Firmware Optimization for Embedded Logic Control
Vaclav Dvorak*, Petr Mikusek **
*Faculty of Information Technology, Brno University of Technology, Brno, CZ 612 66
Czech Republic (Tel: 420-541 141 149; e-mail: dvorak@ fit.vutbr.cz).
** Faculty of Information Technology, Brno University of Technology, Brno, CZ 612 66
Czech Republic (Tel: 420-541 141 352; e-mail: imikusek@ fit.vutbr.cz,
Abstract: This paper presents a new method to represent a subclass of multiple-output incompletely specified functions by means of multi-terminal binary decision diagrams (MTBDDs). Algorithm to reduce the cost and width of MTBDDs is presented. A software CAD tool makes use of iterative decomposition to obtain a MTBDD data structure that can be directly mapped to firmware in a form of chained dispatch tables. A practical example shows that there is a space-time trade-off between the amount of memory required for all dispatch tables in a control store and the speed of firmware execution. Support for multi-way branching in a micro-sequencer is assumed.
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1. INTRODUCTION

Specification of a single-output Boolean function in a form of binary decision diagram (BDD) is well known, Yanushkevich (2006), Ebendt (2005). Generalization of BDDs to multiple-output Boolean functions are so called word-level BDDs, among them e.g. multi-terminal BDDs (MTBDDs) or BDDs for characteristic function BDD_for_CF, Ebendt (2005), Sasao (2005). The latter diagrams use both input and output variables to control decision nodes what makes them more complex. On the other hand, optimum MTBDD synthesis, basically optimum ordering of variables with respect to a certain goal, is covered very little in the literature Yanushkevich (2006); and yet, tools for BDDs synthesis and manipulation e.g. UniHamburg (2007) cannot be used for MTBDDs, nor can be a MTBDD obtained from BDDs of component Boolean functions. Given the ordering of variables, the diagram may be obtained by decomposing the original function repeatedly, i.e. removing a group of 1 or more variables at each step. 
In the most general case, multiple outputs of Boolean functions are described by ternary vectors with element values 0, 1, and don´t care “dc“. However, in many cases we can take integer values as identifiers for binary output vectors of multiple-output Boolean functions. This case of integer functions of Boolean variables will be a focus of this paper.  The main contribution of the paper is the algorithm of iterative decomposition of incompletely specified integer functions with embedded optimum local selection of decision binary variables. This algorithm produces suboptimal MTBDDs suitable for firmware design.
The paper is structured as follows. Section 2 deals with the basic notions of the cube calculus, because functions that are dealt with are specified by cubes. MTBDD construction using a simple disjunctive decomposition iteratively is described in Section 3. Our heuristic approach to variable ordering is discussed in Section 4. Section 5 presents synthesis of MTBDDs for the Round Robin Arbiter example aided by the HIDET tool. The results and future research directions are commented on in Conclusion. 

2. BASIC DEFINITION AND NOTIONS
To begin our discussion, we define the following terminology. An integer function of n Boolean variables is defined as a set F of (n+1)-tuples, called function cubes, in which the first n components correspond to the binary inputs and the single integer component, to the output. Set F is only a shorthand description of a full function table, even though in the small example illustrated below (Table 1a, b) the full map looks smaller. For three minterms, 0011, 0101 and 1111 comprising the DC-set, no outputs are defined, and these minterms denoted dc are omitted in Table 1b. The function F in Table 1 will be used as a running example in the sequel.

The value of symbol “-“ is considered uncertain, whereas 0 and 1 are certain. An element c of {0, -, 1}n is called an input cube. Next we will review the basic notions of cube calculus, Brzozowski (1997).
Def. 1. The uncertainty partial order ( on the set {0, -, 1} is defined as follows:

               0 ( 0, 1 ( 1, - ( -, 0 ( -, 1( - .

The partial order ( is extended to c, c´({0, -, 1}n : 
cubes c, c´ are partially ordered, c ( c´, if the partial order holds between their ternary components. 

Def. 2. Compatibility relation. Two cubes c, c´ are compatible, c ( c´, if they are compatible component-wise; except pairs [0,1] and [1,0], all other component pairs are compatible.
In other words, two cubes c and c´are compatible if and only if they have a non-empty common sub-cube. A compatibility relation ( is reflexive and symmetric. 
Table 1. Sample integer function specification

a) by the full map  b)  by cubes
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Def. 3. A product (intersection) of two or more compatible cubes is defined component-wise according to Table 2.
A set of (n+1)-tuples does not necessarily define an integer function, because it is possible to assign conflicting output values. Similarly to Boolean fr functions, Brzozowski (1997),
defined by the ON-set and the OFF-set, with the DC-set computed as the complement of the union of the ON-set and the OFF-set, we introduce integer-valued fr functions; they must satisfy the consistency condition, which guarantees that there are no contradictions; shortly, if two input cubes are compatible, their corresponding outputs must be identical.  
Table 2. Element-wise cube multiplication
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With each cube c({0, -, 1}n we associate a set bin c of binary tuples (minterms) contained in that cube: 

bin c = {b ({0,1}n | b ( c}.

If minterm b ( bin c, we say that b belongs to c, or that c contains b.

Now we will define the basic notions related to MTBDDs (BDDs) and to functional decomposition.
Def. 4. The cost of the MTBDD is given by the total number of true decision nodes, with outgoing edges directed to different nodes.
Def. 5. The width of the MTBDD at a certain height is the number of edges crossing the section of the MTBDD between adjacent levels of decision nodes, where the edges incident to the same node are counted as one.

Def. 6. Functional decomposition of function 
        F(x1, x2, …,xn) = F(X) 

is a serial disjunctive separation of F into two functions G and H such that 

    F(X) = H(U, G(V))                                       (1)

where 

U, V are disjunctive subsets of set X, 

U ( V = (, U ( V = X, and 

|U| +log2 |G| < |X|, |V| < |X|.
Function G with |V| inputs has |G| distinct function values, function H has |U| +log2 |G| inputs. We will refer to G and H as to residual and detached functions, respectively. Logically, we want functions G and H to have strictly fewer inputs than F. Moreover, in a functional decomposition, the minimization of width of a MTBDD influencing the value of log2 |G| is more important than the minimization of cost.
The advantage of MTBDDs over BDDs_for_CF is that while the former diagrams can be cut into slices of arbitrary size, the latter diagrams must be reconstructed after each decomposition step, because input and output variables are interleaved, Sasao (2005).
3. MTBDD CONSTRUCTION BASED ON THE DISJUNCTIVE ITERATIVE DECOMPOSITION     
Decomposition can be applied iteratively to a sequence of residual functions with a decreasing number of variables. In this section we will present a method of iterative disjunctive decomposition based on notion of blankets, Brzozowski (1997), modified and simplified for our case of integer functions. We will select always a single input variable (|U|=1), from now on denoted as a detached variable, that will be removed from a residual function in such a way that the width or cost of the diagram will be minimized locally. More general techniques like non-disjunctive decomposition or multi-variable decomposition (|U|>1) can be explored in future as well. 
Instead of the exact formulation of a decomposition algorithm, we prefer to illustrate it on our running example. At the beginning we will select input variables for iterative decomposition simply in a natural sequence, with no optimization in mind. A single variable will be removed from the function in one decomposition step. Starting with variable x1 in our running example, we first create two-block blankets (2, (3, (4 for each input variable x2, x3, x4:

             (2 = {1, 2, 3, 4, 8, 9; 2, 4, 5, 6, 7, 8}

(3 = {1, 2, 3, 6, 8, 9; 3, 4, 5, 6, 7}                      (2)

             (4 = {1, 2, 4, 5, 8, 9; 1, 3, 6, 7, 9}.

Blankets consist of subsets (blocks) of cubes denoted by line numbers in Tab.1b. The first block in each blanket includes cubes which contain “0” or “–” in place of variable x1, cubes in the second block have value “1” or “–” in place of variable x1. The input blanket for the subset (X\x1) is then obtained as an intersection of two-block blankets  (2):
( = {1, 2, 8, 9; 1, 3, 9; 4; 3; 2, 8; 6; 4, 5; 6, 7}.        (3)

Each block in blanket ( can be assigned an ordered pair of function values 

                [F(0, x2, x3, x4), F(1, x2, x3, x4)].          (4)                  

There are three types of these output pairs:
a) type [u, v]:
two values in the pair are different, u ( v; e.g. blocks (1,2,8,9), (1,3,9) and (2,8) in blanket (3) generate pair [0,3];
b) type [u, u]:

 two values in the pair are identical; e.g. blocks  (6) and (6,7) generate pair [1,1] and block (4,5) pair [2,2];
c) type [u,-] or [-,u]:

one of the values (4) does not exist in the list of cubes (it is don´t care); e.g. block 4 generates pair [2,-] and block 3 generates [-,3]. The don´t care value will be replaced by a particular value later to match case a) or b).
Now we can create compatible classes of these pairs with the goal to select a set of maximal classes, with minimal cardinality, that covers all the pairs; blocks with compatible output pairs get the same new id. In our example eight compatible classes in blanket (  can be merged to three {1, 2, 3, 8, 9; 4, 5; 6, 7}, denoted  by new id 0, 1, and 2, see Tab.3. The minimal cardinality of merged blocks ensures that the number of outputs log2|G| of the residual function G1(x2, x3, x4), is as small as possible. Finding maximal compatibility classes of output pairs can follow the algorithm below:

Algorithm 3.1. Assigning id´s to output pairs.

1. List and enumerate all distinct output pairs with different certain values (type [u, v]);

2. continue in listing and enumeration of output pairs with the same certain values ( type [u, u]);

3. output pairs with one certain value and one uncertain value (types [u,-] or [-, u]):

if there is a compatible pair [u, u] in the list , use its id;

else if there is a compatible pair type [u,w] or [w,u], u(w, in the list , use its id;

else if possible, join two output pairs [v, -] and [-,w] into a single pair [v, w]   and assign it a next new id;

else insert a new output pair with certain values [u, u] into the list and assign it a next new id.

Uncertain values are replaced by certain values in such a way as to reduce the number of new id numbers to a minimum. This is in fact utilization of don´t cares for minimization. In more complex cases with ternary output vectors or when removing more than one variable at a time, finding the minimal cover must be done by more general methods, e.g. by graph coloring, Brzozowski (1997).
The detached function H1 is obtained, even though not in the cube form but in the integer form, by reading the first table in Tab.3 backward,

  H1(x1, new id) = [F(0, x2, x3, x4), F(1, x2, x3, x4)].
To obtain the residual function G1 is a bit trickier. The reduced input blanket for the subset (X\x1) completed by function values “new id” contains redundant cubes which must be removed. On the other hand, all relevant minterms of G1 must be covered in the reduced cube set as well. Function G1 in our example is specified by five cubes, Tab. 3.
Table 3. Iterative decomposition procedure
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In the 2nd decomposition step we repeat the same procedure: the input blanket ( for the subset X\{x1,x2} consists of four blocks that can be merged to only three. Functions H2 and G2 are obtained as before, the rest of procedure is straightforward. 
By now, we have obtained a sequence of detached functions H1 to H4 that can be implemented by four layers of a MTBDD. Construction of the MTBDD starts from leaves and goes left to the root, Fig. 1. The new id is used as a decision node label and integer values of the detached function H|x=0, H|x=1 for two values of the detached variable x are labels of successor nodes. 
There are two kinds of decision nodes, true (type [u, v]) and degenerate ones (type [u, u]). Degenerate nodes, denoted by black dots, are those nodes whose output edges coincide. In fact these nodes do not decide anything and can be replaced by a shortcut from the input edges to the output edge. 
4. HEURISTIC ITERATIVE DECOMPOSITION

The remaining question not addressed as yet is, which variable should be used in any given step. We use a heuristics that strives to optimize one level of the MTBDD at a time. There are more sophisticated heuristics; e.g. in “sifting” the window of several variables is moved from the root to leaves and positions of several variables are optimized at a time, Yanushkevich (2006). However, if desired, our approach can be extended to groups of variables as well.
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Fig. 1. MTBDD as a result of disjunctive iterative decomposition 

There are three parameters of MTBDDs that can be optimized: size (cost), width and an average path length APL. For firmware implementation of MTBDDs, the width/cost optimization is of interest. Minimization of these two parameters cannot be strictly separated; the cost of a diagram with minimum width will be low, but not necessarily the minimum. Similarly, the width of the lowest cost diagram will also be near the minimum. In our heuristics we minimize the number of nodes level by level, from leaves to the root. We expect that the total cost will be close to the minimum total cost. That is why we talk about suboptimal MTBDD synthesis. 
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Fig. 2. MTBDD for the function in Tab.1. 
a) optimum  b) random ordering of variables

Fig.2 shows how the heuristics works. The MTBDD at Fig. 2a is obtained with the use of above heuristics, whereas the MTBDD at Fig. 2b has a random ordering of Boolean variables.
To aid MTBDD synthesis, the program tool HEDIT (Heuristic Iterative Decomposition Tool) has been developed, Mikušek, (2008).
5.  SYNTHESIS OF MTBDDs – EXAMPLES
Two examples will be done in detail to illustrate the method and its application: one complete integer function (priority encoder, PE) and another incomplete function. The n-input PE is a combinational circuit that according to a subset of active requests asserts one of grant outputs corresponding to the highest priority in the subset. The input request r(n-1) has the highest fixed priority and then the priority decreases to the lowest priority level for input r0. This is the simplest fixed priority arbiter of all, but its usefulness in practice is limited because it is not fair, not even in the weak sense. If one request is continuously asserted, none of other requests will ever be served. 
The one-hot priority vector [p0,p1,…, p(n-1)] can be attached to input requests, Weber (2001); single “1” in this vector denotes the input i with the highest priority. The priority of other inputs 

(i-j) mod n,  j = 1,2,…, n-1

decreases with j. For n = 4 we have grant outputs
g0 = p0r0 + p1!r1!r2!r3r0 + p2!r2!r3 r0 + p3!r3r0.  

g1 = p0!r0 r1+  p1r1 + p2!r2!r3!r0r1 + p3!r3!r0 r1

g2 = p0!r0!r1r2 + p1!r1 r2 + p2r2 + p3!r3!r0!r1r2               (5)
g3 = p0!r0!r1!r2r3 + p1!r1!r2 r3 + p2!r2 r3 + p3r3. 

The MTBDD for this Round Robin Arbiter (RRA) with a priority vector p0-p3 obtained by HIDET is at Fig.3. By making use of a hardware micro-sequencer with a support for multi-way branching, we can speed up evaluation of Boolean functions with respect to a general purpose CPU core.  A suitable architecture of a micro-sequencer should support two formats essential for fast evaluation of multiple-output Boolean functions, Dvořák (2007):
1) the jump to an address specified in micro-instruction modified by BCU; 

Ln: exit  Lm@x1...xk;

2) conditional output and the jump to an address specified in micro-instruction (no modification),

Ln: c_output exit Lm.
The first format includes jumps to the target address obtained from the address specified in the micro-instruction; this latter address is modified by external variables (operator @), by up to 4 variables at a time, including 0 variable (no modification), by means of 16-way Branch Control Unit (BCU). Input variables are selected by multiplexers, so that a microinstruction contains MXs control field and a BCU mask.
The task of the 16-way BCU4 is to shift 4 or less active inputs, selected by a 4-bit BCU mask, to the lowest positions of the 4-bit output vector and reset the rest of outputs. The output vector then serves as an offset from the base address of a dispatch table; this way the dispatch tables can be stored in control memory in a compact form.

The sample of a micro-program with inspection of two binary inputs at a time is shown at Fig.4. The symbolic micro-program is composed of 9 4-way and of 2 2-way dispatch tables. The base addresses of dispatch tables shown in Fig.3 as L1 to L11 correspond to the same labels in the MTBDD in Fig.3. The total number of micro-instructions is  

       9(4 + 2(2   = 40.
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Fig. 3. MTBDD of the 4-input  RR arbiter. 
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Fig. 4. A symbolic microprogram for the RRA.
The size of dispatch tables varies depending on whether the input edge leads to a regular decision node (L1-L5, L7-L10) or passes through one or more degenerate nodes (L6, L11). There are other performance – memory size trade-offs. Had we used only single variable tests (a binary program with 2-way branching), we would need 17 dispatch tables of size 2, i.e. 34 microinstructions in total. However, the performance would be 2- times lower due to execution of a chain of 8 micro-instructions, one in each level of the MTBDD. Faster processing in three steps could test 2, 3, 3 or 2, 2, 4 decision variables. The fastest execution would test 4 decision variables at a time and use 16-way branching. The features of various options are summarized in Table 4. The product space ( time is a figure of merit of quality of the implementation. It gets the best (lowest) value for testing four variables at a time.

Table 4. Various microprogram options
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The second example will illustrate the iterative decomposition of an incomplete function of 6 variables. We will demonstrate the procedure a different way, on a sequence of maps of residual functions G1, G2, …, G5.
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Fig.5. Iterative decomposition visualized on maps of residual functions.
The original integer function G0 is specified by the map at the top of Fig. 5. It attains 6 values (0, 3, 7, 8, F, C in hex notation) and it is mostly unspecified (dc). Maximum compatible classes of output pairs are enumerated by new id numbers. Note that don´t care values have been used to minimize their cardinality. Pairs corresponding to true decision nodes are highlighted, there are 8 of them altogether. Ten degenerate nodes arise from integer pairs [x,x].
It is seen from Fig.5 that due to Algorithm 3.1 the number of specified cells in the map of function G(i+1) is always lower than that in the map of Gi. In the worst case it is lower by one (two different integer values combined in one pair, all other integer values combined with dc into pair [x,x]).
6. CONCLUSIONS
The presented method of MTBDD synthesis for multiple-output Boolean functions aided by HIDET tool proved to be suitable for synthesis of a restricted class of combinational and sequential designs with up to around 20 input and state variables. The 4-input RRA example was presented only for illustration; HIDET tool also generated decompositions of similar arbiters with 6, 8 and 12 request inputs and with the same numbers of priority inputs.
Firmware implementation of a MTBDD is usually a matter of trade-off between performance and the size of memory storing the microcode. The memory size can be derived as an aggregate size of all dispatch tables, and the performance is given by the number of dispatch tables in series from the root to leaves of the MTBDD. 
Future research should address a tool accepting a more general specification of multiple-output Boolean functions with ternary output vectors. Also the quality of heuristic optimization of variable ordering will be compared to other optimizations (exhaustive search in problems of reasonable size, genetic algorithms, sifting, etc.) 
REFERENCES
Brzozowski, J.A., Luba, T. (1997). Decomposition of Boolean Functions Specified by Cubes. Research report CS-97-01, University of Waterloo, Canada, p.36.
Dvořák, V. (2007). LUT Cascade-Based Architectures for High Productivity Embedded Systems. International Review on Computers and Software, Vol. 2, No 4, Naples, Italy, pp. 357-365. 
Ebendt, R., Fey, G., Drechsler, R. (2005). Advanced BDD Optimization. Springer, 222 p.
Mikušek, P., Dvořák, V. ( 2008). On Lookup Table Cascade-Based Realizations of Arbiters. Proc. of the 11th EUROMICRO Conference on Digital System Design DSD 2008, Parma, IT, IEEE CS, pp. 795-802.
Sasao, T., Matsuura, M. (2005). BDD representation for incompletely specified multiple-output logic functions and its applications to functional decomposition, Design Automation Conference, pp.373-378.

University of Hamburg (2007). 
http://tams-www.informatik.unihamburg.de/applets/

Weber, M. Arbiters: Design Ideas and Coding Styles. (2001). Proceedings of the Synopsis User Group Conference, SNUG, Boston, USA, 22 p. 
Yanushkevich, S.N., Miller, D.M., Shmerko, V.P., Stankovic, R.S. (2006). Decision Diagram Techniques for Micro- and Nanoelectric Design Handbook. CRC Press, Taylor & Francis Group, Boca Raton, FL.
ACKNOWLEDGEMENT

This research has been carried out under the financial support of the Ministry of Education (grant “Security-Oriented Research in Information Technology”, MSM 0021630528)    and of the Grant Agency of Czech Republic (research grants GA102/07/0850, GA102/08/1429, GA 102/09/H042).    

dc = don´t care





� EMBED Word.Picture.8  ���





� EMBED Word.Picture.8  ���









[image: image10.emf] 

0  

0  

1  

1  

0  

3  

2  

1  

0  

x4   x3   x2   x1  

0  

2  

1  

2  

n ew   id  

x=1  

Legend:  

x=0  

_1299693357.doc


0







0







1











1







1







2







0







2







0







0







1







2







3











x2







x3







x4











x=0







x1







Legend:



















x=1







new



id












_1300255349.doc


r3







r2







r1







r0







p1







p3







p2







p0







L8







6







no_g







g2







g1







g3







g4







0







0







1







0







2







1







0







1







2







0







1







4







3







0







3







4







1







2







4







2







1







3







0







3







1







2







0























L7







L11







L9







L10







L6







5







6







7







L1







L2







L4







L3











6







5







4







3







2







L5







5












_1300255563.doc


RRA: exit L1@r3r2



L1@00: exit L2@r1r0



L1@01: exit L4@p1p3



L1@10: exit L5@p1p3



L1@11: exit L5@p1p3



L2@00: no_g exit Next



L2@01: exit L6@p3



L2@10: exit L3@p1p3



L2@11: exit L3@p1p3



…..



L10@00: g4 exit Next



L10@01: g1 exit Next



L10@10: g3 exit Next



L10@11: g3 exit Next�L11@0: g4 exit Next



L11@1: g1 exit Next�Next:




























































_1300515761.doc
		

		tested 

		total micro-

		execution

		space x



		

		variables:

		instructions

		time

		time



		

		8 x 1 

		34

		8

		272



		

		4 x 2

		40

		4

		160



		

		2, 3, 3

		52

		3

		156



		

		2, 2, 4

		64

		3

		192



		

		4, 4

		72

		2

		144



		

		8

		256

		1

		256






_1300176484.doc
		

		G0

		000

		

		x1

		x2

		x3

		

		

		111

		

		x3 

		new id



		

		000

		dc

		dc

		dc

		dc

		dc

		7

		dc

		dc

		

		0,1

		

		



		

		

		dc

		0

		dc

		dc

		dc

		7

		dc

		8

		

		[7,7]

		0

		



		

		

		dc

		dc

		dc

		A

		dc

		dc

		dc

		dc

		

		[F,8]

		1

		



		x4 x5 x6

		F

		8

		F

		8

		dc

		dc

		dc

		dc

		

		[3,A]

		2

		



		

		

		dc

		dc

		dc

		dc

		dc

		dc

		dc

		dc

		

		[0, 0]

		3

		



		

		

		dc

		dc

		3

		dc

		dc

		dc

		dc

		dc

		

		[C,C]

		4

		



		

		

		dc

		dc

		dc

		dc

		dc

		dc

		dc

		dc

		

		

		

		



		

		111

		C

		C

		C

		dc

		C

		dc

		dc

		dc

		

		

		

		



		

		

		

		

		

		

		

		

		

		

		

		

		

		



		

		G1

		

		x1

		x2

		

		

		x2

		new id

		G2

		x1

		

		



		

		000

		dc

		dc

		0

		dc

		

		[0,1]

		0

		

		000

		dc

		0

		



		

		

		3

		dc

		0

		1

		

		[3,2]

		1

		

		

		1

		0

		



		

		

		dc

		2

		dc

		dc

		

		[1,1]

		2

		

		

		1

		dc

		



		x4 x5 x6

		1

		1

		dc

		dc

		

		[4,4]

		3

		

		

		2

		dc

		



		

		

		dc

		dc

		dc

		dc

		

		

		

		

		

		dc

		dc

		



		

		

		dc

		2

		dc

		dc

		

		

		

		

		

		1

		dc

		



		

		

		dc

		dc

		dc

		dc

		

		

		

		

		

		dc

		dc

		



		

		111

		4

		4

		4

		dc

		

		

		

		

		111

		3

		3

		



		

		

		

		

		

		

		

		

		

		

		

		

		

		



		

		x1

		new id

		G3

		

		

		x6

		new id

		

		x4

		new id



		

		[1,0]

		0

		

		000

		0

		

		[0,0]

		0

		

		

		[0,0]

		0

		



		

		[2,2]

		1

		

		

		0

		

		[0,1]

		1

		

		

		[1,2]

		1

		



		

		[3,3]

		2

		

		

		0

		

		[2,2]

		2

		

		

		

		

		



		

		

		

		

		

		1

		

		

		

		

		

		

		

		



		

		

		

		x4 x5 x6

		dc

		

		

		G4

		0

		

		G5

		

		



		

		

		

		

		

		0

		

		

		

		1

		

		x5

		0

		



		

		

		

		

		

		dc

		

		

		x4x5 

		0

		

		

		1

		



		

		

		

		

		111

		2

		

		

		

		2

		

		

		

		






_1299695808.doc


x4







x3







x2







x1







0







3







2







1







x3







x2







x4







x1







x1







x3







1







2







3







0



























x2




































_1295610157.doc
[image: image1.emf]x3x4


x1x2 00 01 10 11


00 0 0 2 dc


01 0 dc 2 1


10 3 3 dc 3


11 3 1 2 1


[image: image2.emf]x3x4


x1x2 00 01 10 11


00 0 0 2 dc


01 0 dc 2 1


10 3 3 dc 3


11 3 1 2 1


  



�

x1�

x2�

x3�

x4�

F�

�

1�

1�

0�

0�

-�

3�

�

2�

1�

-�

0�

0�

3�

�

3�

1�

0�

-�

1�

3�

�

4�

0�

-�

1�

0�

2�

�

5�

-�

1�

1�

0�

2�

�

6�

-�

1�

-�

1�

1�

�

7�

-�

1�

1�

1�

1�

�

8�

0�

-�

0�

0�

0�

�

9�

0�

0�

0�

-�

0�

�









� EMBED Excel.Sheet.8  ���











_1295610132.xls

List1


			


																					x3x4


																		x1x2			00			01			10			11


																		00			0			0			2			dc


																		01			0			dc			2			1


																		10			3			3			dc			3


																		11			3			1			2			1








List2


			








List3


			











_1298142722.doc
		

		

		x1

		new

		

		

		



		(

		

		 0 1

		id

		

		

		

		

		



		1,2,8,9

		

		0, 3

		0

		H1

		

		x2

		x3

		x4

		G1



		1,3,9

		

		0, 3

		0

		

		1

		0

		0

		-

		0



		4

		

		2, -

		1

		

		2

		-

		0

		0

		0



		3

		

		-, 3

		0

		

		3

		0

		-

		1

		0



		2,8

		

		0, 3

		0

		

		4

		-

		1

		0

		1



		6

		

		1, 1

		2

		

		5

		1

		-

		1

		2



		4,5

		

		2, 2

		1

		

		

		

		G1

		

		



		6,7

		

		1, 1

		2

		

		

		

		

		

		



		

		

		

		

		

		

		



		

		

		x2

		new

		

		

		

		

		



		(

		

		 0 1

		id

		

		

		

		x3

		x4

		G2



		1,2

		

		0, 0

		0

		H2

		

		1

		0

		0

		0



		1,3,5

		

		0, 2

		1

		

		

		2

		-

		1

		1



		4

		

		1, 1

		2

		

		

		3

		1

		0

		2



		3,5

		

		0, 2

		1

		

		

		

		

		

		



		

		

		

		

		

		

		

		

		

		



		

		

		x3

		new

		

		

		



		(

		

		 0 1

		id

		

		

		

		x4

		G3



		1,3

		

		0, 2

		1

		H3

		

		

		1

		0

		1



		2

		

		1, 1

		0

		

		

		

		2

		1

		0



		

		

		

		

		

		

		

		

		

		



		

		

		x4

		new

		

		

		

		

		

		



		(

		

		 0 1

		id

		

		

		

		

		

		



		1,2

		

		1, 0

		0

		H4

		

		

		0

		

		






_1293286200.doc
		

		0

		1

		-



		0

		0

		n.a. 

		0



		1

		n.a. 

		1

		1



		-

		0

		1

		-






