
International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

43

Implementation of Combinational and Sequential Functions in

Embedded Firmware

Vaclav Dvorak
Brno University of Technology, Czech Republic

dvorak@fit.vutbr.cz

Abstract

The paper addresses firmware implementation of multiple-output combinational and

sequential Boolean functions based on cascades of Look-Up Tables (LUTs). A LUT cascade

is described as a means of compact representation of a large class of Boolean functions,

which reduces their evaluation to multiple indirect memory accesses. A LUT-oriented

decomposition technique is illustrated on several examples. A specialized micro-engine is

proposed for sequential processing of LUT cascades by means of multi-way branching. The

presented method provides high performance micro-programmed control for embedded

applications.

1. Introduction

Efficient evaluation of Boolean functions is an important part of many embedded

firmware or software systems. Application-specific functions most frequently used in

embedded systems practice have typically low complexity. They include applications

such as encryption, data compression and conversion, pattern matching and searching,

sliding window functions on data streams, etc. We will address Boolean functions of

large numbers (tens, hundreds) of variables because small size systems can be

implemented directly in hardware, e.g. in various PLDs, PLAs, ROMs or TCAM

(Ternary Content Addressable Memory).

Firmware implementation of Boolean functions will be assumed in a form of data

structures describing the function and of a micro-program that reads the input vector

and evaluates the function with the use of this data structure. The size of the code and

of the data structure is one figure of merit; another one is the evaluation time from

reading the input to generating the output.

Hereafter we will use two complementary representations: Look-Up Tables (LUTs)

and binary decision diagrams (BDDs). The BDDs are well known, especially the

reduced ordered BDDs (ROBDDs), [1]. On the base of ROBDDs we will develop a

more practical representation – cascades of LUTs.

Firmware implementation of Boolean functions has been up to now studied

especially in connection with programmable logic controllers - PLCs (“ladder

diagrams”) or specialized event processing, where either a speed (PLC) or a required

memory were not that important. On the contrary, in embedded systems we do care for

performance, memory space as well as for power consumption. We will demonstrate

that presently used algorithms (binary programs, BDD traversal or sequential evaluation

of Boolean expressions) are generally too slow and that the use of LUT cascades

enables faster evaluation. The longer cascades with simpler LUTs are slower than

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

44

shorter cascades with larger LUTs, and thus the processing speed can be even adjusted

to requirements.

The idea of using a specialized micro-engine for sequential processing of LUT

cascades was conceived in [2]. In the present paper we use a modified micro-engine

architecture based on micro-program sequencer (Am 2910) and its multi-way branch

control unit (Am 29803A), that can be easily implemented in FPGA. In the meantime a

different architecture under the name LUT ring was developed and implemented in

VLSI technology [3] from the scratch. However, it is more complicated and in some

way less general (the use a barrel shifter instead of the branch control unit).

The paper is structured as follows. In the following Section 2 we introduce basic

notions and terminology concerning Boolean functions and their representation. Binary

decision diagrams (BDDs) and LUT cascades are reviewed in Section 3, and the way

how to obtain the LUT cascade for a Boolean function is given in Section 4. A micro-

engine for sequential LUT cascade processing is presented in Section 5 with illustration

of trade-offs between speed of evaluation and required memory space. Obtained results,

some generalizations and future research are commented on in Conclusions.

2. Basic notions and terminology

To begin our discussion, we define the following terminology. A system of m

Boolean functions of n Boolean variables,

 fn
(i)

 : (Z2)
n
 → Z2 , i = 1, 2, ..., m (1)

will be simply referred to as multiple-output Boolean function Fn with output values

from ZR = {0, 1, 2, …, R-1},

Fn: (Z2)
n
 → ZR , (2)

where R is the number of distinct combinations of m output binary values enumerated

by values from ZR. Function Fn is incomplete if it is defined only on set X ⊂ (Z2)
n
;

(Z2)
n
 \ X = D is the don’t care set.

 The behavior of a combinational circuit can be described by the system of m

complete functions of n variables

yi = fn
(i)
(x1 , x2 , …, xn), i = 1, 2, ..., m (3)

or y = F(x) in vector notation.

Computer representation of Boolean functions uses binary decision diagrams

(BDDs), which can have many forms. Bit-level binary decision diagrams (BDDs),

ordered binary decision diagrams (OBDDs) and reduced ordered binary decision

diagrams (ROBDDs) are the best known representations of a single Boolean function in

a form of a directed acyclic graph [1]. The ROBDD is a canonical (unique)

representation for any given complete function and for a given order of variables.

Important parameters of a BDD are its size and width, i.e. the total number of

decision nodes and the maximum number of edges between adjacent levels, where the

edges pointing to the same node are counted as one. The size determines the memory

space needed to store the BDD data structure while the width K (also a C-measure,

[11]) determines a BDD form factor since the height is given by the number of

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

45

variables. The construction of minimum-size or by the same token minimum-width

ROBDDs belong among NP-complete problems [4]; the size and width of the ROBDD

depend on variable ordering and there are n! possible orderings of n variables. A

heuristic approach can be used in a search for near-optimal orderings [5]. Upper bounds

on the OBDD’s size and width for general random complete Boolean functions grow

exponentially with number of variables n for any ordering, but functions used in digital

systems design with few exceptions do have a reasonable BDD size and small width.

 To represent a system of Boolean functions (1) by means of decision diagrams, we

can use either m bit-level BDDs, one for each of m Boolean functions (possibly sharing

some of their sub-diagrams in Shared BDDs or SBDDs, [6]), or one word-level BDD

(WLBDD) with n Boolean decision variables and with R integer terminal values [7].

Out of many types of WLBDDs we will use Multi-Terminal BDDs (MTBDD) which

represent functions from Booleans to integers.

As the LUT cascades are the main concern of this paper, we will provide a formal

definition. A LUT will be also interchangeably referred to as a “cell”.

Def. 1. A cascade of a form k × m is the system of B cells with k horizontal rails and

m vertical cell inputs supporting K ≤ 2k
 (M ≤ 2m

) Boolean input vectors. Individual cells

implement functions

Hi: Z2
k
 × Z2

m → Z2
k
, 1 ≤ i ≤ B.

The last cell in the cascade may have r ≠ k outputs.

Def. 2. A cascade is said to be non-redundant if each variable used at vertical input

enters one and only one cell. Otherwise the cascade is redundant.

3. MTBDDs and LUT cascades

Whereas BDDs and MTBDDs proved useful in many areas of digital design [7]

where they provide compact data structures and a degree of flexibility in manipulating

them, they are not as useful for the purpose of function evaluation. The primary reason

is the slow speed, since the evaluation by branching program inspects one Boolean

variable at a time. There is though a certain speedup in comparison to direct evaluation

of Boolean expressions, because each variable is processed only once. Straightforward

remedy how to speed up the traversal of a BDD is to process several variables at a time.

This way we will derive LUT cascades, in fact a special case of LUT networks.

A close relation between both these representations of multiple-output Boolean

functions will be illustrated on a bit-counting example. The combinational function Fn:

(Z2)
n
 → Zn+1 gives the number of 1´s presented at n inputs in a form of a binary number.

The MTBDD and associated LUT cascade are displayed in Fig. 1 for n = 4.

 Generalization for larger values of n is easy. As the number of nodes grows linearly

from the root to leaves, the width of the MTBDD is given by the last level of decision

nodes and has the value of K = n.

What connects two representations is the concept of sub-functions. Informally, the

sub-function f of Fn is a function of s variables obtained from Fn by setting n− s
variables to fixed constant values. The number of distinct sub-functions of s variables,

s = 1, 2,…, n-1, a so called profile, characterizes the Boolean function and its

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

46

complexity. In Fig.1 we can recognize distinct sub-functions as edges crossing

boundaries between MTBDD layers, counting edges incident with the same node only

once. Edges are labeled by ID codes of distinct sub-functions. From the top down, there

are 2 sub-functions of variables a, b, c (ID codes 0, 1), 3 sub-functions of variables a, b

(ID codes 0, 1, 2), 4 sub-functions of variable a (ID codes 0, 1, 2, 3), and 5 sub-

functions of zero variables (constant terminal values 0 to 4). LUT contents are defined

as input/output pairs, where inputs are binary ID codes and a value of a side variable

entering a cell and outputs are binary ID codes generated by the cell. Co-synthesis of

MTBDD and LUT cascade can be done for small problems by hand (as illustrated later)

and for large incomplete functions by a program tool [8].

d d

c c

b b b

a a a a

c

b

a

0 1 2 3 4

0 1

0 1 2

0
1

2 3

Fig.1. Bit counting example

As can be seen, the difference between the MTBDD and the LUT cascade is in

communication among the MTBDD layers and LUTs in the cascade: in a MTBDD each

sub-function ID code requires an individual edge (”one-hot” coding), whereas the ID

codes being sent between LUTs are binary coded. The number of rails k in the cascade

(a cascade “width”) is therefore

 k = log2 K. (4)

This difference of two representations reflects itself in the way how the program

interprets a certain application-specific MTBDD or a LUT cascade. In case of the

MTBDD we may use for each node a record with 3 fields. A format indicator is one-bit

field specifying the leaf node (leaf nodes may generally occur at any level of the

diagram). Two other fields of the leaf node are then used for an output. If the node is

not a leaf, two fields (adjacent words) contain pointers to the base addresses of other

nodes. The base address is then modified by the value of a current control variable(s)

and is used to extract the correct field with the pointer to the next node. The program

traverses a certain path in the MTBDD from the root to a leaf in at most n steps.

 LUTs are interpreted similarly, only the pointer to the next LUT is obtained from the

current output by concatenating it with the control variable value and adding it up to the

next LUT base address. If suitable, some LUTs can be combined to provide even faster

processing (see first three cells in Fig.1).

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

47

4. LUT cascades synthesis by iterative decomposition

The decomposition of the multiple output Boolean function (or a combinational part

of a sequential system) can be done by identifying distinct sub-functions in the original

function. If their count is slightly above a power of two, we can first try to make it

equal or less than that value by transforming the function and resulting in a narrower

cascade. Then the iterative decomposition removes one variable from the residual

functions at a time. We will stop when the desired number of remaining variables for

the first LUT is obtained.

 We will consider the following combinational function: from two n-bit binary

numbers on inputs the smaller one should be passed on to the output. For simplicity we

will take n = 3 and compare numbers (a2 a1 a0) and (b2 b1 b0). The full function table

is at the top of Fig. 2a. Sub-functions of b0 are the pairs of horizontally adjacent

integers in the function table. The pairs of different integer values represent proper sub-

functions, whereas pairs of the same integer values are constant sub-functions. Since

the number of single-variable sub-functions is greater than 8 for any variable, we will

do a permutation (04)(15)(26)(37) in the upper half of the table (for a2 = 0). By means

of this permutation the number of sub-functions of b0 becomes 8 and the cascade width

3 rails will do. Enumeration of sub-functions of b0 is done by giving each and every

distinct sub-function a new ID from 0 to 7. This way a variable b0 will not appear in the

residual function.

 b2 b1 b0

 a2 a1 a0 0 1 2 3 4 5 6 7

 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4

 1 0 1 1 1 1 1 1 1 LUT1 4 5 5 5 5 5 5 5

 2 0 1 2 2 2 2 2 2 (04) 4 5 6 6 6 6 6 6

 3 0 1 2 3 3 3 3 3 (15) 4 5 6 7 7 7 7 7

 4 0 1 2 3 4 4 4 4 (26) 0 1 2 3 4 4 4 4

 5 0 1 2 3 4 5 5 5 (37) 0 1 2 3 4 5 5 5

 6 0 1 2 3 4 5 6 6 0 1 2 3 4 5 6 6

 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 LUT2 LUT3 LUT4

 44:=0 0 0 0 0 00:=0 0 0

 45:=1 1 3 3 3 13:=1 1 5

 01:=2 1 4 4 4 14:=2 2 6 0 3

 55:=3 1 5 7 7 15:=3 3 7 1 4 0 2 0

 66:=4 2 6 0 0 26:=4 4 0 2 0 1 0 1

 67:=5 2 6 1 3 33:=5 4 1 2 1

 23:=6 2 6 1 4 44:=6 4 2

 77.=7 2 6 1 5 77:=7 4 3

a)

b)

a2
a1
a0

b2 b1 b0 a2

LUT

4

LUT

3

LUT

2

LUT

1

Fig.2. Redundant iterative decomposition a) and an associated LUT cascade b)

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

48

Note that we have started building the cascade from the LUT 1 at the end, Fig.2b.

Repeating the decomposition for variable b1, we will obtain a residual function of

variables a2, a1, a0, and b2, in fact LUT4. Next three decomposition steps shown in

Fig. 2a are not needed. Note that the LUT cascade in Fig. 2 is a redundant one.

Design of LUT cascades by iterative decomposition (or alternatively by slicing

MTBDDs as in Fig.1) has a catch: the size and the width of MTBDD strongly depends

on variable ordering. Optimum variable ordering is, however, a separate problem.

Recently, heuristic minimization algorithms have been proposed [7] that allow

reduction of the WLDD size analogously as for BDDs. A co-synthesis of both MTBDD

and LUT cascade for incompletely specified multiple-output Boolean functions has

been developed in [9].

There are other heuristic approaches for MTBDD optimization, e.g. a sifting method

or the application specific variable ordering (ASVO) [7]. For example in sifting method

all positions of a given variable in the given ordering are checked successively. The

variable is then left in an optimal position with the lowest MTBDD size and the process

repeats for all variables. Thorough comparison of all heuristic methods of optimization,

as regards quality of results and an amount of the required execution time, remains still

to be done.

5. A micro-programmed controller with multi-way branching

Evaluation of Boolean functions at the firmware level can use the LUT cascade

paradigm. By making use of hardware micro-engines with a support for multi-way

branching, we can speed up evaluation of Boolean functions with respect to a general

purpose CPU core. A suitable architecture of a micro-engine, a modified version of the

one in [2], is depicted in Fig.3.

Fig.3. Micro-programmed controller architecture with multi-way branching

There are three microinstructions formats determined by a format indicator field FI:

FI = 01: state output (control signals), µIP := µIP+1

FI = 10: MXs and BCU control, jump to an address specified in micro-instruction

modified by BCU

x1

x2

xn

M

X

ROM

M

X

s

16-way

Branch

Ctrl Unit

µ
I

P

address

sources

+1

Decoder/

Seqencer

µ
I

R

m =4

Wired

OR
FI

 4

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

49

FI = 11: conditional output and jump to an address specified in micro-instruction (no

modification).

The second format includes all kinds of jumps to the target address obtained from the

address specified in the micro-instruction; this latter address is modified by external

variables, by up to 4 variables at a time, including 0 variable (no modification), by

means of 16-way Branch Control Unit (BCU). The task of this unit is to shift active

inputs, selected by a 4-bit mask, to the lowest positions of the 4-bit output vector. This

vector is then wire-ORed with the address obtained from the micro-instruction. If there

are more external variables, LUT cascade paradigm is used. The LUT output contains

not only the rail variables, but the whole address of one of the input nodes in the next

section of the MTBDD encapsulated in the next LUT.

We will illustrate the transformation of a general multi-way branch microinstruction

into a micro-program. The multi-way branch has the same structure as a switch. Let us

have the statement

S0: if F = 0 then v0 exit S0

 if F = 1 then v1 exit S1

 if F = 2 then v2 exit S1

 if F = 3 then v2 exit S2

 if F = 4 then v3 exit S3

 else don´t care; (5)

Si´s are state labels, vj´s are conditional output vectors, F(A,B,C,D): X→ Z5, X ⊂ (Z2)
4

is an incomplete multiple-output Boolean function, its map is in Fig.4a. The switch

statement (5) describes a transition from present state S0 to one of next states S0 to S3

depending on the values of 4 external variables A, B, C and D. During the transition a

certain conditional output vector vj is generated.

F(A,B,C,D) CD

AB 00 01 10 11

00 0 1 2 2

01 x 2 2 2

10 x 4 0 1

11 4 x 2 3

S0: if F = 0 then v0 exit S0

 if F = 1 then v1 exit S1

 if F = 2 then v2 exit S1

 if F = 3 then v2 exit S2

 if F = 4 then v3 exit S3

 else don´t care;

S0 exit L@ABCD

...

L@0000 v0 exit S0

L@0001 v1 exit S1

...

...

L@1110 v2 exit S1

L@1111 v2 exit S2

 a) b) c)

Fig.4. The map of a sample function (a), a switch statement (b), and a dispatch table
in a form of the symbolic micro-program (c)

If the speed of the micro-engine is the utmost priority, we should do the testing of external

variables in one step. The 16-way branch is then translated to the dispatch table in Fig.4c.

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

50

Replacement of 4 bits in the address is denoted by operator “@”. If wired-OR is used for

replacement, the bits being replaced must be reset to 0.

If saving in hardware (chip area) is more important than overall speed, we can test

variables A, B, C and D in groups of two. The optimum MTBDD found by the iterative

decomposition is shown in Fig. 5a, together with the symbolic micro-program derived from it

(Fig.5b). It can be seen that the second LUT is only partial as two sub-functions of two

variables A, C are constants (2 and 4). Control store capacity is almost half of the capacity in

the previous case and also the BCU can be simplified.

F: 0 1 x 2 2 4 0 1 2 3

v: 0 1 x 2 2 3 0 1 2 2

S: 0 1 x 1 1 3 0 1 1 2

S0

N2 N3

AC

BD BD

N1

S0 exit N1@AC

N1@00 exit N2@BD

N1@01 v2 exit S1

N1@10 v3 exit S3

N1@11 exit N3@BD

N2@00 v0 exit S0

N2@01 v1 exit S1

N2@10 -

N2@11 v2 exit S1

N3@00 v0 exit S0

N3@01 v1 exit S1

N3@10 v2 exit S1

N3@11 v2 exit S2

LUT 1

LUT 2

a) b)

value of F

cond.output

next state

Fig. 5. LUT cascade (a) and the symbolic micro-program (b) for a multiway
branching example

6. Examples

As the first example we shall consider evaluation of the following Boolean function of 16

variables: it attains the value 1 if the given 6-bit string is detected anywhere within an input

string of 16 Boolean values; otherwise the function has the value 0.

Since the string of 6 consecutive values of variables may be located in 11 positions

(we do not assume that the pattern wraps around), we can specify the function by the

sum of 11 products. The CPU evaluation of Boolean expressions would take in the

worst case 11 × 6 steps, whereas a traversal of the ROBDD would need 16 steps. We

can do much better with LUTs, though. First the ROBDD of this function may be

obtained using the applet [10], since the Boolean expression with 11 terms, each with 6

literals, is easy to write. For the pattern of six 1´s we have:

a1*a2*a3*a4*a5*a6+a2*a3*a4*a5*a6*a7+a3*a4*a5*a6*a7*a8+a4*a5*a6*a7*a8*a9+

a5*a6*a7*a8*a9*a10+a6*a7*a8*a9*a10*a11+a7*a8*a9*a10*a11*a12+a8*a9*a10*a11

*a12*a13+a9*a10*a11*a12*a13*a14+a10*a11*a12*a13*a14*a15+a11*a12*a13*a14*

a15*a16 (6)

The ROBDD is in Fig.6a, from which an optimal size and count of LUTs can be

determined. We have used 4 ROBDD slices in Fig. 6a and obtained LUTs with 3 rails

and 4 vertical inputs (Fig. 6c) for the target micro-controller architecture in Fig.3.

 The size of the micro-program is determined by the total number of inputs into all

LUTs, which is 1 + 5 + 6 + 4 = 16; each of these inputs corresponds to the block of 16

microinstructions – a dispatch table for 4 variables. The total number of jump micro-

instructions is thus 16 × 16 = 256, but only up to 4 of them would be executed for the

given input vector. The pattern detection time will be equal to the execution time of 4

jump micro-instructions.

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

51

Fig. 6. The LUT cascade detecting a 6-bit string in 16 bits (a) 4-bit slices of the

ROBDD (b) 2-bit slices of the ROBDD (c) related LUT cascades

c)

a) b)

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

52

We can trade execution time for micro-program size. By creating 2-bit ROBDD slices we

obtain a longer cascade (Fig. 6c), shorter micro-program and a simpler BCU. Moreover, we

can detect 6-bit strings in sequences of arbitrary length. There is a 2-bit slice in the ROBDD

at Fig. 6b that repeats itself, see the side arrows. The related LUT repeats itself in the cascade,

see the highlighted cell in Fig.6c. If another micro-instruction format is provided, namely

repeating the previous micro-instruction and decrementing an auxiliary counter, then any

chain of identical LUTs can be reduced to a single repeated LUT only. In our case there are

only two identical LUTs depicted as one, the number of input nodes is now 27 and the block

of 4 micro-instructions corresponds to each one. The size of the micro-program is therefore

27 × 4 = 108 micro-instructions.

In the second example our task is to detect a number of days in a month and a year from

the state of binary counters for months (m3 m2 m1 m0) and years (y1 y0). In this case we

have the integer function of 5 binary variables because it turns out that the number of days in

a month does not depend on bit m1. The map of the function is shown in Fig.7.

 y1 y0 m3 m2 m0

000 001 010 011 100 101 110 111

00 29 31 30 31 31 30 31 x

01 28 31 30 31 31 30 31 x

10 28 31 30 31 31 30 31 x

11 28 31 30 31 31 30 31 x

y1y0

0 1 2 1 2 1 2 x

m2

02:= 0 11:= 1 22:= 2 1x:= 1

0 1 2 1

m3m0

0

Fig.7. Decomposition of the sample 4-valued function (Example 2)

m3 m0

y1 y0

m2

N0

N2

N3
0

00

1 0 11 01

1

00 01 10 11

29 28 28 28 30 31 31 30

N1

 a) b)

Fig. 8. Example 2. a) a heterogeneous MDD b) a symbolic micro-program

N0 exit N1@m3m4

N1@00 exit N2@m2

N1@01 v31 exit S31

N1@10 v31 exit S31

N1@11 v30 exit S30

N2@ 0 exitN3@y0y1

N2@ 1 v30 exit S30

N3@00 v29 exit S29

N3@01 v28 exit S28

N3@10 v28 exit S28

N3@11 v28 exit S28

y1

y0

28 29

m2

m3

m0

30

30

31

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

53

There are only 3 sub-functions of variables y1, y0 (three distinct columns), and only one of

them different from a constant (the first column). A group y1, y0 is thus the best choice for

the first decomposition step, because only one 4-way decision node results.

In the second decomposition step we can remove one or two variables simultaneously. The

choice of m2 leads to only one binary decision node and m2 is therefore selected. Finally two

remaining variables m3 and m0 are used to decide one of 4 ways. The resulting

heterogeneous MDD mixes binary and quaternary nodes, Fig.8a. The symbolic micro-

program targeted for the micro-engine in Fig. 3 is shown in Fig. 8b.

7. Conclusions

Firmware evaluation of multiple-output Boolean functions on the base of Boolean

expressions or BDDs can be in many cases dramatically accelerated using the LUT

cascade paradigm. Complexity of (incomplete) functions with many variables that can

appear in embedded systems is usually low and related LUT cascades have much lower

memory space requirements then the full table.

Obtaining the LUT cascade by slicing the MTBDD or by iterative decomposition is

relatively easy. Optimum variable ordering in MTBDD is, however, a separate problem

and can have a great impact on cascade width and space efficiency. An original

heuristics that selects such a variable, that the width of the cascade is always kept at

minimum, has been presented. LUTs obtained from the optimum MTBDDs seem to be a

very good and effective data structure and should always be considered for evaluation

of Boolean functions. They are flexible in making trade-offs between response time and

memory consumption – two or more LUTs can be compacted into one larger LUT and

the evaluation then reduces to a shorter chain of accesses into dispatch tables.

Combinational LUT cascades implemented directly in hardware can support the fastest

asynchronous or synchronous pipeline processing.

Future research will be oriented to study of evolutionary techniques for the optimum

iterative decomposition of incomplete Boolean functions of many variables where the

exhaustive search is out of question. The goal is to decompose large systems specified

either by the set of specified points or systems fully specified by Boolean expressions

into LUT cascades with the aid of parallel processing. Algorithmic synthesis of

redundant cascades and of multiple cascades will be other targets of the research in a

near future. Applications mainly in safety/security area will be sought.

References

[1] B. M. Moret: Decision Trees and Diagrams, Computing Surveys, Vol.14, No.4, Dec. 1982, pp. 593-623.

[2] V. Dvořák, V.: Microsequencer architecture supporting arbitrary branching up to 2^m targets, Computer

Architecture News, IEEE Publ., March 1990, pp. 9-16.

[3] H. Qin, T. Sasao, M. Matsuura, K. Nakamura S. Nagayama and Y. Iguchi: "A realization of multiple-output

functions by a look-up table ring," IEICE Transactions on Fundamentals of Electronics, Vol.E87-A, Dec. 2004,

pp. 3141-3150.

[4] B. Bollig, I. Wegener: “Improving the Variable Ordering of OBDDs Is NP-Complete”, IEEE Transactions on

Computers, 45(9), September 1996, pp. 993––1002.

[5] V. Dvořák: An optimization technique for ordered (binary) decision diagrams, Proceedings of the 6th Annual

European Computer Conference CompEuro' 92, Hague, NL, 1992, pp. 1-4.

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

54

[6] A. Mishchenko, T. Sasao: Logic Synthesis of LUT Cascades with Limited Rails－ A Direct Implementation of

Multi-Output Functions, Technical report of IEICE, The Institute of Electronics, Information and Communication

Engineers, Vol.102, No.476 (20021121), pp. 103-108. VLD2002-99, ISSN:09135685.

[7] R. Drechsler, B. Becker: Binary Decision Diagrams - Theory and Implementation, Springer 1998.

[8] V. Dvořák: A cascade implementation of digital systems, Microprocessing and Microprogramming, North-

Holland, Vol. 29, No. 1, 1990, pp. 151-163.

[9] V. Dvořák: Time- and Space-Efficient Evaluation of Sparse Boolean Functions in Embedded Software,

Proceedings of 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-

Based Systems, Los Alamitos, IEEE CS US,, 2007, pp. 178-185.

[10] University of Hamburg, Department of Informatics, http://tams-www.informatik.uni-hamburg.de/applets

[11] T. Sasao and J. T. Butler, "Implementation of multiple-valued CAM functions by LUT cascades," ISMVL-

2006, Singapore, May 17-20, 2006.

Acknowledgement

This research has been carried out under the financial support of the research grants

“Design and hardware implementation of a patent-invention machine”, GA102/07/0850

(2007-9), “Safety and security of networked embedded system applications”,

GA102/08/1429 (2008-10), both care of Grant Agency of Czech Republic, and

“Security-Oriented Research in Information Technology”, MSM 0021630528 (2007-

13).

Author

 Vaclav Dvorak obtained M.Sc. degree in Electrical Engineering

and Ph.D. degree in Applied Cybernetics from Brno University

of Technology, Czech Republic, in 1963 and 1968. He was

awarded a distinguished DrSc degree in Computer Science and

Engineering in 1990.

Since 1963 he was 10 years with the Research Institute of

Mathematical Machines Prague. Then he joined Brno University

of Technology, Faculty of Information Technology, as a

research associate and later as Associate and Full Professor.

The major field of his interest has been computer hardware and

architecture. He interleaved the work at the home university

with acting as visiting scientist, lecturer and professor at a

number of foreign institutions, over 8 years in all. (Canada,

Malta, Libya, New Zealand, Australia, Tenerife-Spain). His

research is recently oriented into application specific and

parallel architectures.

Prof. Dvorak is a member of Computer Society and IEEE, a

member of the Scientific Board of the Faculty of Information

Technology, committees for Bc, MSc and Ph.D. studies in

Information Technology and a member of JUCS Editorial

Board.

