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Abstract 

The paper addresses firmware implementation of multiple-output combinational and 

sequential Boolean functions based on cascades of Look-Up Tables (LUTs). A LUT cascade 

is described as a means of compact representation of a large class of Boolean functions, 

which reduces their evaluation to multiple indirect memory accesses. A LUT-oriented 

decomposition technique is illustrated on several examples. A specialized micro-engine is 

proposed for sequential processing of LUT cascades by means of multi-way branching. The 

presented method provides high performance micro-programmed control for embedded 

applications. 

 

1. Introduction 

Efficient evaluation of Boolean functions is an important part of many embedded 

firmware or software systems. Application-specific functions most frequently used in 

embedded systems practice have typically low complexity. They include applications 

such as encryption, data compression and conversion, pattern matching and searching, 

sliding window functions on data streams, etc. We will address Boolean functions of 

large numbers (tens, hundreds) of variables because small size systems can be 

implemented directly in hardware, e.g. in various PLDs, PLAs, ROMs or TCAM 

(Ternary Content Addressable Memory).  

Firmware implementation of Boolean functions will be assumed in a form of data 

structures describing the function and of a micro-program that reads the input vector 

and evaluates the function with the use of this data structure. The size of the code and 

of the data structure is one figure of merit; another one is the evaluation time from 

reading the input to generating the output.   

Hereafter we will use two complementary   representations: Look-Up Tables (LUTs) 

and binary decision diagrams (BDDs). The BDDs are well known, especially the 

reduced ordered BDDs (ROBDDs), [1]. On the base of ROBDDs we will develop a 

more practical representation – cascades of LUTs. 

Firmware implementation of Boolean functions has been up to now studied 

especially in connection with programmable logic controllers - PLCs (“ladder 

diagrams”) or specialized event processing, where either a speed (PLC) or a required 

memory were not that important. On the contrary, in embedded systems we do care for 

performance, memory space as well as for power consumption. We will demonstrate 

that presently used algorithms (binary programs, BDD traversal or sequential evaluation 

of Boolean expressions) are generally too slow and that the use of LUT cascades 

enables faster evaluation. The longer cascades with simpler LUTs are slower than 
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shorter cascades with larger LUTs, and thus the processing speed can be even adjusted 

to requirements.  

The idea of using a specialized micro-engine for sequential processing of LUT 

cascades was conceived in [2]. In the present paper we use a modified micro-engine 

architecture based on micro-program sequencer (Am 2910) and its multi-way branch 

control unit (Am 29803A), that can be easily implemented in FPGA. In the meantime a 

different architecture under the name LUT ring was developed and implemented in 

VLSI technology [3] from the scratch. However, it is more complicated and in some 

way less general (the use a barrel shifter instead of the branch control unit).  

The paper is structured as follows. In the following Section 2 we introduce basic 

notions and terminology concerning Boolean functions and their representation. Binary 

decision diagrams (BDDs) and LUT cascades are reviewed in Section 3, and the way 

how to obtain the LUT cascade for a Boolean function is given in Section 4. A micro-

engine for sequential LUT cascade processing is presented in Section 5 with illustration 

of trade-offs between speed of evaluation and required memory space. Obtained results, 

some generalizations and future research are commented on in Conclusions. 

 

2. Basic notions and terminology 

To begin our discussion, we define the following terminology. A system of m 

Boolean functions of n Boolean variables, 

          fn
(i)

 : (Z2) 
n
  → Z2 ,  i = 1, 2, ..., m                                                    (1)                                                         

will be simply referred to as multiple-output Boolean  function Fn with output values 

from ZR = {0, 1, 2, …, R-1}, 

Fn: (Z2) 
n
  → ZR ,                                                   (2)  

where R is the number of distinct combinations of m output binary values enumerated 

by values from ZR. Function Fn is incomplete if it is defined only on set X ⊂ (Z2) 
n
;    

(Z2) 
n
 \ X = D is the don’t care set. 

  The behavior of a combinational circuit can be described by the system of m 

complete functions of n variables  

yi =  fn
(i)
(x1 , x2 , …, xn),            i = 1, 2, ..., m                         (3)  

or y = F(x) in vector notation.  

Computer representation of Boolean functions uses binary decision diagrams 

(BDDs), which can have many forms. Bit-level binary decision diagrams (BDDs), 

ordered binary decision diagrams (OBDDs) and reduced ordered binary decision 

diagrams (ROBDDs) are the best known representations of a single Boolean function in 

a form of a directed acyclic graph [1]. The ROBDD is a canonical (unique) 

representation for any given complete function and for a given order of variables.  

Important parameters of a BDD are its size and width, i.e. the total number of 

decision nodes and the maximum number of edges between adjacent levels, where the 

edges pointing to the same node are counted as one. The size determines the memory 

space needed to store the BDD data structure while the width K (also a C-measure, 

[11]) determines a BDD form factor since the height is given by the number of 
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variables. The construction of minimum-size or by the same token minimum-width 

ROBDDs belong among NP-complete problems [4]; the size and width of the ROBDD 

depend on variable ordering and there are n! possible orderings of n variables. A 

heuristic approach can be used in a search for near-optimal orderings [5]. Upper bounds 

on the OBDD’s size and width for general random complete Boolean functions grow 

exponentially with number of variables n for any ordering, but functions used in digital 

systems design with few exceptions do have a reasonable BDD size and small width. 

 To represent a system of Boolean functions (1) by means of decision diagrams, we 

can use either m bit-level BDDs, one for each of m Boolean functions (possibly sharing 

some of their sub-diagrams in Shared BDDs or SBDDs, [6]), or one word-level BDD 

(WLBDD) with n Boolean decision variables and with R integer terminal values [7]. 

Out of many types of WLBDDs we will use Multi-Terminal BDDs (MTBDD) which 

represent functions from Booleans to integers. 

As the LUT cascades are the main concern of this paper, we will provide a formal 

definition. A LUT will be also interchangeably referred to as a “cell”. 

Def. 1. A cascade of a form k × m is the system of B cells with k horizontal rails and 

m vertical cell inputs supporting K ≤ 2k
 (M ≤ 2m

) Boolean input vectors. Individual cells 

implement functions  

Hi: Z2
k
 × Z2

m → Z2
k
, 1 ≤ i ≤ B. 

The last cell in the cascade may have r ≠ k outputs. 

Def. 2. A cascade is said to be non-redundant if each variable used at vertical input 

enters one and only one cell. Otherwise the cascade is redundant. 

 

3. MTBDDs and LUT cascades  

Whereas BDDs and MTBDDs proved useful in many areas of digital design [7] 

where they provide compact data structures and a degree of flexibility in manipulating 

them, they are not as useful for the purpose of function evaluation. The primary reason 

is the slow speed, since the evaluation by branching program inspects one Boolean 

variable at a time.  There is though a certain speedup in comparison to direct evaluation 

of Boolean expressions, because each variable is processed only once. Straightforward 

remedy how to speed up the traversal of a BDD is to process several variables at a time. 

This way we will derive LUT cascades, in fact a special case of LUT networks. 

A close relation between both these representations of multiple-output Boolean 

functions will be illustrated on a bit-counting example. The combinational function Fn: 

(Z2)
n
 → Zn+1 gives the number of 1´s presented at n inputs in a form of a binary number. 

The MTBDD and associated LUT cascade are displayed in Fig. 1 for n = 4. 

 Generalization for larger values of n is easy. As the number of nodes grows linearly 

from the root to leaves, the width of the MTBDD is given by the last level of decision 

nodes and has the value of K = n. 

What connects two representations is the concept of sub-functions. Informally, the 

sub-function f of Fn is a function of s variables obtained from Fn by setting n− s 
variables to fixed constant values. The number of distinct sub-functions of s variables,  

s = 1, 2,…, n-1, a so called profile, characterizes the Boolean function and its 
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complexity. In Fig.1 we can recognize distinct sub-functions as edges crossing 

boundaries between MTBDD layers, counting edges incident with the same node only 

once. Edges are labeled by ID codes of distinct sub-functions. From the top down, there 

are 2 sub-functions of variables a, b, c (ID codes 0, 1), 3 sub-functions of variables a, b 

(ID codes 0, 1, 2), 4 sub-functions of variable a (ID codes 0, 1, 2, 3), and 5 sub-

functions of zero variables (constant terminal values 0 to 4). LUT contents are defined 

as input/output pairs, where inputs are binary ID codes and a value of a side variable 

entering a cell and outputs are binary ID codes generated by the cell. Co-synthesis of 

MTBDD and LUT cascade can be done for small problems by hand (as illustrated later) 

and for large incomplete functions by a program tool [8].   
    

 

d d 
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b b b 

a a a a 
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Fig.1.   Bit counting example 

As can be seen, the difference between the MTBDD and the LUT cascade is in 

communication among the MTBDD layers and LUTs in the cascade: in a MTBDD each 

sub-function ID code requires an individual edge (”one-hot” coding), whereas the ID 

codes being sent between LUTs are binary coded. The number of rails k in the cascade 

(a cascade “width”) is therefore  

 k = log2 K.                                                             (4) 

This difference of two representations reflects itself in the way how the program 

interprets a certain application-specific MTBDD or a LUT cascade. In case of the 

MTBDD we may use for each node a record with 3 fields. A format indicator is one-bit 

field specifying the leaf node (leaf nodes may generally occur at any level of the 

diagram). Two other fields of the leaf node are then used for an output. If the node is 

not a leaf, two fields (adjacent words) contain pointers to the base addresses of other 

nodes. The base address is then modified by the value of a current control variable(s) 

and is used to extract the correct field with the pointer to the next node. The program 

traverses a certain path in the MTBDD from the root to a leaf in at most n steps. 

 LUTs are interpreted similarly, only the pointer to the next LUT is obtained from the 

current output by concatenating it with the control variable value and adding it up to the 

next LUT base address. If suitable, some LUTs can be combined to provide even faster 

processing (see first three cells in Fig.1). 
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4. LUT cascades synthesis by iterative decomposition  

The decomposition of the multiple output Boolean function (or a combinational part 

of a sequential system) can be done by identifying distinct sub-functions in the original 

function. If their count is slightly above a power of two, we can first try to make it 

equal or less than that value by transforming the function and resulting in a narrower 

cascade. Then the iterative decomposition removes one variable from the residual 

functions at a time. We will stop when the desired number of remaining variables for 

the first LUT is obtained.   

 We will consider the following combinational function: from two n-bit binary 

numbers on inputs the smaller one should be passed on to the output. For simplicity we 

will take n = 3 and compare numbers (a2 a1 a0) and (b2 b1 b0). The full function table 

is at the top of Fig. 2a. Sub-functions of b0 are the pairs of horizontally adjacent 

integers in the function table. The pairs of different integer values represent proper sub-

functions, whereas pairs of the same integer values are constant sub-functions. Since 

the number of single-variable sub-functions is greater than 8 for any variable, we will 

do a permutation (04)(15)(26)(37) in the upper half of the table (for a2 = 0). By means 

of this permutation the number of sub-functions of b0 becomes 8 and the cascade width 

3 rails will do. Enumeration of sub-functions of b0 is done by giving each and every 

distinct sub-function a new ID from 0 to 7. This way a variable b0 will not appear in the 

residual function. 

     b2 b1 b0              

 a2 a1 a0 0 1 2 3 4 5 6 7            

 0 0 0 0 0 0 0 0  0     4 4 4 4 4 4 4  4  

 1 0 1  1 1 1 1 1 1   LUT1 4 5  5 5 5 5 5 5 

 2 0 1 2 2 2  2  2  2    (04) 4 5 6 6 6  6  6  6  

 3 0 1 2 3  3  3  3  3    (15) 4 5 6 7  7  7  7  7  

 4 0 1 2 3  4  4  4  4   (26) 0 1 2 3  4  4  4  4 

 5 0 1 2 3  4  5  5  5    (37) 0 1 2 3  4  5  5  5  

 6 0 1 2 3  4  5  6  6     0 1 2 3  4  5  6  6  

 7 0 1 2 3  4  5  6  7     0 1 2 3  4  5  6  7  

                     

 LUT2      LUT3  LUT4                

 44:=0 0 0 0 0  00:=0  0 0            

 45:=1 1 3 3 3  13:=1  1 5            

 01:=2 1 4 4 4  14:=2  2 6   0 3        

 55:=3 1 5 7 7  15:=3  3 7   1 4  0 2  0   

 66:=4 2 6 0 0  26:=4  4 0   2 0  1 0  1   

 67:=5 2 6 1 3  33:=5  4 1   2 1        

 23:=6 2 6 1 4  44:=6  4 2            

 77.=7 2 6 1 5  77:=7  4 3            

 
 

 
a) 

b) 

a2 
a1 
a0 

b2 b1 b0 a2 

LUT 

4 

LUT 

3 

LUT 

2 

LUT 

1 

 
 

Fig.2. Redundant iterative decomposition a) and an associated LUT cascade b) 
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Note that we have started building the cascade from the LUT 1 at the end, Fig.2b. 

Repeating the decomposition for variable b1, we will obtain a residual function of 

variables a2, a1, a0, and b2, in fact LUT4. Next three decomposition steps shown in 

Fig. 2a are not needed. Note that the LUT cascade in Fig. 2 is a redundant one.  

Design of LUT cascades by iterative decomposition (or alternatively by slicing 

MTBDDs as in Fig.1) has a catch: the size and the width of MTBDD strongly depends 

on variable ordering. Optimum variable ordering is, however, a separate problem. 

Recently, heuristic minimization algorithms have been proposed [7] that allow 

reduction of the WLDD size analogously as for BDDs.  A co-synthesis of both MTBDD 

and LUT cascade for incompletely specified multiple-output Boolean functions has 

been developed in [9].  

There are other heuristic approaches for MTBDD optimization, e.g. a sifting method 

or the application specific variable ordering (ASVO) [7]. For example in sifting method 

all positions of a given variable in the given ordering are checked successively. The 

variable is then left in an optimal position with the lowest MTBDD size and the process 

repeats for all variables.  Thorough comparison of all heuristic methods of optimization, 

as regards quality of results and an amount of the required execution time, remains still 

to be done. 

 

5.  A micro-programmed controller with multi-way branching 

Evaluation of Boolean functions at the firmware level can use the LUT cascade 

paradigm. By making use of hardware micro-engines with a support for multi-way 

branching, we can speed up evaluation of Boolean functions with respect to a general 

purpose CPU core.  A suitable architecture of a micro-engine, a modified version of the 

one in [2], is depicted in Fig.3.   
 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

 
Fig.3. Micro-programmed controller architecture with multi-way branching 

There are three microinstructions formats determined by a format indicator field FI: 

FI = 01:  state output (control signals), µIP := µIP+1 

FI = 10:  MXs and BCU control, jump to an address specified in micro-instruction 

modified by BCU   
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FI = 11: conditional output and jump to an address specified in micro-instruction (no 

modification). 

The second format includes all kinds of jumps to the target address obtained from the 

address specified in the micro-instruction; this latter address  is modified by external 

variables, by up to 4 variables at a time, including 0 variable (no modification), by 

means of 16-way Branch Control Unit (BCU). The task of this unit is to shift active 

inputs, selected by a 4-bit mask, to the lowest positions of the 4-bit output vector. This 

vector is then wire-ORed with the address obtained from the micro-instruction. If there 

are more external variables, LUT cascade paradigm is used. The LUT output contains 

not only the rail variables, but the whole address of one of the input nodes in the next 

section of the MTBDD encapsulated in the next LUT.   

We will illustrate the transformation of a general multi-way branch microinstruction 

into a micro-program. The multi-way branch has the same structure as a switch. Let us 

have the statement 

S0: if  F = 0 then v0 exit S0 

 if  F = 1 then v1 exit S1 

 if  F = 2 then v2 exit S1 

 if  F = 3 then v2 exit S2 

 if  F = 4 then v3 exit S3 

      else don´t care;                                                 (5) 

Si´s are state labels, vj´s are conditional output vectors, F(A,B,C,D): X→ Z5,  X ⊂ (Z2)
4
 

is an incomplete multiple-output Boolean function, its map is in Fig.4a. The switch 

statement (5) describes a transition from present state S0 to one of next states S0 to S3 

depending on the values of 4 external variables A, B, C and D. During the transition a 

certain conditional output vector vj is generated. 
 

 

F(A,B,C,D) CD 
   

AB 00 01 10 11 

00 0 1 2 2 

01 x 2 2 2 

10 x 4 0 1 

11 4 x 2 3 

S0: if  F = 0 then v0 exit S0 

  if  F = 1 then v1 exit S1 

  if  F = 2 then v2 exit S1 

  if  F = 3 then v2 exit S2 

  if  F = 4 then v3 exit S3 

  else don´t care; 

S0 exit L@ABCD 

... 

L@0000 v0 exit S0 

L@0001 v1 exit S1 

... 

... 

L@1110 v2 exit S1 

L@1111 v2 exit S2  

                               a)                                               b)                                          c) 
 

Fig.4. The map of a sample function (a), a switch statement (b), and a dispatch table 
in a form of the symbolic micro-program (c) 

 

If the speed of the micro-engine is the utmost priority, we should do the testing of external 

variables in one step. The 16-way branch is then translated to the dispatch table in Fig.4c. 
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Replacement of 4 bits in the address is denoted by operator “@”. If wired-OR is used for 

replacement, the bits being replaced must be reset to 0. 

If saving in hardware (chip area) is more important than overall speed, we can test 

variables A, B, C and D in groups of two. The optimum MTBDD found by the iterative 

decomposition is shown in Fig. 5a, together with the symbolic micro-program derived from it 

(Fig.5b). It can be seen that the second LUT is only partial as two sub-functions of two 

variables A, C are constants (2 and 4). Control store capacity is almost half of the capacity in 

the previous case and also the BCU can be simplified.  

 
 

F: 0    1    x    2   2     4   0    1    2     3 

v: 0    1    x    2   2     3   0    1    2     2 

S: 0    1    x    1   1     3   0    1    1     2    

S0 

N2 N3 

AC 

BD BD 

N1 

S0 exit N1@AC 

N1@00 exit N2@BD 

N1@01 v2 exit S1 

N1@10 v3 exit S3 

N1@11 exit N3@BD 
 

N2@00 v0 exit S0 

N2@01 v1 exit S1 

N2@10 -  

N2@11 v2 exit S1 

N3@00 v0 exit S0 

N3@01 v1 exit S1 

N3@10 v2 exit S1 

N3@11 v2 exit S2 

 

 

LUT 1 

LUT 2 

a) b) 

value of F 

cond.output 

next state    

 
 

Fig. 5. LUT cascade (a) and the symbolic micro-program (b) for a multiway 
branching example 

 

6.  Examples 
 

As the first example we shall consider evaluation of the following Boolean function of 16 

variables: it attains the value 1 if the given 6-bit string is detected anywhere within an input 

string of 16 Boolean values; otherwise the function has the value 0.  

Since the string of 6 consecutive values of variables may be located in 11 positions 

(we do not assume that the pattern wraps around), we can specify the function by the 

sum of 11 products. The CPU evaluation of Boolean expressions would take in the 

worst case 11 × 6 steps, whereas a traversal of the ROBDD would need 16 steps.  We 

can do much better with LUTs, though. First the ROBDD of this function may be 

obtained using the applet [10], since the Boolean expression with 11 terms, each with 6 

literals, is easy to write. For the pattern of six 1´s we have: 

a1*a2*a3*a4*a5*a6+a2*a3*a4*a5*a6*a7+a3*a4*a5*a6*a7*a8+a4*a5*a6*a7*a8*a9+ 

a5*a6*a7*a8*a9*a10+a6*a7*a8*a9*a10*a11+a7*a8*a9*a10*a11*a12+a8*a9*a10*a11

*a12*a13+a9*a10*a11*a12*a13*a14+a10*a11*a12*a13*a14*a15+a11*a12*a13*a14* 

a15*a16               (6) 

The ROBDD is in Fig.6a, from which an optimal size and count of LUTs can be 

determined. We have used 4 ROBDD slices in Fig. 6a and obtained LUTs with 3 rails 

and 4 vertical inputs (Fig. 6c) for the target micro-controller architecture in Fig.3.  

 
 
 The size of the micro-program is determined by the total number of inputs into all 

LUTs, which is 1 + 5 + 6 + 4 = 16; each of these inputs corresponds to the block of 16 

microinstructions – a dispatch table for 4 variables. The total number of jump micro-

instructions is thus 16 × 16 = 256, but only up to 4 of them would be executed for the 

given input vector. The pattern detection time will be equal to the execution time of 4 

jump micro-instructions.  
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Fig. 6. The LUT cascade detecting a 6-bit string in 16 bits (a)  4-bit slices of the 

ROBDD   (b) 2-bit slices of the ROBDD  (c) related LUT cascades 
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We can trade execution time for micro-program size. By creating 2-bit ROBDD slices we 

obtain a longer cascade (Fig. 6c), shorter micro-program and a simpler BCU. Moreover, we 

can detect 6-bit strings in sequences of arbitrary length. There is a 2-bit slice in the ROBDD 

at Fig. 6b that repeats itself, see the side arrows. The related LUT repeats itself in the cascade, 

see the highlighted cell in Fig.6c. If another micro-instruction format is provided, namely 

repeating the previous micro-instruction and decrementing an auxiliary counter, then any 

chain of identical LUTs can be reduced to a single repeated LUT only. In our case there are 

only two identical LUTs depicted as one, the number of input nodes is now 27 and the block 

of 4 micro-instructions corresponds to each one. The size of the micro-program is therefore 

27 × 4 = 108 micro-instructions.  

In the second example our task is to detect a number of days in a month and a year from 

the state of binary counters for months (m3 m2 m1 m0) and years (y1 y0). In this case we 

have the integer function of 5 binary variables because it turns out that the number of days in 

a month does not depend on bit m1. The map of the function is shown in Fig.7. 

 

 y1  y0 m3  m2  m0

000 001 010 011 100 101 110 111

00 29 31 30 31 31 30 31 x

01 28 31 30 31 31 30 31 x

10 28 31 30 31 31 30 31 x

11 28 31 30 31 31 30 31 x

y1y0

0 1 2 1 2 1 2 x

m2

02:= 0 11:= 1 22:= 2 1x:= 1

0 1 2 1

m3m0

0  
 

Fig.7. Decomposition of the sample 4-valued function (Example 2) 
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                                     a)          b) 

                                                                                                              

Fig. 8. Example 2. a) a heterogeneous MDD b) a symbolic micro-program 
 

N0 exit N1@m3m4 

N1@00  exit N2@m2 

N1@01  v31 exit S31 

N1@10  v31 exit S31 

N1@11 v30 exit S30 

N2@ 0  exitN3@y0y1 

N2@ 1  v30 exit S30 

N3@00 v29 exit S29 

N3@01 v28 exit S28 

N3@10 v28 exit S28 

N3@11 v28 exit S28 
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There are only 3 sub-functions of variables y1, y0 (three distinct columns), and only one of 

them different from a constant (the first column). A group y1, y0 is thus the best choice for 

the first decomposition step, because only one 4-way decision node results. 

In the second decomposition step we can remove one or two variables simultaneously. The 

choice of m2 leads to only one binary decision node and m2 is therefore selected. Finally two 

remaining variables m3 and m0 are used to decide one of 4 ways. The resulting 

heterogeneous MDD mixes binary and quaternary nodes, Fig.8a. The symbolic micro-

program targeted for the micro-engine in Fig. 3 is shown in Fig. 8b. 

 
7. Conclusions 

Firmware evaluation of multiple-output Boolean functions on the base of Boolean 

expressions or BDDs can be in many cases dramatically accelerated using the LUT 

cascade paradigm. Complexity of (incomplete) functions with many variables that can 

appear in embedded systems is usually low and related LUT cascades have much lower 

memory space requirements then the full table.  

Obtaining the LUT cascade by slicing the MTBDD or by iterative decomposition is 

relatively easy. Optimum variable ordering in MTBDD is, however, a separate problem 

and can have a great impact on cascade width and space efficiency. An original 

heuristics that selects such a variable, that the width of the cascade is always kept at 

minimum, has been presented. LUTs obtained from the optimum MTBDDs seem to be a 

very good and effective data structure and should always be considered for evaluation 

of Boolean functions. They are flexible in making trade-offs between response time and 

memory consumption – two or more LUTs can be compacted into one larger LUT and  

the evaluation then reduces to a shorter chain of accesses into dispatch tables. 

Combinational LUT cascades implemented directly in hardware can support the fastest 

asynchronous or synchronous pipeline processing.   

Future research will be oriented to study of evolutionary techniques for the optimum 

iterative decomposition of incomplete Boolean functions of many variables where the 

exhaustive search is out of question. The goal is to decompose large systems specified 

either by the set of specified points or systems fully specified by Boolean expressions 

into LUT cascades with the aid of parallel processing. Algorithmic synthesis of 

redundant cascades and of multiple cascades will be other targets of the research in a 

near future. Applications mainly in safety/security area will be sought. 
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