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Abstract. A new accelerator of Cartesian genetic programming is presented in this
paper. The accelerator is completely implemented in a single FPGA. The proposed
architecture contains multiple instances of virtual reconfigurable circuit to evaluate
several candidate solutions in parallel. An advanced memory organization was de-
veloped to achieve the maximum throughput of processing. The search algorithm

is implemented using the on-chip PowerPC processor. In the benchmark prob-
lem (image filter evolution) the proposed platform provides a significant speedup
(170) in comparison with a highly optimized software implementation. Moreover,
the accelerator is 8 times faster than previous FPGA accelerators of image filter
evolution.
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1 INTRODUCTION

Evolutionary algorithms (EAs) are capable of creating human-competitive inven-
tions automatically [1]. However, the computational power which EA needs for ob-
taining innovative results is enormous for most applications. In order to reduce the
computational time, various methods have been proposed. Domain-specific hard-
ware accelerators represent a very promising solution due to the high performance,
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low implementation cost and low power consumption. In addition to application-
specific chips such as [2], field programmable gate arrays (FPGAs) have been uti-
lized [3, 4, 5, 6, 7]. Modern FPGAs provide a cheap, flexible and powerful platform,
often outperforming common workstations or even clusters of workstations in par-
ticular applications.

It has been demonstrated in our previous work that a single-chip FPGA-based
accelerator running at 100MHz can provide approx. 44 times higher performance in
comparison with a common PC running at 2.4GHz [8]. The speedup was obtained
in the task of image filter evolution which can be considered as a symbolic regression
problem. The accelerator utilizes a hardware implementation of Cartesian genetic
programming (CGP) which is a special kind of genetic programming developed
mainly for digital circuit evolution [9].

In this paper, a new FPGA-based accelerator of CGP is proposed. The goal
of this work is to provide a high-performance as well as low-power evolutionary
platform for acceleration of symbolic regression problems (over the integer repre-
sentation). The main contribution can be seen in the utilization of multiple fitness
evaluation units and new population memory architecture. The parallel comput-
ing approach combined with deep pipelining of fitness units enabled to accelerate
the image filter evolution 170 times in comparison with a common PC running at
2.4GHz.

The paper is organized as follows. Section 2 introduces the idea of Cartesian
genetic programming. In Section 3 the architecture of the proposed accelerator
is presented. Section 4 is devoted to experimental evaluation of the accelerator.
Finally, conclusions are given in Section 5.

2 CARTESIAN GENETIC PROGRAMMING

Cartesian genetic programming was introduced by Miller and Thompson in 2000 [9].
CGP represents candidate programs as graphs consisting of an array of program-
mable nodes.

More precisely, a candidate program is modeled as an array of u (columns)× v
(rows) of programmable elements (nodes). The number of inputs, ni, and outputs,
no, is fixed. Feedback is not allowed. In order to define the level of connectivi-
ty, so-called L-back parameter is used. Each node input can be connected either
to the output of a node placed in the previous L columns or to some of primary
inputs. Each node is programmed to perform one of the functions defined in the
set Γ. Every individual is encoded using u × v × 3 + no integers. The first u × v
triplets encode the configuration of the CGP nodes (i.e. connection of their in-
puts and their functions), the last no-tuple encodes the connection of the primary
outputs. While the size of chromosome is fixed, the size of phenotype is variable
since some nodes need not to be used. This represents the main advantage of
CGP (when compared to the GP) and allows to make an effective hardware accele-
rator.
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CGP operates with the population of 1 + λ individuals (typically, λ = 4). The
initial population is randomly generated. Every new population consists of the best
individual and its λ offspring created using a point mutation operator. In case
when two or more individuals have received the same fitness score in the previous
population, the individual which did not serve as a parent in the previous population
will be selected as a new parent.

For the symbolic regression problems, a training set is used in the fitness func-
tion. In case of image filter evolution a training image corrupted by a given type of
noise is employed together with uncorrupted version of the same image [10]. The
goal is to minimize the difference between the output of a candidate filter and the
uncorrupted image. The evolution is stopped when the best fitness value stagnates
or the maximum number of generations is achieved.

3 PROPOSED CGP ACCELERATOR

The basic idea of the CGP accelerator is that a given instance of CGP array (i.e.
a reconfigurable array consisting of u × v programmable nodes) is implemented as
a reconfigurable circuit in the FPGA. Its configuration is defined using a bitstream
which is stored in a configuration register implemented also in the FPGA. This
concept is called the virtual reconfigurable circuit (VRC) [10]. This work extends
our original implementation [5, 8, 11].

3.1 Overview of the Architecture

The proposed CGP accelerator is completely implemented in a single FPGA and
consists of Genetic Unit (GU), Fitness Unit (FU) and Control Unit (CU) (see Fig-
ure 1). Training data are stored in external SRAM memories. The GU as well as FU
are connected to the internal FPGA bus which provides an effective communication
interface between FPGA and PCI bus. The host PC is used to load training data,
read the results, and define the parameters of CGP.

In order to maximize the overall performance, the CU plays the role of master,
controls the entire system and provides an interface to the host PC. The PowerPC
generates a new candidate individual when a request is issued. The instruction me-
mory of the PowerPC is implemented using BRAMs; however, our search algorithm
is completely executed from an instruction cache.

The population of candidate configurations is also stored in on-chip BRAM
memories. The population memory is divided into Nb banks; each of them contains
Nc configuration bitstreams. Each bitstream consists of the configuration data that
are necessary to configure one VRC. All the bitstreams stored within a bank are
evaluated in parallel. An additional bit (associated with every bank) determines the
data validity; only valid configurations can be evaluated. In order to overlap the
evaluation of a candidate configuration with generating a new candidate configura-
tion, at least two memory banks have to be utilized. While the candidate solutions
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Fig. 1. Architecture of the proposed CGP accelerator

are evaluated, the Nc new candidate configurations are generated. The population
memory provides two independent ports:

1. the 32-bit read/write port A connected to the PowerPC processor and

2. the m-bit read-only port B connected to the fitness unit used for the reconfigu-
ration of VRCs.

Since corresponding columns of VRCs are reconfigured at the same time (i.e. in
parallel), the part of bitstream which encodes one column of VRC can contain up-to
m/Nc bits. Note that the width of the B port must be chosen with respect to

1. the implementation limits (m must be an integer divisible by 128),

2. the number of bits of a part of bitstream used to configure one column of VRC
and

3. the number of VRC instances Nc (in our case m = 256 and Nc = 4).

The CU consists of two subcomponents working concurrently. The first sub-
component reconfigures the VRCs according to the configuration stored in the po-
pulation memory. The second subcomponent is responsible for sending the fitness
value to the PowerPC processor. As soon as the fitness value is valid, an interrupt
request (IRQ) is generated to activate a service routine of the PowerPC. In this rou-
tine, PowerPC reads the fitness value together with some additional data and new
candidate configurations are generated for the given bank. The PowerPC processor
acknowledges the interrupt and sets up the validity bit. The PowerPC processor
utilizes the Mersenne Twister algorithm to generate pseudorandom numbers. This
algorithm was chosen on the basis of comparisons performed in [8, 12].
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3.2 Fitness Unit

The fitness unit consists of Nc instances of VRC and two subcomponents:

1. the input generation part and

2. the fitness computation part.

The training data are stored in external SRAM memories. The fitness unit loads
training data from the external SRAM1 memory and forwards them to the inputs
of VRCs.

In case of the evolutionary design of image filters it is necessary to implement
a local neighborhood function (also referred to as a sliding window function) pro-
ducing wk2 bits per one clock cycle that have to be forwarded to the inputs of VRCs,
where k is the size of the filter window and w is the data width (in our case k = 3
and w = 8). The local neighborhood function can be efficiently implemented using
k row buffers as shown in Figure 2.

In case of common one-dimensional symbolic regression problems, the training
data can be forwarded directly from the SRAM1 to the VRC inputs. In case that
the problem to be solved involves the utilization of a history of previous samples, the
input generation part of the fitness unit will contain a buffer for previous samples.
This buffer can be implemented using registers or BRAM memories.

Fig. 2. Fitness Unit (Nc = 4)

The fitness computation part consists of Nc instances of a circuit that computes
the fitness value; each VRC utilizes its own instance. In this paper, four VRCs
with k2 inputs and one output are used. For each VRC i, the absolute difference
between the output value yi and the required output value y (which is obtained
from the external memory SRAM2) is calculated. Then, a temporary fitness value
stored in accumulator (ACCi) is updated by the difference |yi − y|. As soon as FU
evaluates the last training vector, the best fitness value together with the index of
corresponding VRC is sent to the PowerPC. VRCs are then reconfigured using new
bitstreams.
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3.3 Virtual Reconfigurable Circuit

The VRC consists of Configurable Logic Blocks (CFBs) placed in a grid of u columns
and v rows (see the example in Figure 3). Any CFB can be configured to implement
one of 16 functions from Γ, where Γ includes addition, subtraction, shift, minimum,
maximum, absolute difference and 10 logic functions (such as in [8]). All these
functions operate with two 8-bit operands and produce a single 8-bit result. The
operands are selected using two multiplexers. Each multiplexer connects the CFB
either with a primary circuit input or the output of a CFB, which is placed in the
preceding column. The reconfiguration is performed column by column, one column
is configured in a single clock cycle. The computation is pipelined; a column of
CFBs represents a stage of the pipeline. Registers are inserted between the columns
in order to synchronize the input pixels with CFB outputs. Evolutionary algorithm
directly operates with the configurations of the VRC; simply, a configuration is
considered as a chromosome.

Fig. 3. VRC for symbolic regression problems

3.4 Genetic Unit

The introduction of multiple VRC instances requires to design a problem specific
memory interface that allows avoiding the idle clock cycles. The memory banks
are used in order to overlap the evaluation of the candidate solutions with the
generation of new chromosomes. Moreover, each bank is divided into Nc equivalent
sections, each of them is used to configure a single VRC. The population memory
consists of several instances of BRAM memories arranged together to provide the
required number of bits. This arrangement enables to reconfigure all VRC instances
in parallel. In order to reduce the number of memory accesses issued by the PowerPC
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processor, the population memory is equipped with a logic that enables to store only
the differences between the configurations of neighboring sections.

In order to exploit the performance of proposed highly-parallel architecture,
GU has to generate Nc new candidate configurations while another Nc candidate
configurations are evaluated. Because the search algorithm utilizes a population of
candidate solutions, a single genetic operator is used (i.e. mutation which inverts
h bits of the configuration) and no crossover operator is applied, the number of me-
mory accesses can be minimized by storing the differences between the configuration
bitstream of the first offspring and of the remaining offspring.

The PowerPC keeps only the information about mutations (i.e. indices of in-
verted bits) and the best fitness value. FU contains a circuit generating a complete
configuration bitstream for each VRC according to the partial information stored in
the sections.

The mechanism controlling the bitstream generation works as follows. As soon
as the evaluation is finished, the best fitness value fbest (out of the four evaluated
individuals) together with the index of the corresponding VRC i is sent to the
PowerPC. The three situations can occur

1. if fbest < fparent then the bitstream of the first mutant is reverted to the parent
bitstream by applying the mutations leading to this configuration, however in
reverse order,

2. if i > 1 then the differences between the first mutant and the ith mutant stored
in the ith section have to be reflected to the first bitstream,

3. if i = 1 then nothing has to be done; the configuration bitstream corresponds
with the new parent bitstream.

By applying the previous steps, the first section contains the parental bitstream and
a new generation can be created. Note that the inverted bits stored in sections have
to be cleared before a new generation is created. The same principle is applied for
the remaining banks.

4 EVALUATION

In order to evaluate the performance of the proposed solution, the problem of evo-
lutionary design of image filters will be investigated.

We will consider VRC that consists of 8 columns and 4 rows (u = 8 and v = 4).
The configuration bitstream which is used to configure one VRC consists of 384 bits;
i.e. 48 bits per a column are used. A single CFB is configured by 12 bits, 4 bits are
used to select the connection of a single input, 4 bits are used to select one of the
16 functions. The population memory consists of 8 BRAM memories that provide
256 bit wide output. Hence a VRC with the configuration bitstream containing up
to 64 bits per column can be used.
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Fig. 4. Population memory and its internal organization
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4.1 Theoretical Performance

Due to the pipelined reconfiguration as well as execution of VRC, the evaluation of
Nc candidate programs requires (M − 2)(N − 2) clock cycles, where M ×N is the
number of pixels of training image. The time teval needed to evaluate Nc candidate
solutions can be expressed as

teval = (M − 2)(N − 2)
1

f
= (M − 2)(N − 2)

1

100
µs,

where f is the operation frequency (f = 100MHz). Since the generation of new can-
didate configurations is overlapped with the evaluation of other candidate solutions,
the total time ttotal can be expressed as

ttotal = tinit +Ng

⌈

p

Nc

⌉

teval,

where tinit corresponds with the time needed for the initialization (i.e. transferring
the training data and programming the PowerPC processor), Ng is the number of
generations, p is the population size and Nc is the number of VRC instances. The
proposed platform provides the best performance if the number of VRC instances
is equal to the population size or the population size is a multiple of the number
of VRC instances (p = kp, where k ∈ N

+). If the previous condition is met, all
the VRC instances are utilized without stalls. Note that this condition does not
represent any limitation since the population size is typically chosen between five
and ten individuals and, moreover, the population size can be adjusted according
to the number of utilized VRC instances.

4.2 Results of Synthesis

In order to implement the proposed system, a COMBO6X card equipped with Vir-
tex II Pro XC2VP50 FPGA has been used. The evolvable system was described
in VHDL, simulated using ModelSim and synthesized using Mentor Graphics Pre-
cision RTL 2009 and Xilinx ISE 10.1 tools. While the PowerPC works at 300MHz,
the logic supporting the PowerPC works at 150MHz. The remaining FPGA logic
works at 100MHz. Results of synthesis for the accelerator containing up to four
VRC instances (4 × 8 CFBs each) are summarized in Table 1. According to the
synthesis report, one instance of VRC occupies approx. 3 275 SLICEs and 1 084
DFFs. The whole design occupies approx. 60% of the FPGA for Nc = 4, the four
VRC instances represent approx. 90% of the design size.

Table 2 summarises the results of synthesis for the XC5VFX100T FPGA which
represents the modern Virtex-5 family. This FPGA will be available on the second
generation of the COMBO cards (COMBO-LXT). The main difference between
Virtex-5 and Virtex II Pro family is the internal structure of the basic building
blocks (LUTs); while the Virtex II Pro chip contains 4-input LUTs the Virtex-5
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resource avail. Nc = 1 Nc = 2 Nc = 4

IO blocks 852 602 70% 602 70% 602 70%
BRAM 232 16 7% 16 7% 16 7%

SLICES 23 616 4 651 20% 7 961 34% 14 582 60%
DFF 49 788 3 536 7% 4 691 9% 7 001 14%

Table 1. Results of synthesis for various number of VRC instances (Virtex II Pro)

chip utilizes LUTs with 6 inputs. Moreover, the Virtex-5 family is equipped with
more powerful PowerPC processor, faster logic and larger BRAM memories. Thus
a well written design usually works on higher frequency and occupies smaller area.

resource avail. Nc = 1 Nc = 2 Nc = 4 Nc = 8

IO blocks 640 640 94% 640 94% 602 94% 602 94%
BRAM 228 8 4% 8 4% 8 4% 12 5%
SLICES 16 000 1 828 11% 3 157 20% 5 819 36% 11 158 70%
DFF 65 280 3 633 6% 4 788 7% 7 098 11% 11 718 18%

Table 2. Results of synthesis for various number of VRC instances (Virtex-5, 100MHz)

According to the synthesis report, one instance of VRC occupies approx. 1 290
SLICEs and 1 084 DFFs. The whole design occupies approx. 40% of the FPGA
for Nc = 4. The number of occupied resources indicates that this FPGA is able to
contain approximately 2.5 times higher number of VRC instances and thus to provide
2.5 times higher computational power with nearly the same power consumption.

4.3 Experimental Evaluation

Experimental results show that approximately 25,000 candidate filters can be evalu-
ated per second when the training set consists of 15 876 8-bit vectors (i.e. a training
image containing 128× 128 pixels is used) and four instances of VRC are employed.
Table 3 contains the comparison of the proposed accelerator against the recently
published works dealing with the evolutionary design of image filters in terms of the
number of evaluated candidate solutions per second as well as the estimated power
consumption. Note that the number of evaluations per second has been calculated
for the image containing 128× 128 pixels. The last column of Table 3 contains the
relative speedup. It can be seen that the proposed solution works approximately
170 times faster than the highly optimized software version of the same algorithm
written in C running at the Celeron 2.4GHz processor. Note that even if only a sin-
gle fitness unit operating at 100MHz is utilized (third row of Table 3), the evolution
is approx. 20 times faster than this software implementation running at a GHz
processor.

Estimated results indicate that a cluster of 30 FPGAs will have the same power
consumption as a common processor (65W). Nevertheless, the cluster is capable of
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providing the speedup of more than 5 000 supposing that one independent run of
CGP is carried out using one FPGA.

Approach Platform clock power evals speedup
freq. cons. per sec

Proposed HW accelerator (4 VRCs) FPGA XC2VP50 100MHz 2W 25 195 1
Complete HW accelerator [11] FPGA XC2V3000 50MHz 1W 3 150 8
HW accelerator with PowerPC [8] FPGA XC2VP50 50MHz 2W 3 150 8
Complete HW accelerator [7] FPGA XCV2000 33MHz 1W 1 935 13
Muli-VRC accelerator [13] FPGA XCV2000 30MHz 1W 1 935 13
Highly optimized SW [8] CPU Celeron 2.4GHz 65W 145 170
SW [7] CPU Pentium IV 2.0GHz 60W 16 1 495

Table 3. Comparison of the proposed accelerator with published approaches

Apart from the FPGA-based accelerators, several papers have been published
in recent years dealing with the acceleration of CGP using common GPUs [14,
15, 16]. Harding and Banzhaf achieved the speedup between 0.02 and 100 for the
problem of symbolic regression using the GPU NVidia GeForce 7300 GO [14]. Direct
comparison between the results is difficult, as they used extremely large CGP array
(10 000 nodes) and relatively small number of training vectors (2 000) in order to
reduce the huge overhead arising during the data transfer to the GPU or accessing
the content of the GPU memory. Another common approach to increase the speedup
on GPUs is to introduce higher level of parallelism by increasing the number of
individuals in the population [15, 16]. Although this approach enables to overlap the
expensive data transfers with the evaluation of other individuals, the method seems
to be unpractical. According to the published works population-parallel approaches
appear to be more effective for smaller data sets but unable to compete with the
FPGA-based accelerators on very large data sets.

5 CONCLUSION

In this paper, a new parallel and pipelined hardware architecture was presented for
the acceleration of symbolic regression problems. The proposed architecture con-
tains multiple instances of virtual reconfigurable circuit to evaluate several candidate
solutions in parallel. An advanced memory organization was developed to achieve
the maximum throughput of processing. The accelerator was implemented in the
FPGA and its performance was compared with a software implementation and va-
rious GPU-based solutions. In the benchmark problem (image filter evolution) the
proposed platform provides a significant speedup (170) in comparison with a highly
optimized software implementation.
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