
(will be inserted by the editor)

A Formal Model of Composing Components
The TLA+ Approach

Ondrej Rysavy · Jaroslav Rab

Received: date / Accepted: date

Abstract In this paper, a method for writing compos-
able TLA+ specifications that conform to the formal

model called Masaccio is introduced. Specifications are

organized in TLA+ modules that correspond to Masac-

cio components by means of a trace-based semantics.
Hierarchical TLA+ specifications are built from atomic

component specifications by parallel and serial compo-

sition that can be arbitrary nested. While the rule of

parallel composition is a variation of the classical joint-

action composition, the authors do not know about a
reuse method for the TLA+ that systematically em-

ploys the presented kind of a serial composition. By

combining these two composition rules and assuming

only the noninterleaving synchronous mode of an exe-
cution, the concurrent, sequential, and timed composi-

tionality is achieved.

Keywords Composing Specifications · Component
Model · Hierarchical Specifications · Synchronous

Mode of Executions · Temporal Logic of Actions

1 Introduction

Software running in embedded systems necessary ac-

quires some properties of the physical world. Usually,
these properties form a part of non-functional aspects in

the software requirements [4]. Among them, the time-

liness is the most important one for the class of real-

time embedded software. To model embedded software,

Ondrej Rysavy · Jaroslav Rab
FIT UIFS, Brno University of Technology
Bozetechova 2, 61266 Brno, Czech Rep.
Tel.: +420-54114-1118
Fax: +420-54114-1270
E-mail: rysavy@fit.vutbr.cz
E-mail: rabj@fit.vutbr.cz

non-functional aspects must be considered by a specifi-
cation method otherwise the model easily diverges from

the reality and becomes inapplicable in further refine-

ment and analysis. Constructing large computer-based

systems relies on the effective and systematic applica-
tion of a modular approach. Various entities playing the

role of composable building blocks have been proposed,

most notably, classes for object-oriented program con-

struction, components in hardware design, procedures

and modules in procedural programming, and active
objects and actors for reactive programming [18].

This paper deals with a method based on a formal-

ism called Temporal Logic of Actions [16] that is capa-
ble to describe embedded control software in a modular

manner and apply an automatized model-checker tool

to verify required functional and certain non-functional

properties of a specification. The main contribution of
this paper lies in the demonstration of how to systemat-

ically develop TLA+ specifications whose interpretation

is that of a formal model called Masaccio[7]. This formal

model allows for the definition of a component hierarchy

that is built from atomic components using operations
of parallel composition, serial composition, renaming

of variables, renaming of locations, hiding of variables,

and hiding of locations. As the resulting TLA+ specifi-

cations have the form of a conjunction of initial predi-
cate and next-state actions, they are readily explorable

by the TLA+ explicit model-checker.

1.1 Related Work

The presented approach stems from the research on a
compositional semantics that have been studied, for in-

stance, for hybrid automata [19], algebraic specifica-

tions [5], Hoare logic [11], synchronous languages [20],

2

Fig. 1 The component Engine

process algebra [14], and in the frame of architecture
description languages, e.g. CODE, Modechart, Wright,

MetaH, and AADL. In particular, we refer to Masaccio

component model [7] that allows for arbitrary nested se-

rial and parallel composition and application of assume-
guarantee principle [9] for the purposes of hierarchical

system design, development and analysis. The system-

atic approach to composing TLA+ specifications can

be found in [2] and [3], which assumes the decomposi-

tion of a solid system specification into a conjunctively
combined parts. Hermann et.el. defined an extension

of TLA+ with explicit notion of process [10]. The pre-

sented work is based on the principles initially elabo-

rated in [21].

2 The Component Model

This section gives a brief overview of a formal model for

embedded components as defined by Henzinger in [7].

In this paper, only discrete components are considered,

although the proposed approach employs a specification
language that can be used for description of hybrid sys-

tems as well [15].

A fundamental entity of the model is a component.

A component A consists of the definition of an interface

and an internal behavior. An interface defines disjoint
sets of input variables, V in

A , output variables, V out
A , and

a set of public locations, Lintf
A . An execution of the com-

ponent consists of a finite sequence of jumps. A jump

is a pair (p, q) ∈ [V in,out
A]× [V in,out

A]1. An observation
p is called the source of jump (p, q) and an observation

q is called the sink of jump (p, q). We write p[v] for

the value of a variable v ∈ V
in,out
A in an observation

p. A jump v is successive to a jump u if the source of
jump v is equal to the sink of jump u. Formally, an ex-

ecution of A is a pair (a,w) or a triple (a,w , b), where

a, b ∈ L
intf
A are interface locations and w = w0 . . .wn

is a nonempty, finite sequence of jumps of A such that

every jump wi , for 1 ≤ i ≤ n is successive to the imme-
diately preceding step wi−1. We write EA for the set of

executions of the component A.

An atomic component is the basic form of compo-

nents found in Masaccio. The behavior of an atomic
component is solely specified by its jump action. A jump

action J is given by a predicate ϕjump
J defined on vari-

ables in XJ ∪ Y ′
J ∪ Z ′

J , where

– XJ is a finite set of source variables,
– YJ is a finite set of uncontrolled sink variables, and

– ZJ is a finite set (disjoint to YJ) of controlled sink

variables.

For instance, the jump action predicate

ϕjump
J

∆

= x ≤ −100 ∧ x ′ = x + dx ∧ dx ′

= max (dx + ((50/(dx − 50) ∗ period),−50)

contains source variables x and dx those are also con-

trolled sink variables. The variable period is also a source

1 [V in,out
A

] stands for a set of all possible assigments of values
into input and output variables of a component.

3

variable, but it is not a sink variable. The interface of

an atomic component publish input variables read by

the component and output variables controlled by the

component, which is defined as follows:

– input variables V in
A(J) = (XJ \ ZJ) ∪YJ , and

– output variables V out
A(J) = ZJ .

The component A(J) has two interface locations,

from and to; that is, L
intf

A(J) = {from, to}. The entry

condition of from is the projection of the jump predicate

to the source variables and the primed uncontrolled sink
variables, that is ϕen

A(J)(from) = (∃Z ′
Jϕjump

J). The entry

condition of to is unsatisfiable.

Two components A and B can be combined to form

a parallel composition C = A⊗B if the output variables
of A and B are disjoint and for each interface location

a common to both A and B , the entry conditions of a

are equivalent in A and in B . The input variables of the

component C form a set V in
C = (V in

A \ V out
B) ∪ (V in

B \

V out
A). The output variables of the component C form

a set V out
C = V out

A ∪ V out
B . The interface locations of

A ⊗ B are the interface locations of A together with

the interface locations of B . An interface location a,

which is common to A and B and its entry conditions
agree in both components, has this entry condition also

in A ⊗ B . Other interface locations cannot be used to

entry the component.

The set of executions of a component C = A⊗B is

defined as 1) the pair (a,w) is an execution of A⊗B iff
(a,w |A) is an exection of A and (a,w |B) is an execution

of B2, 2) the triple (a,w , b) is an execution of A ⊗ B

iff either (a,w |A, b) is an execution of A and (a,w |B)

is an execution of B , or (a,w |B , b) is an execution of B

and (a,w |A) is an execution of A.

The definition of parallel composition specifies that

each jump of both subcomponents is performed in syn-

chronous manner. Moreover, if one component reaches
an exit interface location then the execution of the other

component is terminated. If both components reach

their exit locations one is chosen nondeterministically.

As the consequence of these properties, parallel compo-

sition operation is associative and commutative.

Two components A and B can be composed in se-

ries to form a serial composition C = A ⊕ B if the

set of output variables are identical; that is, V out
A =

V out
B . The input variables of the composed component

is V in = V in
A ∪ V in

B . The interface locations of A ⊕ B

are the interface locations of A together with the in-

terface locations of B . If a is an interface location of

both A and B , then the entry condition of a in A ⊕ B

2 Expression w |C denotes a restriction of the trace w to values
for the I/O variables of the component C .

is the disjunction of the entry conditions of a in the

subcomponents A and B .

The set of executions of the component C = A ⊕

B contains 1) the pair (a,w) iff either (a,w |A) is an

execution of A, or (a,w |B) is an execution of B , 2)
the triple (a,w , b) iff either (a,w |A, b) is an execution

of A, or (a,w |A, b) is an execution of B . The operator

of serial composition is associative, commutative, and

idempotent.
To support these two compositional operations, re-

naming and hiding operations are defined for variables

and locations. The renaming operation maps variables

and locations of different names to each other that al-

lows for sharing data and control between components.
Hiding makes variables or locations internal to the com-

ponent, which is useful when a complex behavior is

modeled inside the component.

3 TLA+

The Temporal Logic of Actions (TLA) is a variant of the

linear-time temporal logic. It was developed by Lam-

port [16] primarily for specifying distributed algorithms,
but several works shown that the scope of applications

is much broader. The system of TLA+ extends TLA

with data structures allowing for easier description of

complex specification patterns. TLA+ specifications are

organized into modules. Modules can contain declara-
tions, definitions, and assertions by means of logical for-

mulas. Declarations consist of constants and variables.

Constants can be uninterpreted until an automated ver-

ification procedure is used to verify the properties of the
specification. A collection of values assigned to vari-

ables describe completely a state of the system being

analyzed. Transition formulas asserts the values of the

variables in every two successive states. A specification

of the system is given by means of a temporal formula
defined as a conjunction of the form Init∧�[Next]v ∧L,

where Init is the initial condition, Next is the next-state

relation (composed from transition formulas), and L is

a conjunction of fairness properties. Transition formu-
las, also called actions, are ordinary formulas of an un-

typed first-order logic defined on a denumerable set of

variables, partitioned into sets of rigid variables, flexible

and primed flexible variables. Transition formulas can

reference these variables to express a relation between
two consecutive states. The generation of a transition

system for the purpose of model checking verification or

simulation is governed by the enabled transition formu-

las. The formula �[Next]v admits transitions that leave
a set of variables v unchanged. This is known as stutter-

ing, which is a key concept that enables the refinement

and compositional specifications. The initial condition

4

and the next-state relation specify the possible behav-

ior of the system. Fairness conditions strengthen the

specification by asserting that given actions must oc-

cur. The TLA+ does not formally distinguish between a

system specification and a property specification. Both
specifications are expressed as formulas of the tempo-

ral logic and are connected by the implication S ⇒ F ,

where S is a specification and F is a property. Confirm-

ing the validity of this implication stands for showing
that the specification S has the property F. The TLA+

is accompanied with a set of tools. The TLA+ model

checker, called TLC, is a state-of-the-art model ana-

lyzer that attempts to explore all reachable states in

finite TLA+ models. The input to TLC consists of a
specification file and a configuration file, which gives an

interpetation to constants, which is necessary for model

computation procedure. An execution of the TLC pro-

duces a result that gives an answer to the question of
whether S ⇒ F . In the case of negative answer, the

execution violating the implementation is presented to

the user. A technique known as symmetry reduction is

implemented helping to scale the verification method

for larger specifications.

4 Specification of Components

Using a simple example as required by space constraints,

this section explains the construction of TLA+ specifi-
cations that corresponds to Masaccio embedded com-

ponents.

The example represents a specification of a com-

ponent Engine taken from [7]. This component is a
part of a more complex specification that models the

control of a railway crossing. In particular, the Engine

component controls acceleration and deceleration of a

train that is moving in a near distance to the railway

crossing. Although this example is rather trivial, it is
sufficient to demonstrate basic principles of the speci-

fication method as it contains both parallel and serial

compositions.

The component Engine and its subcomponents are
modeled in figure 1. The components are represented

by rectangles with rounded corners. Input and output

variables are represented by open arrows connected to

component boundaries. The position of an arrow de-

termines the direction of a variable. The locations are
drawn as solid disks and are positioned at the bound-

aries of components. Jump actions are represented by

solid arrows labeled with condition predicates and ac-

tion predicates.
The component Engine consists of a serial compo-

sition of two subcompoments, namely, Drive and Halt .

An entry location is directly connected with one of the

locations of Drive component. There is one exit location

that is accessible from both subcomponents. Other in-

terface locations, namely slowdown and speedup, serve

for passing the control between Drive and Halt compo-

nents. Further, the component interacts with the envi-
ronment by reading an input variable brake and con-

trolling output variables x and dx . These variables are

also available to both subcomponents.

The component Drive governs train acceleration.
The component is a parallel composition of two atomic

components, namely TestBrake and Accelerate. The in-

put variable brake determines whether the train accel-

erates or decelerates. Its value is observed by TestBrake

component that removes the control from Drive com-
ponent if the variable brake signalizes the application of

emergency brake. In component Accelerate, the actual

speed and the distance of the train to the rail crossing

is computed.
The component Halt has similar structure to the

component Drive. It’s purpose is to slow the train down

until brake is released. After that the control passes

back to Drive component through the location speedup.

To show that TLA+ specifications conform to Masac-
cio interpretation, the interpretation of TLA+ expres-

sions needs to be defined. The following simplified sys-

tem is used (for complete semantics see e.g. [12]). The

meaning of a module depends on a context. A basic
context consist of declarations and definitions of all

built-in operators of TLA+ together with definitions

and declarations of modules extended or instantiated.

The meaning of a module M in a context C is given by

the following sets:

– DclCM is a set of declarations.

– Def CM is a set of definitions.

– AsmC
M is a set of assumptions.

– ThmC
M is a set of theorems.

The TLA+ module can examined by means of simula-

tion and formal verification if it contains a definition in
the standard form:

Init ∧ �[Next]vars ∧ Temporal

where Init is the inital predicate, Next is the next-state

action, vars is the tuple of all variables, and Temporal

is a temporal formula that usually specifies a liveness

condition. A set of behaviors can computed such that it

satisfies the specification given by this definition. Using
a model-checking technique the computational method

tries to find a reachable graph describing all states and

behaviors satisfying the specification; that is a smallest

graph Gspec
MC

= consisting of

– N
spec
MC

, which is a set of all reachable states of mod-

ule M in a context C with specification given by a

5

1 module Accelerate

2 extends Reals, Components

3 variables x , dx Output variable
4

5 diff
∆

=
6 ∧ x ′ = x + dx

7 ∧ dx ′ = max(dx + ((50/(dx − 50)) ∗ period), − 50)

9 J1
∆

= JumpAtom(true)
10 ∧ x > − 100 ∧ diff

12 J2
∆

= JumpAtom(false)
13 ∧ x ≤ − 100 ∧ diff

15

16 Init
∆

= InitAtom ∧ dx ∈ Real ∧ x ∈ Real

17 Next
∆

= J1 ∨ J2
18

Fig. 2 The TLA+ specification of Accelerate

standard form definition spec ∈ DefM. At least, the

set contains all states s in which Init is satisfied.

– E
spec
MC

, which is a set of edges such that (r , s) ∈ E
spec
MC

iff the unprimed fraction of Next is satisfied in state

r and the primed fraction of Next is satisfied in state

s .

– D
spec
MC

(s , x), which is a value assigning function that
for each variable x ∈ DclM gives its actual value in

the given state s .

We write s |=Gspec

MC

F for asserting that a formula F is

satisfied in a state s of the reachability graph Gspec
MC

.

Similarly, (s , r) |=Gspec

MC

A asserts that action formula A

is satisfied in a pair of states (s , r) ∈ E
spec
MC

. If s |=Gspec

MC

F for all s ∈ N
spec
MC

we simply write |=Gspec
MC

F .

Note that Masaccio interpretation is defined in terms

of execution traces. Obviously, an execution trace cor-

responds very closely to TLA+ behavior, which can be
generated by traversing a graph M. This similarity will

be very useful in the further development, where rules

of conformance of TLA+ specifications and Masaccio

models are built upon the execution semantics.

4.1 Specifying atomic components

According to Masaccio semantics, an atomic discrete
component A(J) is completely specified by a jump pred-

icate that defines a set of legal jumps J . Further, an

atomic component has an arbitrary number of input

and output variables. In each atomic component, there
are only two interface locations, denoted as from and

to.

The representation of an atomic component is straight-
forward in TLA+ language. In figure 2, TLA+ descrip-

tion of Accelerate component is shown. A set of jumps

is a conjunction of two next-state actions. Action J1 is

executed if train is moving in a near distance. Action

J2 is enabled if the train leaves the perimeter of the rail

crossing. The differential computation is done in func-
tion diff . Train acceleration is expressed as ((50/(dx −

50)) ∗ period), where period defines an amout of time

that equals time difference dt . This constant comes, to-

gether with a bundle of other declaration and defini-
tion from module Components (see appendix for the

full specification of this module) which is open in the

module Accelerate using extends statement.

An atomic component A(J) is equally represented

by a TLA+ module MA(J) = 〈DclA(J),DefA(J)〉 with

a reachability graph GA(J) = 〈NA(J),EA(J),DA(J)〉 in-

duced by the specification Init ∧ �[Next]vars if the fol-

lowing conditions are satisfied:

– Module M declares a variable for each I/O vari-

able of the atomic component; that is, for every

vT ∈ V
in,out

A(J) there is v ∈ DeclA(J) such that |=GA(J)

v ∈ T . Notation vT states that set T is a domain

of variable v 3.

– The meaning of next-state action Next agrees with

the predicate ϕjump
J (a); that is, for every jump w =

(p, q):
– if (a,w) is an execution of A(J) then there is

a pair of states (p̂, q̂) such that (p̂, q̂) |=GA(J)
N

and location a is active in both states p̂ and q̂.

– if (a,w , b) is an execution of A(J) then there is
a pair of states (p̂, q̂) such that (p̂, q̂) |=GA(J)

N .

Location a is active only in state p̂ and location

b is active only in state q̂.

Moreover, it has to hold for both cases that values of

every variable of v ∈ VA(J) in both interpretations
are equal; that is, D(p̂, v) = p[v].

3 In Masaccio, the notation v : T is used but we stick to vT

to avoid confusion if overloading operator ’:’.

6

1 module Drive

2 extends Components, Integers, Sequences

3 variables brake The input variable.
4 variables x , dx Controlled variables.
5

6 driveBrake
∆

= instance TestBrake with current ← “DriveBrake”

7 accelerate
∆

= instance Accelerate with current ← “Accelerate”

8

9 Init
∆

= driveBrake!Init ∧ accelerate!Init

10 ∧ InitParallel({“DriveBrake”, “Accelerate”})

12 Next
∆

= driveBrake!Next ∧ accelerate!Next

13 ∧ JumpParallel({“DriveBrake”, “Accelerate”})

15 Activate
∆

= driveBrake!Activate ∧ accelerate!Activate ∧ ActivateCurrent

17 Suspend
∆

= SuspendCurrent ∧ driveBrake!Suspend ∧ accelerate!Suspend

18

19 L slowdown
∆

= activity [“DriveBrake”] = false

20 L exit
∆

= activity [“Accelerate”] = false

21

Fig. 3 The TLA+ specification of Drive

– The meaning of initial predicate Init agrees with

the predicate ϕen
A(J)(from); that is, for every trace

of atomic component A(J) with prefix (from, (p, q))

there exists a state p̂ that corresponds to state p and
p̂ |=GA(J)

Init .

As it can be seen from the TLA+ specification of

Accelerate module in figure 2, the jump actions of atomic

specification contains reference to JumpAtom function

that depends on the variable clock . This variable serves

to synchronization purposes. It enforces that parallel
actions are executed at the same time. Therefore all

jumps include the condition stating clock ′ = ¬clock .

Except proper actions, there are also specific actions

supporting serial compositions as described later in this
section. These specific actions violate this condition re-

quiring that the time is stopped; that is, clock ′ = clock .

4.2 Specifying Parallel Composition of Components

The component Drive, which is a part of component

Engine shown in figure 1, is a result of parallel compo-

sition of two subcomponents. The corresponding TLA+

specification is given in figure 3. The semantics of paral-

lel composition corresponds to joint-action specification

as described by Lamport in [16, p.147]. Its encoding in

TLA is straightforward.

The Drive module contains input and output vari-
ables brake, x , dx . The module instantiates its submod-

ules - TestBrake and Accelerate. The constant current

of each submodule is set to corresponding component

identification, which allows for referencing the subcom-
ponents in the specification. Line 9 defines a collection

of initial states of the subcomponents. The initial pred-

icate Init is a conjunction of the initial predicates of all

its subcomponents and InitParallel predicate that is de-

fined in Components module. This state predicate gives

an initial value to the element of activity array that cor-

responds to the composed component. In this case, it is
activity[current], where the value of current constant is

allowed to be given in a component that includes Drive

as its subcomponent. In fact, such a component is the

component Engine as shown later. For parallel com-

position, the value of activity[current] amounts to the
value given by logical conjuction of activity values of

all its immediate subcomponents. The state predicate

InitParallel is defined as follows:

InitParallel(S)
∆

=

∧ activity ∈ [Components → boolean]

∧ activity[current] = ∀ s ∈ S : activity[s]

The next-state action predicate Next is a conjunc-

tion of next-state predicates of subcomponents, which
gives the intended execution interpretation of the com-

ponent; that is, the jumps of subcomponents are ex-

ecuted in parallel and in synchronous manner. This

style of specification is usually known as joint-action
non-interleaving composition [1]. The next-state action

predicate of the parallely composed component is sup-

plied with JumpParallel predicate as the new value of

activity[current] element has to be computed after ev-

ery execution of the action. The predicate JumpParallel

is defined in Components module as follows:

JumpParallel(S)
∆

=

∧ activity[current] = true

∧ activity ′ ∈ [Components → boolean]

∧ activity ′[current] = ∀ s ∈ S : activity ′[s]

∧ clock ′ = ¬clock

7

1 module Engine

2 extends Components, Bags, Integers

3 variables brake

4 variable x , dx output variables
5

6 drive
∆

= instance Drive with name ← “Drive”, init activity ← init activity

7 halt
∆

= instance Halt with name ← “Halt”, init activity ← false

8

9 C slowdown
∆

= suspend Drive and activate Halt

10 ∧ drive!L slowdown

11 ∧ActivateCurrent ∧ halt !Activate ∧ drive!Suspend

12 ∧ unchanged 〈brake, x , dx〉

14 C speedup
∆

= suspend Halt and activate Drive

15 ∧ halt !L speedup

16 ∧ActivateCurrent ∧ drive!Activate ∧ halt !Suspend

17 ∧ unchanged 〈brake, x , dx〉

19 L exit
∆

= halt !L exit ∨ drive!L exit

21 Activate
∆

= drive!Activate ∧ halt !Suspend ∧ ActivateCurrent

23 Suspend
∆

= drive!Suspend ∧ halt !Suspend ∧ SuspendCurrent

24

25 Init
∆

= drive!Init ∧ halt !Init

26 ∧ InitSerial({“Drive”, “Halt”})
27 ∧ brake ∈ boolean ∧ x ∈ Real ∧ dx ∈ Real

28 Next
∆

=
29 ∨ ((drive!Next ∨ halt !Next) ∧ JumpSerial({“Drive”, “Halt”}))
30 ∨ C slowdown ∨ C speedup

31

32 Spec
∆

= Init ∧2[Next]〈brake, x , dx〉

33

Fig. 4 The TLA+ specification of Engine

A component C = A⊗B composed in parallel from

subcomponents A and B is equally represented by a

TLA+ module MC = 〈DclC ,DefC 〉 with a reachability
graph GC = 〈NC ,EC ,DC 〉 induced by the specification

Init ∧ �[Next]vars if the following conditions are met:

– A set of module variables includes all I/O variables

that appears in both of its subcomponents; that is,
for every vT ∈ V

in,out
A ∪V

in,out
B there exists v ∈ DclC

such that |=GC
v ∈ T .

– The meaning of next-state action Next agrees with

the predicate ϕjump
A ∧ ϕjump

B ; that is, for execution
w = w0 . . .wn

– if (a,w) is an execution of A⊗B then there is a

sequence of states p̂0 . . . p̂n such that (p̂i , p̂i+1) |=GC

Next for 0 ≤ i < n. Location a is active at least

at states p̂0 and p̂n .
– if (a,w, b) is an execution of A⊗B then there is a

sequence of states p̂0 . . . p̂n such that (p̂i , p̂i+1) |=GC

Next for 0 ≤ i < n. Location a is active at state

p̂0 and location b is active at state p̂n .
Moreover, it has to hold for both cases that values of

every variable of v ∈ VA(J) in both interpretations

equal; that is, D(p̂, v) = p[v].

We decided to reflect the component hierarchy in

structure of TLA+ modules although for meeting the

same interpretation the other options are possible too.
However, this approach enables us to structure TLA+

specification in the same manner as Masaccio models.

A state space of a composed component is generated

according the initial predicates and next-state actions
of its subcomponents. The conjunction of next-state ac-

tions requires that there are simultaneous jumps in each

of the subcomponent. Moreover if one of the subcom-

ponent reaches its end location, which causes that such

component has not enabled action, it is not possible
to execute any jump in any of the contained compo-

nents. This configuration is then recognized as the end

location of the component. The identification of end

locations in behaviors is important for serial composi-
tion of components as the end locations determine the

moments when currently active component looses the

control and passes it to another component.

4.3 Specifying Serial Composition of Components

The serial composition of components requires that only

one contained component has control at a time. This

8

needs to be reflected in a location configuration. To

enable the passing of control between components, spe-

cific actions that modify only activity array are added

into the specification. Their purpose is similar to that

of connector elements that can be found in architec-
ture description languages, e.g. [17]. The example of

a component composed in series is shown in figure 4.

The module Engine instantiates two subcomponents,

namely Drive and Halt . Constants init activity are used
to specify which component has focus initially. Compo-

nent Halt can get focus only through interface location

slowdown that is not accessible outside Engine com-

ponent. Component Drive will get focus if component

Engine gets one. Lines 9-12 and 14-17 contain defini-
tion of connectors that stand for transfer of control be-

tween Drive and Halt components as depicted by slow-

down and speedup component interconnection in figure

1. Connector action C slowdown is enabled if Drive

component is at slowdown location, which is tested by

L slowdown predicate introduced in Drive module (see

figure 3, line 19).

The connector activates Halt component and keep

the component Drive at the end location. Also, it ac-

tivates itself by including Activate in the conjuction of

the next-state action. Predicate Activate simply sets

the corresponding element of activity array to true

without the modifying clock variable:

Activate
∆

= Activation of the current component.

∧ activity ′ ∈ [Components → boolean]

∧ activity ′[current] = true

∧ unchanged 〈clock〉

Predicate Suspend is included in the action predi-
cate in order to fully define activity array in the next

state. Without this predicate, activity[Drive] can be ar-

bitrary boolean value. Instead, elements of activity ar-

ray that defines states of component Drive and its sub-

components are set to undef . An example sequence
demonstrating components switching is show in fig 5.

The state of the system is represented only by the actual

value of activity array. Initially, component Drive is ac-

tive. In the second step, the component Drive enters its
end location, which is forced by component DriveBrake.

This leads to inactivation of Drive and Engine compo-

nents too. Component switching is done in the tran-

sition between the second and third step. Component

Halt is activated, which allows to set Engine compo-
nent to active state too. The state of Drive component

set as suspended. Note that clock variables remains un-

changed during the switch step.

In TLA+ specification, the end locations can be

identified by reading activity array. The presence of an

atomic component A in its end location can be checked

by expression activity[A] = false. In a specification

of component C obtained by parallel compositions of

components A = A1, . . .An , reaching the end loca-

tion by one of the subcomponents is propagated to the

top level, which is encoded as activity[C] = ∀ s ∈ A :
activity[s]. Serial composition C of components A =

A1, . . .An , reaching the end location by subcomponents

is propagated to the top level, which is encoded as

activity[C] = ∃ s ∈ A : activity[s]. This means that
all the components must be inactive in order to mark

the serial composition as inactive too.

Once a component reaches its end location it should
remain there until the control flow enter the component

again via one of its entry interface location. In other

words, the component waits in this state for the resume

action. The composability requires that the component
does permit the evolution of its environment (or con-

tainer component) and therefore the global clocks are

allowed to run, while the component is at the end loca-

tion.

A component C = A ⊕ B composed in serial from

subcomponents A and B is equally represented by a

TLA+ module MC = 〈DclC ,DefC 〉 with a reachability
graph GC = 〈NC ,EC ,DC 〉 induced by the specification

Init ∧ �[Next]vars if the following conditions are met:

– A set of module variables includes all I/O variables

that appears in both of its subcomponents; that is,

for every vT ∈ V
in,out
A ∪V

in,out
B there exists v ∈ DclC

such that |=GC
v ∈ T .

– The meaning of next-state action Next agrees with

the predicate ϕjump
A ∨ ϕjump

B ; that is, for execution

w = w0 . . .wn

– if (a,w) is an execution of A⊕B then there is a

sequence of states p̂0 . . . p̂n such that (p̂i , p̂i+1) |=GC

Next for 0 ≤ i < n. Location a is active at least

at states p̂0 and p̂n .

– if (a,w, b) is an execution of A⊕B then there is a

sequence of states p̂0 . . . p̂n such that (p̂i , p̂i+1) |=GC

Next for 0 ≤ i < n. Location a is active at state

p̂0 and location b is active at state p̂n .

Moreover, it has to hold for both cases that values of

every variable of v ∈ VA(J) in both interpretations

equal; that is, D(p̂, v) = p[v].

Execution in a serial component consists of possibly

alternating finite sequences of jumps. Each sequence be-
longs to behavior of some subcomponent. This princi-

ple is reflected in Next predicate of a composite compo-

nent which is defined as a disjunction of Next predicates

of the subcomponents. The other possibility is to have
Next predicate defined as a conjunction of subcompo-

nent’s Next predicates and adding a distinguished ac-

tion to all atomic components, which is enabled if the

9

























DriveBrake 7→ true

Accelerate 7→ true

Drive 7→ true

HaltBrake 7→ undef

Decelerate 7→ undef

Halt 7→ undef

Engine 7→ true

clock = true

























→

























DriveBrake 7→ false

Accelerate 7→ true

Drive 7→ false

HaltBrake 7→ undef

Decelerate 7→ undef

Halt 7→ undef

Engine 7→ false

clock = false

























→

























DriveBrake 7→ undef

Accelerate 7→ undef

Drive 7→ undef

HaltBrake 7→ true

Decelerate 7→ true

Halt 7→ true

Engine 7→ true

clock = false

























Fig. 5 A trace of component switch behavior

component is suspended. This activity states that the

component does not engage in system behavior.

4.4 Composition Rules

In the following, we generalize the previously informally

defined compositional operations to the TLA+ compo-

sition rules and shows that they obey the required prop-

erties.

Definition 1 (Rule of Parallel Composition) For

any set C , if

(∀k ∈ C : v ′
k = vk) ≡ (v ′ = v)

then

(⊗k ∈ C : Initk ∧ 2[Nextk]〈varsk 〉) ≡

∧ (
∧

k ∈ C : Initk) ∧ InitParallel(C)

∧ 2[(
∧

k ∈ C : Nextk) ∧ JumpParallel(C)]〈varsk 〉.

The rule of parallel composition gives a hint on how

to create a joint specification by composing specifica-

tions of components in set C such that their instan-
teneous state changes are performed as joint actions.

This rule is very close to the principles defined in [2].

The composition is reduced to conjunction of compo-

nents specifications.

Definition 2 (Rule of Serial Composition) For any

set of components C and a set of connectors S between

components of C , if

(∀k ∈ C : v ′
k = vk) ≡ (v ′ = v)

then

(⊕k ∈ C : Initk ∧ 2[Nextk]〈varsk 〉) ≡

∧ (
∧

k ∈ C : Initk) ∧ InitSerial(C)

∧ 2





∨

(

∧ (
∨

k ∈ C : Nextk)
∧ JumpSerial(C)

)

∨ (
∨

j ∈ S : Fj)





〈varsk 〉

.

The rule of serial composition catch an aspect of

switching constitutent components in behaviors of the

composite component. The basic idea is that composi-

tion can be reduced to disjunction of steps that can be
performed by constitutent components. Nevertheless,

this solely is not sufficient as we need to be sure that

only one component is running at a time. To do this, an

explicit control flow mechanism is introduced by means

of activity ∈ [Components → tristate] vector and

connector set S . A connector is responsible for activate

a selected consitutent component according to speci-
fied activation rules. A connector that can switch from

component i to component j is written in the form

Fij
∆

= Li ∧ Activate(j) ∧ (
∧

k ∈ C \ j : Activate(k)),

where state formula Li specifies the end location of

component i . Reaching this location by a component i

triggers switch action of connector Fij yielding the con-
nector j in active mode and all others in the suspended

mode.

5 Conclusion

In this paper, an overview of the method capable of

formal specifying and verifying embedded control sys-

tems has been presented. The method is based on the

TLA+ , which is equipped with a highly expressive lan-
guage allowing for writing clear and readable specifica-

tions. An accompanying tool, the TLC model checker,

can be employed to show that the specification implies

the intended properties. We illustrated the method on
a simple example and provided a formal description of

composition rules.

In addition to clarification of basic properties of the

component model and specification method, the per-

spectives for future research were revealed:

– Deeper understanding of the assume-guarantee re-

finement in the TLA+ specification framework is re-
quired and the proof that these specifications obey

assume-guarantee principle as specified for Masaccio

model should be given. It enables to apply the for-

mal verification techniques to construct proofs of de-

sign correctness for individual components and their
compositions.

– Specification of hybrid systems as proposed by Masac-

cio was not fully addressed in this paper. In partic-

ular, continous components and related issues were
not considered at all. As shown in [15], TLA+ is

expressive enough to capture a large class of hy-

brid systems specifications. The question is whether

10

the verification can be adequately supported by the

tools available for TLA+ .

– A refinement relation that has been defined for con-

joining compositions of specifications [1] shows the

capability of TLA+ to develop the system imple-
mentation from an initial high-level to a high-level

timed program (e.g. [8] and [6]) in a step-wise man-

ner.

The formal model and the presented specification method

is suitable, in particular, for application to the domain

of distributed time-triggered systems [13] or to support

design methods based on architecture description lan-
guages with formal reasoning tools.

Acknowledgements The research has been supported by the
Czech Ministry of Education in the frame of Research Inten-
tions MSM 0021630528, and by the Grant Agency of the Czech
Republic through the grants GACR 201/07/P544 and GACR
102/08/1429. We thank Miroslav Sveda, Petr Matousek, Tom
Hilburn, and anonymous reviewers for suggestions to improve
this paper.

References

1. M. Abadi and L. Lamport. Composing specifications.
ACM Transactions on Programming Languages and Sys-

tems, 15(1):73–132, 1993.
2. M. Abadi and L. Lamport. Conjoining specifications. Re-

search Report 118, Digital Equipment Corporation, 1993.
3. Mart́ın Abadi and Stephan Merz. An abstract account of

composition. In J. Wiedermann and P. Hajek, editors, Math-

ematical Foundations of Computer Science, volume 969 of
Lecture Notes in Computer Science, pages 499–508, Prague,
Czech Republic, 1995. Springer-Verlag.

4. Patrick Cousot and Radhia Cousot. Verification of embed-
ded software: Problems and perspectives. Lecture Notes in

Computer Science, 2211:97–114, 2001.
5. Razvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida.

Component-based algebraic specification and verification in
cafeobj. In FM’99 – Formal Methods, volume 1709 of Lec-

ture Notes in Computer Science, pages 1644–1663. Springer,
1999.

6. Arkadeb Ghosal, Thomas A. Henzinger, Daniel Iercan,
Christoph Kirsch, and Alberto L. Sangiovanni-Vincentelli.
Hierarchical timing language. Technical Report Technical
Report No. UCB/EECS-20, EECS Department, University
of California, Berkeley, May 2006.

7. Thomas A. Henzinger. Masaccio: A formal model for em-
bedded components. In TCS ’00: Proceedings of the Inter-

national Conference IFIP on Theoretical Computer Science,

Exploring New Frontiers of Theoretical Informatics, pages
549–563, London, UK, 2000. Springer-Verlag.

8. Thomas A. Henzinger, Benjamin Horowitz, and
Christoph Meyer Kirsch. Giotto: A time-triggered lan-
guage for embedded programming. Lecture Notes in

Computer Science, 2211:166+, 2001.
9. Thomas A. Henzinger, Martin Minea, and Vinayak

Prabbu. Hybrid Systems: Computation and Control, volume
2034/2001 of Lecture Notes in Computer Science, chapter
Assume-Guarantee Reasoning for Hierarchical Hybrid Sys-
tems, pages 275–290. Springer Berlin / Heidelberg, January
2001.

10. Peter Herrmann, Gunter Graw, and Heiko Krumm. Com-
positional specification and structured verification of hybrid
systems in ctla. In In Proc. 1st IEEE International Sym-

posium on Object-oriented Real-time distributed Computing,
pages 335–340. IEEE Computer Society Press, 1998.

11. Jozef Hooman. A compositional approach to the design of
hybrid systems. In Hybrid Systems, pages 121–148, London,
UK, 1993. Springer-Verlag.

12. Michael Kaminski and Yael Yariv. A real-time semantics of
temporal logic of actions. Journal of Logic and Computation,
13(6):921–937, 2001.

13. Hermann Kopetz. Real-Time Systems: Design Principles

for Distributed Embedded Applications, volume 395 of The

Springer International Series in Engineering and Computer

Science, chapter The Time-Triggered Architecture, pages
285–297. Springer Netherlands, 2002.

14. Ron Koymans, R. K. Shyamasundar, Willem P. de Roever,
Rob Gerth, and S. Arun-Kumar. Compositional seman-
tics for real-time distributed computing. Inf. Comput.,
79(3):210–256, 1988.

15. Leslie Lamport. Hybrid systems in tla+. In Hybrid Systems,
volume 736 of Lecture Notes in Computer Science, pages 77–
102. Springer, 1992.

16. Leslie Lamport. Specifying Systems: The TLA+ Language

and Tools for Hardware and Software Engineers. Addison-
Wesley Professional, 2003.

17. Kung-Kiu Lau, Vladyslav Ukis, Perla Velasco, and Zheng
Wang. A component model for separation of control
flow from computation in component-based systems. Elec-

tronic Notes in Theoretical Computer Science, 163(1):57–69,
September 2006.

18. Edward A. Lee. Embedded software. Advances in Comput-

ers, 56:56–97, 2002.
19. Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid

i/o automata. pages 496–510. Springer-Verlag, 1996.
20. Y. S. Ramakrishna and R. K. Shyamasundar. A composi-

tional semantics of esterel in duration calculus. In In Proc.

Second AMAST workshop on Real-time Systems: Models and

Proofs, Bordeux. Springer-Verlag, 1995.

21. Ondrej Rysavy and Jaroslav Rab. A component-based ap-
proach to verification of embedded control systems using tla.
In IEEE Proceedings of International Multiconference on

Computer Science and Information Technology, pages 719–
725. IEEE Computer Society Press, 2008.

